
Pergamon

Compurers & Geosciences Vol. 22, No. 8, pp. 837-847, 1996
Copyright Q 1996 Elsevier Science Ltd

PII: s0098-3004(%)ooo22-2
Printed in Great Britain. All rights reserved

0098-3004/96 $15.00 + 0.00

A RASTER-BASED C PROGRAM FOR SITING A LANDFILL
WITH OPTIMAL COMPACTNESS

JEHNG-JUNG KAO

Institute of Environmental Engineering, National Chiao Tung University Hsinchu Taiwan, China
(e-mail: jjkao@green.ev.nctu.edu.tw)

(Received 27 October 1995; accepted 15 February 1996)

Abstract-Landfill siting requires performing spatial analyses for various factors to evaluate site
suitability. A geographical information system, although capable of effectively manipulating spatial data,
lacks the capability to locate an optimal site when compactness and other factors are considered
simultaneously. In our previous work, a mixed-integer compactness model was proposed to overcome this
difficulty. However, computational time with a conventional mixed-integer programming package for
solving the model is time consuming and impractical. Therefore, in this work, a C program is developed,
based on a proposed raster-based branch-and-bound algorithm. The program can implement multi-factor
analyses for compactness and other siting factors with weights prespecified by the user. An example is
provided to demonstrate the effectiveness of the program. Copyright 0 1996 Elsevier Science Ltd

Key Words: Compactness, Spatial analysis, Landfill siting, Geographic Information System, Optimization,
Raster, C.

INTRODUCT ION

Numerous factors must be considered when siting a
landfill. Zyma (1990) suggested that an appropriate
landfill have minimum impact on environment,
society, and economy, comply with regulations, and
receive general public acceptance. The decision maker
might reach either an inappropriate decision without
thoroughly reviewing all prevailing regulations and
factors or not grasp fully the background information
of a candidate site. In addition to the overall
condition, spatial data should be collected for these
factors to assess related impacts. A landfill siting
analysis generally requires extensive effort to evaluate
the considered factors. Implementing such a compli-
cated procedure in a conventional information
processing approach would be expensive and tedious.
A Geographic Information System (GIS) is capable
of processing a large amount of spatial data, thereby
saving time that would be spent normally in selecting
an appropriate site. Lindquist (1991) stated that using
a GIS for landfill site selection increases objectivity
and flexibility. Relatively easy presentations of GIS
siting results are among its advantages also.

The GIS utilized herein is GRASS (USACERL,
1993) a publicly accessible GIS. GRASS is a
raster-based GIS operated on a UNIX platform,
although limited vector-type functions are also
available. In the raster mode, spatial data are divided
into cellular geo-referenced objects. Factors involving
the features of a geographical object are expressed
with numbers and linked to the GIS cell that
represents the object. A collection of connected GIS

cells is termed a map layer; each map layer stores a
feature of an area. The primary advantage of
applying such a raster-based GIS is the simplicity of
its data storage and processing, thereby making it
easy to combine with other tools.

Although a GIS is useful in siting applications, the
algorithm for obtaining the optimal site, with
simultaneous consideration of site compactness and
other factors, generally is unavailable. Compactness
represents the nature of the site and the extent to
which it can be regarded as integrated tightly. The
lower the level of compactness, the less likely the
solution is to satisfy siting requirements, sub-
sequently making general land planning difficult. On
the other hand, the more compact the selected site is

Figure 1. Cells of sites with unacceptable compactness.

837

838 Jehng-Jung Kao

the closer together the land, thereby making the site
easier to manage. Selected land cells that are not
contiguous are not suitable for a landfill site.
Moreover, the selected cells that are contiguous but
have a poor shape are also inappropriate. Figure 1
presents several unacceptable situations. Therefore, a
compactness model must be applied to ensure the
appropriate shape of the selected site.

