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Abstract-Landfill siting requires performing spatial analyses for various factors to evaluate site 
suitability. A geographical information system, although capable of effectively manipulating spatial data, 
lacks the capability to locate an optimal site when compactness and other factors are considered 
simultaneously. In our previous work, a mixed-integer compactness model was proposed to overcome this 
difficulty. However, computational time with a conventional mixed-integer programming package for 
solving the model is time consuming and impractical. Therefore, in this work, a C program is developed, 
based on a proposed raster-based branch-and-bound algorithm. The program can implement multi-factor 
analyses for compactness and other siting factors with weights prespecified by the user. An example is 
provided to demonstrate the effectiveness of the program. Copyright 0 1996 Elsevier Science Ltd 
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INTRODUCT ION 

Numerous factors must be considered when siting a 
landfill. Zyma (1990) suggested that an appropriate 
landfill have minimum impact on environment, 
society, and economy, comply with regulations, and 
receive general public acceptance. The decision maker 
might reach either an inappropriate decision without 
thoroughly reviewing all prevailing regulations and 
factors or not grasp fully the background information 
of a candidate site. In addition to the overall 
condition, spatial data should be collected for these 
factors to assess related impacts. A landfill siting 
analysis generally requires extensive effort to evaluate 
the considered factors. Implementing such a compli- 
cated procedure in a conventional information 
processing approach would be expensive and tedious. 
A Geographic Information System (GIS) is capable 
of processing a large amount of spatial data, thereby 
saving time that would be spent normally in selecting 
an appropriate site. Lindquist (1991) stated that using 
a GIS for landfill site selection increases objectivity 
and flexibility. Relatively easy presentations of GIS 
siting results are among its advantages also. 

The GIS utilized herein is GRASS (USACERL, 
1993) a publicly accessible GIS. GRASS is a 
raster-based GIS operated on a UNIX platform, 
although limited vector-type functions are also 
available. In the raster mode, spatial data are divided 
into cellular geo-referenced objects. Factors involving 
the features of a geographical object are expressed 
with numbers and linked to the GIS cell that 
represents the object. A collection of connected GIS 

cells is termed a map layer; each map layer stores a 
feature of an area. The primary advantage of 
applying such a raster-based GIS is the simplicity of 
its data storage and processing, thereby making it 
easy to combine with other tools. 

Although a GIS is useful in siting applications, the 
algorithm for obtaining the optimal site, with 
simultaneous consideration of site compactness and 
other factors, generally is unavailable. Compactness 
represents the nature of the site and the extent to 
which it can be regarded as integrated tightly. The 
lower the level of compactness, the less likely the 
solution is to satisfy siting requirements, sub- 
sequently making general land planning difficult. On 
the other hand, the more compact the selected site is 

Figure 1. Cells of sites with unacceptable compactness. 
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the closer together the land, thereby making the site 
easier to manage. Selected land cells that are not 
contiguous are not suitable for a landfill site. 
Moreover, the selected cells that are contiguous but 
have a poor shape are also inappropriate. Figure 1 
presents several unacceptable situations. Therefore, a 
compactness model must be applied to ensure the 
appropriate shape of the selected site. 

Compactness can be defined by a variety of 
methods (Wright, ReVelle, and Cohon, 1983; Gilbert, 
Holmes, and Rosenthal, 1985; Diamond and Wright, 
1989). For instance, Wright, ReVelle, and Cohon 
(1983) used the ratio of the perimeter to the area of 
a site as a measure of compactness. According to this 
definition, the shorter the perimeter of a site implies 
the higher its degree of compactness. Diamond and 
Wright (1989) applied the ratio of the largest 
diameter square to the area of a selected site as 
another measure. The largest diameter refers to the 
longest distance between any two points within the 
selected site. However, this method of calculation is 
nonlinear. Minor and Jacobs (1994) and Benabdallah 
and Wright (1992) adopted the former definition for 
a waste landfill siting problem and a land allocation 
problem, respectively. These spatially compact 
models, although useful in solving a siting problem, 
have not been integrated into a raster-based GIS. 
Diamond and Wright (1989) indicated that such an 
integration would provide an intelligent decision- 
making tool for land-use problems. The major 
obstacle to this integration is that significant numbers 
of integer variables and constraints are required to 
construct a compactness model for raster-based GIS 
map layers, thereby making the model difficult to 
solve by a general mixed-integer programming 
package. In our previous work (Kao and Lin, 1995), 
we proposed an improved compactness model for 
raster-based GIS data. In that work, the model was 
applied to a case study in central Taiwan using 
XMP/Zoom (Marsten, 1988), a mixed-integer pro- 
gramming package. The package, although capable 
of solving the model, requires too much computing 
time for a raster-based landfill siting problem and 
therefore is impractical. Primary reasons for this 
computational problem include (1) the large number 
of necessary steps to search for a feasible integer 
solution during the branch-and-bound solution 
procedure implemented by XMP/Zoom, and (2) the 
unnecessary branches on cells that are not contigu- 
ous. Once a set of cells is selected, the corresponding 
feasible integer solution can be determined easily 
without using a complex programming method. 
Moreover, branching on obviously impossible cells 
that are far away from previously selected cells is 
unnecessary. The XMP/Zoom branch-and-bound 
procedure, although effective for many mixed-integer 
programming problems, is not efficient for the 
raster-based siting problem. Therefore, in this study, 
a branch-and-bound algorithm is developed specifi- 
cally for the siting problem to improve the 
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Figure 2. Directed cell sides. 

