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Abstract

In this paper, we present a systematic
analysis of the dispersion characteristics of two-
dimensionally periodic impedance surfaces.
The method of mode matching is employed
analyze the boundary-value problem rigorously
in terms of the complete set of both TE- and TM-
polarized plane waves in the uniform medium
above the impedance surface.  Numerical
results are obtained extensively and are presented
graphically in the form of phase diagram, to
explain various physical effects that are peculiar
to the class of structures under consideration.
More importantly, the unique characteristics of
slanted stopband of 2D periodic structures are
investigated to develop useful criteria for
practical design and to identify potential
applications.

1. Introduction

In recent years, considerable attention has
been focused on the study of wave phenomena
associated with two-dimensional (2D) periodic
structures, and many applications have been
demonstrated, particularly in the aspects of
surface wave suppression by using the Bragg
Reflection in bound-wave region [1,2].
Because of their mathematical complexity, the
research works so far have been limited mostly to
experimental studies or have to rely on numerical
simulations.  Recently, we have presented a
rigorous analysis of the scattering and guiding of
waves by 2D periodic impedance surfaces, in
order to understand better the wave phenomena
involved in the 2D periodic structures.  The
concept of 1D reactive surface has been

employed in the analysis of surface wave along
corrugated metal surface by Hessel and Oliner [3]
for explaining the Wood’s anomaly for the light
scattering by 1D periodic structures.  Here, we
extend the 1D model to the 2D case and present a
simple method of analysis that provides physical
insights into the wave processes associated with
2D periodic structures. Thus, a clear physical
picture can be well established and design
criteria can be developed for practical
applications.

2. Statement of Problem and method of
analysis

Fig. 1 depicts a 2D periodic structure that is
horizontally infinite in extent.  As shown, the
periodic layer is covered by the air half-space
and may be supported by a stack of uniform
layers, and it is periodic along the x-axis with the
periodic a and along the y-axis with the period b.
Here, we assume that the multilayer structure has
a vertical distribution of the dielectric constants,
such that it acts as a waveguide even in the
absence of the periodic layer.  It is well known
that such a type of multilayer periodic structure is
amenable to a rigorous analysis as a boundary-
value problem by the method of mode matching.
While the fields in the uniform regions can be
simply expressed as a superposition of plane
waves, those for the periodic layer have to be
represented in terms of the Floquet mode
functions.  It is noted that in the present case,
we have a 3D boundary-value problem that
requires the simultaneous presence of both TE
and TM constituent waves with respect to the
vertical z-axis, in order to satisfy the continuity
conditions on the tangential components of the



electromagnetic fields at periodic interfaces.  In
particular, to the fields in the air region, the
structure below the top surface of the periodic
layer may be approximated by a 2D periodic
surface impedance that can be generally
represented by an infinite double Fourier series.
For simplicity, we consider here only the first
harmonic in both x and y directions, such that the
surface impedance is written as:
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In general, the surface impedance is a complex
quantity:

Zs = Rs + jX  (2)

where Rs is the surface resistance representing
the ohmic loss of the structure, and Xs is the
surface reactance, and the δ’s are the modulation
indices.  If needed, more harmonics may be
added to the representation, and the ensuing
theory remains valid.  The approximation of a
periodic structure by an impedance surface had
been successfully employed for the explanation
of Wood’s anomaly for the scattering of light in
1D periodic structures [3], and this work can be
considered as an extension of the earlier work to
the 2D case.  Consequently, the problem is
reduced to the determination of the fields in the
air region to satisfy the boundary condition:
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where Et and Ht are the tangential vectors of the
electromagnetic fields.  With the plane wave
representation for the fields in the air region, the
last boundary condition yields, in the absence of
the incident wave, a set of linear recurrence
relations in the vector form will be constructed.
The condition for the existence of non-trivial
solutions requires the vanishing of the coefficient
matrix and this defines the dispersion relation of
the waveguiding structures.

3. Numerical Results and Discussions

Based on the numerical analysis in the
previous section, we are now in a position to
carry out the qualitative and quantitative analysis

for the guiding characteristics of 2D periodic
impedance surface.  First, before embarking on
elaborate computations, we present a simple
perturbation procedure to obtain approximate
results with ease.  Moreover, a graphical
method is developed to identify and explain
various physical phenomena associated with the
structure at hand and this will be particularly
useful for practical design considerations.
Second, for a numerical simulation, the infinite
dimensions of system equations should be
truncated into a finite order for numerical
analysis.  Extensive numerical data are carried
out systematically in order to identify all possible
physical phenomena associated with the structure
under investigation.  Finally, the numerical data
are displayed in the form of the phase diagram
for physical interpretations.