Compactness can be defined by a variety of
methods (Wright, ReVelle, and Cohon, 1983; Gilbert,
Holmes, and Rosenthal, 1985; Diamond and Wright,
1989). For instance, Wright, ReVelle, and Cohon
(1983) used the ratio of the perimeter to the area of
a site as a measure of compactness. According to this
definition, the shorter the perimeter of a site implies
the higher its degree of compactness. Diamond and
Wright (1989) applied the ratio of the largest
diameter square to the area of a selected site as
another measure. The largest diameter refers to the
longest distance between any two points within the
selected site. However, this method of calculation is
nonlinear. Minor and Jacobs (1994) and Benabdallah
and Wright (1992) adopted the former definition for
a waste landfill siting problem and a land allocation
problem, respectively. These spatially compact
models, although useful in solving a siting problem,
have not been integrated into a raster-based GIS.
Diamond and Wright (1989) indicated that such an
integration would provide an intelligent decision-
making tool for land-use problems. The major
obstacle to this integration is that significant numbers
of integer variables and constraints are required to
construct a compactness model for raster-based GIS
map layers, thereby making the model difficult to
solve by a general mixed-integer programming
package. In our previous work (Kao and Lin, 1995),
we proposed an improved compactness model for
raster-based GIS data. In that work, the model was
applied to a case study in central Taiwan using
XMP/Zoom (Marsten, 1988), a mixed-integer pro-
gramming package. The package, although capable
of solving the model, requires too much computing
time for a raster-based landfill siting problem and
therefore is impractical. Primary reasons for this
computational problem include (1) the large number
of necessary steps to search for a feasible integer
solution during the branch-and-bound solution
procedure implemented by XMP/Zoom, and (2) the
unnecessary branches on cells that are not contigu-
ous. Once a set of cells is selected, the corresponding
feasible integer solution can be determined easily
without using a complex programming method.
Moreover, branching on obviously impossible cells
that are far away from previously selected cells is
unnecessary. The XMP/Zoom branch-and-bound
procedure, although effective for many mixed-integer
programming problems, is not efficient for the
raster-based siting problem. Therefore, in this study,
a branch-and-bound algorithm is developed specifi-
cally for the siting problem to improve the

--b
+ 1 f2 - 0 + Qf

+

clockwise counterclockwise
Figure 2. Directed cell sides.

computational efficiency. A Per1 (Wall and Schwartz,
1991) program was written to implement the
developed branch-and-bound algorithm and com-
pactness model. However, the computational time
was still too long, although faster than XMP/Zoom.
The program is therefore rewritten in C language to
accelerate the computation. Firstly in this paper, the
developed compactness model is outlined, the
structure and main functions of the C program are
then described, and finally, a sample problem is
presented to demonstrate the application of the
program.

COMPACTNESS MODEL

Perimeter calculation

In this work, as used by Wright, ReVelle, and
Cohon (1983), the compactness of a site is defined by
the ratio of its perimeter to its area. This study
focuses primarily on raster-based data. A site is
comprised of adjacent square GIS cells uniform
length of side. Based on this framework, Iid, an [O,l]
indicator variable, is defined to represent whether cell
i, i belongs to a considered site. When the value of the
variable is 1, the cell is a part of the site; if the value
is 0, the cell is not a part of the site. Each cell-side
length is directed positively or negatively according to
the value of Zi,j. Figure 2 illustrates how the directed
sides are defined. When a cell is part of the site, I,,,
equal to 1, the directions of cell sides are defined
clockwise. On the other hand, if a cell is not part of
the site, Zi., equal to 0, then its cell side directions are
defined counterclockwise. For computational con-
venience, each side length is designated to be 0.5
units, and the directed length pointed toward south
or west is negative. With this concept of directed
sides, each side length of a cell can be defined by the
following equations:

LT,,, = - 0.5 + Z,,j

LL,j = - 0.5 + Zf,j

LR,,, = 0.5 - J,,

LB,,j = 0.5 - In.j (1)

where LTi.j, LL,/, LR ,.,, and LB,, are the top, left,
right, and bottom side lengths of cell i, j, respectively.