computational efficiency. A Per1 (Wall and Schwartz, 
1991) program was written to implement the 
developed branch-and-bound algorithm and com- 
pactness model. However, the computational time 
was still too long, although faster than XMP/Zoom. 
The program is therefore rewritten in C language to 
accelerate the computation. Firstly in this paper, the 
developed compactness model is outlined, the 
structure and main functions of the C program are 
then described, and finally, a sample problem is 
presented to demonstrate the application of the 
program. 

COMPACTNESS MODEL 

Perimeter calculation 

In this work, as used by Wright, ReVelle, and 
Cohon (1983), the compactness of a site is defined by 
the ratio of its perimeter to its area. This study 
focuses primarily on raster-based data. A site is 
comprised of adjacent square GIS cells uniform 
length of side. Based on this framework, Iid, an [O,l] 
indicator variable, is defined to represent whether cell 
i, i belongs to a considered site. When the value of the 
variable is 1, the cell is a part of the site; if the value 
is 0, the cell is not a part of the site. Each cell-side 
length is directed positively or negatively according to 
the value of Zi,j. Figure 2 illustrates how the directed 
sides are defined. When a cell is part of the site, I,,, 
equal to 1, the directions of cell sides are defined 
clockwise. On the other hand, if a cell is not part of 
the site, Zi., equal to 0, then its cell side directions are 
defined counterclockwise. For computational con- 
venience, each side length is designated to be 0.5 
units, and the directed length pointed toward south 
or west is negative. With this concept of directed 
sides, each side length of a cell can be defined by the 
following equations: 

LT,,, = - 0.5 + Z,,j 

LL,j = - 0.5 + Zf,j 

LR,,, = 0.5 - J,, 

LB,,j = 0.5 - In.j (1) 

where LTi.j, LL,/, LR ,.,, and LB,, are the top, left, 
right, and bottom side lengths of cell i, j, respectively. 

Any side of a cell must be adjacent to one side of 
another cell. According to Figure 2, when the values 
of I,., for any two adjacent cells are the same, that is, 
both equal to 1 or 0, the sum of the directed lengths 
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of the common side of both cells will be zero, and 
therefore the side is not part of the perimeter. On the 
other hand, where the values of Ii., for two adjacent 
cells are different, the sum of the two directed lengths 
of the common side will be + 1 or - 1, and therefore 
the side is part of the perimeter. In calculating the 
perimeter of a site, the valid perimeter of a cell side 
is the sum of its directed side lengths of two adjacent 
cells that share the same side. The valid perimeters of 
the top and right side of a cell, i, j, can be computed 
by the following formula: 

Top side: SLT,,, = LT,,, + LB,,,- I 

Left side: SLL,,, = LL,,, + LR,_ I,, (2) 

When the I,,, of the cell is 1, LT,,, and LL,,, are 0.5. 
At the same time, LB,,,-, and LR,_ ,,, may be 0.5 
(positive) or - 0.5 (negative) depending on whether 
the neighboring cell is part of the site or not. Thus, 
the value of SLT,,, and SLL,,, must be either 1 or 0. 
On the other hand, when I!,, has a value of 0, SLT,,, 
or SLL,,, must be either 0 or - 1. Because the vectors 
of the segments on a closed curve should sum to zero, 
the total length of the of “top” plus “left” valid 
perimeters of a site should be equivalent to the 
total length of “bottom” plus “right” ones; in 
addition, both total lengths have opposite positive 
and negative values. As such, the site perimeter can 
be determined by merely calculating the “top” and 
“left” valid perimeter lengths. The valid perimeter of 
a cell, SL, can therefore be defined by the following 
equation: 

SL,., = XX,, + SLL,, = 2Z,,, - Z ,,,- I - Z,- ,., (3) 

Possible values of SL,,, are 0, 1, - 1, 2, and - 2. 
When the value is other than 0, the absolute value of 
this value expresses the number of sides of the cell 
that contribute part of the perimeter of a candidate 
site. A linear programming model cannot directly 
calculate the absolute value; thus, a new nonnegative 
variable, I’,.,, is introduced. This yields the following 
constraint: 

ZZ,,, - Z,,, _ , - Z, _ ,., + V,,, 2 0 for all i, j (4) 

When SL,,, is less than 0, V,,, will be equal to its 
absolute value. When SL,,, is larger than 0, Vt,, is 
equal to 0. Thus, the total of all V,,, values represents 
the sum of all negative (or positive) SL,., values. As 
mentioned for vectorial balance of a closed curve, the 
sum of all positive values should be equal to the sum 
of all negative values. The total of all V,,, values is 
equal therefore to half of the site perimeter. Figure 3 
shows a sample site of twelve cells. As shown in this 
figure, the above calculation indicates that the sum of 
all negative side lengths is equal to the sum of all 
positive side lengths for cells with sides on the 
boundary of the site. 