According to the theory of mode coupling,
when the perturbations are small the dispersion
root of the periodically perturbed structure
should differ only slightly from that of the
unperturbed one, but the propagation
characteristics could change qualitatively from a
propagating wave to a decaying wave in a
stopband region.  For the low-frequency
operation, the normalized radius of each circle
(kswa/2π) is intentionally set to be smaller than

2/1 , so that the intersections occur only
between the circles centered along either kx-axis
or ky-axis, but not between those along the
diagonal directions.  The implication of these
diagrams is that the 2D periodic structure
behaves like a 1D one in either x- or y-direction.

On the other hand, at higher frequencies, ksw

becomes larger, and additional interactions may
take place between the circles centered along the
diagonal directions, such as the interactions
between (0, 0) and (-1, -1) harmonics and also
between (-1, 0) and (0, -1) harmonics.  The four
extra stopbands are slanted at an angle with
respect to the kx-axis, as previously reported by
us [5]; they are mainly due to the cross
modulation term containing δxy.  Inside these
slanted stopbands, ky is complex for a given real
kx, and so is kx for a given real ky.  These extra
stopbands provide additional incident conditions



for the suppression of surface waves.

To further understand the characteristics of
the slanted stopbands, Fig. 2 shows the change in
the range of incident angle to be within the
stopband for the two normalized frequencies.
Fig. 2(a) and (b) shows the real part of kx and
imaginary part as a function of ky.  To achieve
the surface wave suppression for a large angle of
incidence, we have designed a special case with
the normalized impedance surface Zs = j3, the
periods a = b, and the modulation indices are δx =
δy = δxy = 0.1.  In this case, the slanted stopbands
merge into a large one, as will become clearer
latter on.  Since the curves behave generally in
the same form around the frequency range from
a/λ = 0.215 to 0.235, we plot them for the two
values of a/λ, for succinctness.

As shown in Fig. 2(a), the dashed line is the
unperturbed phase diagram for the case of a/λ =
0.235.  The curves in heavy solid line are for the
perturbed phase diagram of a/λ = 0.235, while
the light ones are for that of a/λ = 0.215.  Due
to the reflection symmetry, the phase diagram is
drawn for the angle φ from 0 to 90 degrees,
where φ is measured from the kx-axis toward the
ky-axis.  As we trace the phase diagram along
the fundamental harmonic of surface wave (m =
0, n = 0), the pass-bands are diminishing and the
two slanted stopbands merge into a large one to
form a large angle of surface wave stopband.
From the values of kx and ky at the band edges for
the case of a/λ = 0.235, it is estimated that the
guided wave stays within the stopband for the
incident angle ranging from 21o to 71o, as
measured from x-axis, as shown in Fig. 2(a).
Moreover, inside the slanted stopband, there is an
extra vertical stopband at Re[kxa/2π] = 0.5.  It is
due to the contribution of modulation index δx;
that is the periodic variation along x-direction.
Fig. 2(b) shows the imaginary part of kxa/2π, also
exhibiting the merge of the two slanted
stopbands.  Again, the effect of vertical
stopband contributed from the x-direction
periodicity can also be observed from the extra
stopband appearing in the center portion of the
slanted stopband.  Conceivably, it will provide a
stronger surface-wave suppression around such a

region.  The general behavior of stopbands for
the case of a/λ = 0.215 are similar to that of a/λ
= 0.235 are not repeated here, for succinctness.

A surface wave can be excited in any lateral
direction along the structures; therefore, the
range of incident angle within a stopband should
be investigated in detail for the practical
applications.  Here, we plot the variation of
angular stopband versus operation frequency, for
the same parameters as in Fig. 2.  As depicted in
Fig. 3, the two dashed lines are for the upper- and
lower-bound of a stopband.  In the frequency
range investigated, the angle spectrum for
surface-wave suppression covers, at least, from
35 to 55 degrees.  In other words, the surface
wave can be totally eliminated over the range of
20o of the incident angle for the frequency range
from a/λ = 0.215 to 0.235.  This permits us to
control the propagation of surface waves in
certain frequency range by a proper design of 2D
periodic structures.

4. CONCLUSIONS

In this paper, we have modeled a periodic
structure by using a periodic impedance surface.
The guiding characteristics of surface wave on
the planar periodic impedance surface have been
rigorously treated.  Numerical results are
systematically carried out to show the stop-bands
structure of the dispersion curves, with particular
attention paid to the slanted stopbands.  In the
case of a large modulation index, we have
achieved the stopband operation for a wide angle
of incidence by the merge of the slanted
stopbands.  The existence of this type of stop-
bands provides more degrees of freedom for the
design of microwave and millimeter wave
circuits and antennas, such as the suppression of
leaky surface waves.  More data will be given in
the presentation to explain the underlying
concepts and potential applications.
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Fig. 2(a): Phase diagram for the case of Zs= j 3; a = b;
δx = δy = δxy = 0.1; computation of kx for a
given ky
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Fig. 2(b): Stopband behavior with the nromalized frequency as a parameter
for the case as same in Fig. 2(a)      
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Fig. 3: Variation of angular stopband for a certian f requency range
for the case as the same for f ig. 2.

Fig. 1Structural configuration of a
2D periodic structures.
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