Any side of a cell must be adjacent to one side of
another cell. According to Figure 2, when the values
of I,., for any two adjacent cells are the same, that is,
both equal to 1 or 0, the sum of the directed lengths

A raster-based C program for siting a landfill 839

of the common side of both cells will be zero, and
therefore the side is not part of the perimeter. On the
other hand, where the values of Ii., for two adjacent
cells are different, the sum of the two directed lengths
of the common side will be + 1 or - 1, and therefore
the side is part of the perimeter. In calculating the
perimeter of a site, the valid perimeter of a cell side
is the sum of its directed side lengths of two adjacent
cells that share the same side. The valid perimeters of
the top and right side of a cell, i, j, can be computed
by the following formula:

Top side: SLT,,, = LT,,, + LB,,,- I

Left side: SLL,,, = LL,,, + LR,_ I,, (2)

When the I,,, of the cell is 1, LT,,, and LL,,, are 0.5.
At the same time, LB,,,-, and LR,_ ,,, may be 0.5
(positive) or - 0.5 (negative) depending on whether
the neighboring cell is part of the site or not. Thus,
the value of SLT,,, and SLL,,, must be either 1 or 0.
On the other hand, when I!,, has a value of 0, SLT,,,
or SLL,,, must be either 0 or - 1. Because the vectors
of the segments on a closed curve should sum to zero,
the total length of the of “top” plus “left” valid
perimeters of a site should be equivalent to the
total length of “bottom” plus “right” ones; in
addition, both total lengths have opposite positive
and negative values. As such, the site perimeter can
be determined by merely calculating the “top” and
“left” valid perimeter lengths. The valid perimeter of
a cell, SL, can therefore be defined by the following
equation:

SL,., = XX,, + SLL,, = 2Z,,, - Z ,,,- I - Z,- ,., (3)

Possible values of SL,,, are 0, 1, - 1, 2, and - 2.
When the value is other than 0, the absolute value of
this value expresses the number of sides of the cell
that contribute part of the perimeter of a candidate
site. A linear programming model cannot directly
calculate the absolute value; thus, a new nonnegative
variable, I’,.,, is introduced. This yields the following
constraint:

ZZ,,, - Z,,, _ , - Z, _ ,., + V,,, 2 0 for all i, j (4)

When SL,,, is less than 0, V,,, will be equal to its
absolute value. When SL,,, is larger than 0, Vt,, is
equal to 0. Thus, the total of all V,,, values represents
the sum of all negative (or positive) SL,., values. As
mentioned for vectorial balance of a closed curve, the
sum of all positive values should be equal to the sum
of all negative values. The total of all V,,, values is
equal therefore to half of the site perimeter. Figure 3
shows a sample site of twelve cells. As shown in this
figure, the above calculation indicates that the sum of
all negative side lengths is equal to the sum of all
positive side lengths for cells with sides on the
boundary of the site.

The model

According to the perimeter calculation described
above, the spatial compactness model proposed in
this study is summarized as follows:

,=/lf,=fl+l

Min 1 c V,.,
,=o ,=I

subject to

21,,, - I, - i., - Z, - l., + v,.,

2 0 ViEjO ,..., m}; VjC{ l,... ,n + 1}

,=m,=n

C z I,,, 2 A ViE{ l,..., m}; Vjc{ l,..., r7)
,=I ,=I

r=,n,=”

C C C;,Z,., 2 Gk VkE(lv->~}
,=,,=1

where m and n are the number of columns and rows
of cells that represent the entire siting area; A is the
required size (in numbers of cells) of the desired site;
C:, is the value of siting factor k for cell i,j; p is the
number of considered factors; and Gk is the lower
bound of the sum of factor values of cells in a site
for siting factor k. Notably, ensuring that each cell in
the siting area has an adjacent cell requires that a
pseudo-column of cells (for j = n + 1) be added on
the left-hand side of the siting area; a pseudo-row
(for i = 0) of cells also is added on the top of the
siting area. Consequently, the continuity of the
selected cells of the solution to the above model is
guaranteed because the model seeks the smallest
perimeter.

For the proposed compactness model, only one
constraint is required for each cell, whereas the
Wright, ReVelle, and Cohon (1983) model requires
two constraints and the Minor and Jacobs (1994)
model requires eight constraints. For the number of
required variables, the proposed model requires only
one integer and one noninteger variable, whereas the
Minor and Jacobs model requires three integer
variables and the Wright model requires five integer
variables. As for a mixed-integer linear programming

- positive negative
Figure 3. Directed perimeter.

840 Jehng-Jung Kao

candidate branching cell

branch

Figure 4. Traversing tree for implementing proposed
depth-first branch-and-bound algorithm.

model, increasing the number of integer variables
increases rapidly the computational time required to
solve the model. However, increasing the number of
noninteger variables does not have such a significant
effect. Therefore, decreasing the required number of
integer variables of the proposed model is useful
particularly in reducing the computing time.

Model with multiple factors

For application to a problem with multiple factors,
the objective function of the formulation (Eq. 5)
should be modified as follows:

i=m,=“+l D

Min C ’ C -(wok’,,, + 2 WkC:j) (6)
i-0 j-1 k=l

where w, is the weight for compactness and w, is the
weight for factor k. This model is formulated on the
basis of the weighting method described by Cohon
(1978).

!!!!rm
corner cell

(W

Figure 6. A, Sample site with horizontal three-cell width
bridge and B, sample site with three comer cells.

The siting model described is a mixed-integer

BRANCH-AND-BOUND ALGORITHM

optimization model. Optimization packages such as
XMP/Zoom (Marsten, 1988) generally use a branch-
and-bound algorithm to solve this type of model.
However, the general branch-and-bound algorithm
cannot solve the raster-based siting problem effec-
tively because many inappropriate cells are branched.
Therefore, a depth-first branch-and-bound algorithm
is proposed to improve the computational efficiency
when searching for a site with optimal compactness.

l *.

_ candidate branching
cells that are possible
to be branched

\
marginally acceptable possible cell

Figure 5. Cells that can be branched, A, possible cells; B, previous branching approach; and C, a sample
case that can be missed with the previous branching approach.

A raster-based C program for siting a landfill 841

D: unsuitable cell (e.g.,
natiox@ park)

~7 : cell with the a!so$ated
level (number mslde the
cell) of suitability for a
factor (e.g. land cost, soil,
land slope)

National park rule &
+

V
GIS map layer
analysis function

Population density rule & GIS map layer
analysis function

” & other rules

Figure 7. Typical procedure of applying GIS analysis
functions to obtain mask and factor suitability map layers.

The two major steps of Branch and Bound of the
algorithm are described next.

Branch. The algorithm starts with selecting a top
cell into the cell set of a possible site, as indicated by
the topCell shown in the branch-and-bound tree
illustrated in Figure 4. Next, all candidate branching
cells for the topCell are added into a branching pool.
A candidate branching cell is one that is not
eliminated after applying bounding rules described
later for the Bound step of this algorithm. One of the
candidate branching cells is then selected (branched),
down to the next level of the tree; in each level a cell
is selected. The candidate branching cells for this
newly added cell are collected as the branching pool
of the new cell. This procedure is repeated until the
number of selected cells satisfies the required siting
size. Such a set of selected cells is termed a site and
is then checked for its feasibility and noninferiority.
If the site passes the check, objective and factor
values of the site are recorded, and the best values
obtained so far are used as bounds. After a site is
checked, another site is formed by replacing the most
recently selected cell by another cell in the same
branching pool. Again, the new site is checked, and,
if passed, its objective and factor values are recorded
once more. These values, if superior to all previous
values, are recorded as the best bounds. This
procedure is repeated until no new cell in the
branching pool in the current level can be selected.
The searching process then moves up one level in the
tree (see Fig. 4) and continues the checking procedure
from another candidate branching cell in the

branching pool of the upper level. If no new cell can
be selected in the branching pool of the upper level,
the searching process moves further up in the tree.
This procedure is repeated until all branching
pools are empty and each cell has been used as a
topcell. This branching process is basically a
depth-first searching procedure to traverse cells on
the tree.

Bound. The size of the branching tree can be
increased rapidly with an increase in the number of
marked cells available in the siting area, thereby
making the problem difficult to solve within an
acceptable time. Therefore this step is applied to
prune subtrees of the branching tree that are not
necessary to explore. Pruning the subtrees as early as
possible saves a significant amount of computing
time. Two sets of bounding rules are provided in this
function to prune subtrees.

The first set includes four rules that are always
checked, that is: possible cells, bounds of factor
values, bounds of estimated site factor values, and
improvement of the objective function value based on
an estimated current objective value. Figure 5A
illustrates possible cells to be branched next for the
currently selected cell. Because all cells are traversed
in row order and from left to right, branching
backward to those cells having been traversed is
unnecessary. Furthermore, the required size of a site
is known before applying the program, thereby
making it unnecessary to branch on cells that are too
far away from the currently selected cell. In an earlier
version of the program, branching was performed
only for cells adjacent to the currently selected cell,
as illustrated in Figure 5B. However, such a
branching approach misses good solutions sometimes
such as the one in Figure 5C. Although the branched
cells are not immediately adjacent to the currently
selected cell, contiguity of the finally selected site is
guaranteed because a site with unconnected cells has
a poor compactness value and will not be selected.

The estimated value of a factor for a site is
computed by the following equation:

where F, is the estimated value of a factor for the
currently selected site; s is the number of currently
selected cells; f; is the factor value of cell i; r is the
number of cells required for a site; and,f: is the lower
bound of the factor value of cell j. The value of
compactness can be determined easily by checking
the two cells on the left and top sides of each selected
cell. According to Equation (4), if any left or top cell
is not selected, the compactness value is increased by
1. The estimated objective function value can then be
determined by the estimated site factor values and the
compactness value. Moreover, comparing the esti-
mated objective function value against the best one
recorded so far reveals that the subtree following the

842 Jehng-Jung Kao

(D)

Figure 8. Mask and factor map layers with solutions for sample problem: A, mask and solutions for cases
4-7; B, factor map layer for land cost with solutions for case 1; C, factor map layer for land slope with

optimal solution for case 2; and D, factor map layer for soil with optimal solutions for case 3.

843

=w):

A raster-based C program for siting a landfill

Table 1. Listing of pseudocode

readmaskandfactorma~layers;

readuser-~rovi&doPtionswith~i&jd();

for each marked cell, tapcell, (rowwise and left to right) & loopbnmch();

report the result.

loopataach(): for ease of explanation hmmding rules are not listed in the same order shown in

theprogram. Insteadthey are grouPed intotwo categories of non-oPtionaJ and aptional

rules.)

iI@elnentbounding rules:

-Possible cells only:

-boundsoffactorvalues;

-bounds on estimated site factor values;

-ohjectivefunction inprovementbasedon anestimatedcbjective functionvalue;

inplasnent SelectedoPtional bounding rules:

+aximally allowablewidth and/orheighttotqCell;

4aximally allcwablewidthof a horizontal bridge:

mly allowable nun&r of corner cells:

if a possible site is found, do valilyh"L() for checking feasibility and/or noninferiority;

collect candidate branching cells that can be branched into array adjacentCell;

for each cell in adjacentcell do loo@rach();

vali():

check feasibility with constrainta Provi&d by 4wdcCumtraint();

check noninferiority by der5.or():

if it is valid site, outPut the site information.

current cell can be pruned if the estimated one is
worse than the current best one.

The other set of bounding rules include: maximally
allowable width and height to the topCell, maximally
allowable width of a horizontal bridge, and
maximally allowable number of corner cells. Options
are provided for the user to adjust the default values
of these rules. Maximally allowable width and height
to the topCell are set to avoid branching on those
cells that are too far away from previously selected
cells. Maximally allowable width of a horizontal
bridge is set to avoid searching for sites having a poor
shape. As shown in Figure 6A, a bridge exists
between two land parcels. The default rule is set to
avoid any bridge of a selected site. A comer cell is
defined as a selected cell without any cell that is
selected on its left-hand and top sides, as illustrated
in Figure 6B. If the number of such comer cells is
limited to 1, all sites having rectangular shapes led by
the comer cell are evaluated. For a new problem,
defined limits are recommended to solve the problem

of finding the initial solution. Subsequently, the limits
can be relaxed with the objective function value of the
first solution used as a bound to avoid searching
solutions inferior to the first one.

Properly using these rules can reduce significantly
the size of the branch-and-bound tree. With this
special branch-and-bound algorithm, the computing
time is significantly less than that used by
XMP/Zoom. Additional rules can be added to this
function to improve further the computational speed.
However, a rule should not be added if too many
steps are required to implement it. A complex rule
may prune several subtrees; however, the compu-
tational time spent in each branch for checking the
rule may not justify the time saved from subtrees it
prunes. For instance, although the vertical bridge
width can be checked by adding additional state-
ments into the program, this check is not as simple
as checking the horizontal bridge width because cells
are traversed horizontally from left to right instead of
vertically.

Jehng-Jung Kao

Factor

Table 2. Tested weight sets for sample problem

Compactness Land cost Land slope Soil

Case I 100 I 0 0
Case 2 100 0 1 0
Case 3 100 0 0 1
Case 4 10 IO 10 0
Case 5 IO 10 0 10
Case 6 10 0 10 10
Case 7 50 10 10 10

Cells that are not eliminated in this Bound step are
termed “candidate branching cells”. If any candidate
branching cell exists in the branch-and-bound tree,
the Branch step is repeated by branching out of one
of the candidate branching cells. The two steps are
repeated until no candidate branching cell is available
on the tree.

THECPROGRAM

The structure

The pseudocode listed in Table 1 describes the
structure of the C program developed to implement
the raster-based compactness model with the
branch-and-bound algorithm.

Before applying the program, the user must
prepare a map layer to specify the siting area, where
a site is to be located. This map layer is termed the
mask map layer. The value of each cell of this mask
map layer is either 1 or 0, indicating that the cell is
either part, or not part, of the siting area. Such a map
layer can be created by GRASS from an existing map
layer after excluding obviously unsuitable areas.
Appendix 1 presents a sample list of GIS cell values
for the mask used in the example described later. In
addition to the mask, at least one factor map layer
should be provided to evaluate the suitability of a
site. For the objective function, different weights
can be assigned for a range of factors and the
compactness.

Primary C functions of the program are described
next in the order of loopBranch, validcheck,
and readUeerProvied, followed by a description
of how to use the program.

Function loopBranch: branch-and-bound algorithm

Function loopBranch is a recursive function. It
is the most important function in this program for
executing the depth-first branch-and-bound algor-
ithm specifically designed for solving the raster-based
siting problem.

Function validcheck

Two functions of checkConstraint and non-
inferior are called by this function to check a
possible site. User provided constraints are specified
in checkConstraint and, if asked, noninfe-
rior is initiated to check the noninferiority of a site.

Both functions are optional to the user. If the user
attempts to provide additional constraints in
checkConstraint, the program must be recom-
piled to reflect the change. A noninferior site is
defined as a site for which no other possible sites are
strictly superior to it for both factor and objective
function values.

Function readUserProvided

This function allows the user to define options
from an ASCII file without recompiling the entire
program. The file format and related options are
described in the next sub-section for the usage of the
program.

Usage

The program can be executed with the following
command:

sitecaq < mask-file> <factor-file 1~ -

<factor file_2>... -

where sitecornp is the program name,
<mask-file > is the file name of the mask map
layer, and < factor-file-n > is the file name of the
map layer for factor n. At least one
< factor file-n> must be provided. Appendix 1
provides a-sample of the format of mask and factor
files. For a mask file, all values are either 1 or 0, and
for a factor file any value can be presented. The size
of factor files should be the same as that of the mask
file in numbers of columns and rows. One
pseudo-column, must be added to the left-hand side
of the map, and one pseudorow is added to the top
of the map layer to guarantee that each marked cell
has cells immediately adjacent to it on the left and top
sides for computing compactness values.

An additional file, whose name is defined by the
constant USERPROVIDEDF in the program, also
must be provided to set appropriate options for the
problem to be solved. Appendix 2 presents a sample
of this file. The following options are available for the
program:

1. Minimal and maximal sizes of the site to be
searched (option names: AREAtnin and ARRAntax);

2. Weights in the objective function, see Equation
(6) (option names: w0, wl,..., etc.);

A raster-based C program for siting a landfill 845

3. Upper and lower bounds of values for each
factor (option names: ul, u2 ,..., and 11, 12 ,..., etc.);

4. Upper and lower bounds of summation of
values for cells in a site for each factor (option names:
Ul, U2 ,..., and Ll, L2 ,..., etc.);

5. The best objective value currently known, or a
best estimate (option name: currBestOb j);

6. The optimal direction of the objective function
(option name: ob jOptDir);

7. The optimal direction of each factor (option
names: 01, 02 ,..., etc.);

8. An option to check noninferiority of a site
(option name: CheckNoninferior);

9. Maximally allowable horizontal bridge width
(option name: checkHcon);

10. Maximally allowable width and height to the
topCell (option names: maxWidthTolst and max-
HeightTolst);

11. A limit on the allowable number of corner cells
(option name: maxcornercells); and

12. An option to avoid overlapping of selected
sites (option name: alternative).

SAMPLE PROBLEM

A sample data set from Shihu County in central
Taiwan is presented to demonstrate the effectiveness
of the program. A mask map layer and the suitability
values of three factors of land cost, land slope, and
soil for the mask area are prepared. The mask map
layer is created by GIS map analysis functions
provided by GRASS to exclude obviously inappro-
priate areas. Figure 7 shows a typical procedure for
creating such a map layer. The factor suitability map
layers are created by a scoring system based on their
values. For instance, high land cost is assigned a low
suitability value, and vice-versa. In this sample
problem, to formulate the objective function easily, a
low value implies a high suitability and a high value
implies a low suitability.

Figure 8 illustrates the mask map and associated
factor maps. The number of marked cells in the mask
map layer is 518. Appendix 2 lists one of the option
files used for this problem. The C program is applied
to identify the optimal site for each factor, with
weights for other factors in the objective function
being set to zero. The weight for compactness is set
to be significantly larger than the weight for each
factor to .gp aittee the solution with optimal
compactness. K e associated factor map of Figure 8
displays the solution. This figure reveals that with a
different factor, a different solution may be obtained.
Moreover, the optimal solution may not be unique.
For instance, for the cost factor example, two
alternative optimal solutions with the same objective
value are obtained. For the soil factor, many
alternative optimal solutions are possible.

The problem is tested further with two or all three
factors (other than the compactness) considered
simultaneously. Table 2 summarizes the weight sets

tested. Figure 8A illustrates solutions for examples
4-7. Because the weights assigned to the compactness
are insufficiently large to dominate the accumulated
effect of other factors, the solutions obtained for
these four examples are not so compact as the
solutions for examples l-3. The larger the weight of
the compactness implies the greater the compactness
of the obtained solution.

CONCLUSION

The C program developed in this study is capable
of locating the optimal site within a candidate area
and simultaneously considering site compactness and
other factors. The program is primarily used for data
created from a raster-based GIS. The branch-and-
bound algorithm proposed specifically for a raster-
based siting problem effectively reduces the size of the
searching tree if options provided to implement the
algorithm are selected properly. The computing time
required for solving a siting problem is reduced
significantly. Multiple factors with prespecified
weights can be included also. Appropriate factors and
assigned weights should, however, be carefully
evaluated. Different sets of factors and weights may
yield different solutions, as indicated by the solutions
in Figure 8 for the sample problem. Determining an
appropriate set of siting factors with appropriate
weights requires evaluating the relative importance
and associated utility functions of factors by close
interaction with decision makers. Decision makers
may assign a different set of factors with different
weights after they have evaluated solutions similar to
those in Figure 8. The program may then be applied
iteratively several times until the decision makers
accept the final solution. The source code is available
by anonymous FTP from the server IAMG.ORG.

Acknowledgmenrs-The author would like to thank many
friends on the Internet network who helped with the use of
GRASS in this work and the Construction Engineering
Research Laboratory, Army Corps of Engineers, Cham-
paign, Illinois for providing the publicly accessible GRASS.
Appreciation to Mr James Darrell McCauley of Purdue
University for his assistance in establishing an interface
program for data exchange between the developed program
and GRASS. Also, Mr Hung-Yue Lin is appreciated for his
assistance in preparing data for the sample application and
valuable discussion regarding some branch-and-bound
rules.

REFERENCES

Benabdallah, S., and Wright, J. R., 1992, Multiple
subregion allocation models: Jour. Urban Planning and
Development, v. 118, no. 1, p. 24-40.

Cohon, J. L., 1978. Multiobiective oroerammine and
planning: Academic Press, New York’, 56 p. -

Diamond, J. T., and Wright, J. R., 1989, Efficient land
allocation: Jour. Urban Planning and Development,
v. 115, no. 2, p. 81-96.

Gilbert, K. C., Holmes, D. D., and Rosenthal, R. E., 1985,
A multiobjective discrete optimization model for land

846 Jehng-Jung Kao

allocation: Management Science, v. 3 1, no. 12, p. Jour. Environmental Engineering, v. 120, no. 5, p.
1509-1522. 1095-1108.

Kao, J.-J., and Lin, H. Y., 1995, Geographic information
system for municipal solid waste landfill siting and
evaluation (II): Report to Miaoli Prefecture, Taiwan,
144 p.

Lindquist, R. C., 1991, Illinois cleans up: using GIS for
landfill siting: Geographic Information Systems, Febru-
ary 1991, p. 30-35.

Marsten, R., 1988, XMP user’s guide: Dept. Management
Information Systems, Univ. Arizona at Tucson, Tucson,
Arizona, 50 p.

Minor, S. D., and Jacobs, T. L., 1994, Optimal land allo-
cation for solid- and hazardous-waste landfill siting:

USACERL, 1993, GRASS 4.1 user’s reference manual: US.
Army Construction Engineering Research Laboratory,
Champaign, Illinois, 555 p.

Wall, L., and Schwartz, R. L., 1991, Programming Perl:
O’Reilly and Associates, Inc., variously paged.

Wright, J., ReVelle, C., and Cohon, J., 1983, A
multiobjective integer programming model for the land
acquisition problem: Regional Science and Urban
Economics, v. 13, no. 1, p. 31-53.

Zyma, R., 1990, Siting considerations for resource
recovery facilities: Public Works, September 1990,
p. 8486.

APPENDIX 1

Sample Mask Map Layer

000000000000000000000000000
000000000111111111000000000
000000001111111111000000000
000000011111111111100000000
000000011111111111110000000
000001111111111111111000000
000011111111111111111100000
000111111111111111111100000
000111111111111111111111100
000111111111111111111111100
001111111111111111111111100
001111111111111111111111110
000111111111111111111111100
000011111111111111111111110
000001111111111111111111110
000001111111111111111111100
000001111111111111111111100
000001111111111111111111000
000000011111111111111110000
000000011111111111111110000
000000011111111111111110000
000000001111111111111110000
000000001111111111111111000
000000000111111111111111000
000000000111111111111111000
000000000111111111111111000

000000000001111111111l1l000
000000000001111111111100000
000000000011111111111000000
000000000001111111111000000
000000000000010111111000000
000000000000000111110000000
000000000000001111100000000
000000000000001111000000000
000000000000011110000000000
000000000000011110000000000
000000000000001100000000000
000000000000000000000000000

A raster-based C program for siting a landfill

APPENDIX 2

847

Sample Option File

This is a sample file for 8USERPROVIDED. (see sitec0mp.c for file name.)
Lines with a leading '#' are comment lines. Blanks are ignored.
Set approriate values of options will reduce the size of the B&B tree.
Format for each option is
optionName [=] value [;] # although '=' and ';' can be omitted, it
is better to keep them for better readability

Must define ABEAmin and ABEAmax
ABEAmin=12;
ABEAmax=12:

wx: for objweight [xl; x=0 is for compactness value
w0 = 100; # for compactness
wl = 1; # for factor 1
w2 = 0; # for factor 2

w3 = 0; # for factor 3

lx, ux: for facLB[x] and FacUB [x];NOTE: facLB [0] is not used.
actually, LB and UB will be computed, so if you set
LB < actual LB, I will charge it to LB = actual LB; and
UB z= actual UB, I will charge it to UB = actual UB.
e.g, ll=l; or ul=lO;

Lx, Ux: for siteFacLB[x], siteFacUB [xl; NOTE; siteFacLB [0] is meaningless
siteFacUB [0] is for compactness value. Note UO is not checked in
ValidCheck(). So, you may still see some compact values > UO.
uo = 10;

Define current known best ojective value. (or a best guess)
A currBestObj = 800;

If there are several alternative sites and do not allow overlapping.
You may use this option to disable overlapping.
alternative = false;

#objOptDir=tominimize; to define tominimize or tomaximize for MIN or MAX

#ox=tominimize; # for optimization direction for each factor

#checkNoninferior default: true; please see description provided in the paper.
checkNoninferior=false;

#checkBestObj default: false; if false, will report all processed solutions.
#checkBestObj=true;

#checkHcon default: 0; # of continuous horizontal grids of a bridge
checkHcon=3;

#maxWidthTolst default=AEEAmax; actual width should add 1
maxWidthTolst=6;

#maxWidthTolst default=AREAmax:
maxHeightTolst=6;

#maxCornerGrids default=AREAmax/2.0:
maxCornerGrids=3;