The model 

According to the perimeter calculation described 
above, the spatial compactness model proposed in 
this study is summarized as follows: 

,=/lf,=fl+l 

Min 1 c V,., 
,=o ,=I 

subject to 

21,,, - I, - i., - Z, - l., + v,., 

2 0 ViEjO ,..., m}; VjC{ l,... ,n + 1} 

,=m,=n 

C z I,,, 2 A ViE{ l,..., m}; Vjc{ l,..., r7) 
,=I ,=I 

r=,n,=” 

C C C;,Z,., 2 Gk VkE(lv->~} 
,=,,=1 

where m and n are the number of columns and rows 
of cells that represent the entire siting area; A is the 
required size (in numbers of cells) of the desired site; 
C:, is the value of siting factor k for cell i,j; p is the 
number of considered factors; and Gk is the lower 
bound of the sum of factor values of cells in a site 
for siting factor k. Notably, ensuring that each cell in 
the siting area has an adjacent cell requires that a 
pseudo-column of cells (for j = n + 1) be added on 
the left-hand side of the siting area; a pseudo-row 
(for i = 0) of cells also is added on the top of the 
siting area. Consequently, the continuity of the 
selected cells of the solution to the above model is 
guaranteed because the model seeks the smallest 
perimeter. 

For the proposed compactness model, only one 
constraint is required for each cell, whereas the 
Wright, ReVelle, and Cohon (1983) model requires 
two constraints and the Minor and Jacobs (1994) 
model requires eight constraints. For the number of 
required variables, the proposed model requires only 
one integer and one noninteger variable, whereas the 
Minor and Jacobs model requires three integer 
variables and the Wright model requires five integer 
variables. As for a mixed-integer linear programming 

- positive negative 
Figure 3. Directed perimeter. 
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candidate branching cell 

branch 

Figure 4. Traversing tree for implementing proposed 
depth-first branch-and-bound algorithm. 

model, increasing the number of integer variables 
increases rapidly the computational time required to 
solve the model. However, increasing the number of 
noninteger variables does not have such a significant 
effect. Therefore, decreasing the required number of 
integer variables of the proposed model is useful 
particularly in reducing the computing time. 

Model with multiple factors 

For application to a problem with multiple factors, 
the objective function of the formulation (Eq. 5) 
should be modified as follows: 

i=m,=“+l D 

Min C ’ C -(wok’,,, + 2 WkC:j) (6) 
i-0 j-1 k=l 

where w, is the weight for compactness and w, is the 
weight for factor k. This model is formulated on the 
basis of the weighting method described by Cohon 
(1978). 

!!!!rm 
corner cell 

(W 

Figure 6. A, Sample site with horizontal three-cell width 
bridge and B, sample site with three comer cells. 

The siting model described is a mixed-integer 

BRANCH-AND-BOUND ALGORITHM 

optimization model. Optimization packages such as 
XMP/Zoom (Marsten, 1988) generally use a branch- 
and-bound algorithm to solve this type of model. 
However, the general branch-and-bound algorithm 
cannot solve the raster-based siting problem effec- 
tively because many inappropriate cells are branched. 
Therefore, a depth-first branch-and-bound algorithm 
is proposed to improve the computational efficiency 
when searching for a site with optimal compactness. 

l *. 

_ candidate branching 
cells that are possible 
to be branched 

\ 
marginally acceptable possible cell 

Figure 5. Cells that can be branched, A, possible cells; B, previous branching approach; and C, a sample 
case that can be missed with the previous branching approach. 



A raster-based C program for siting a landfill 841 

D: unsuitable cell (e.g., 
natiox@ park) 

~7 : cell with the a!so$ated 
level (number mslde the 
cell) of suitability for a 
factor (e.g. land cost, soil, 
land slope) 

National park rule & 
+ 

V 
GIS map layer 
analysis function 

Population density rule & GIS map layer 
analysis function 

” & other rules 

Figure 7. Typical procedure of applying GIS analysis 
functions to obtain mask and factor suitability map layers. 

The two major steps of Branch and Bound of the 
algorithm are described next. 

Branch. The algorithm starts with selecting a top 
cell into the cell set of a possible site, as indicated by 
the topCell shown in the branch-and-bound tree 
illustrated in Figure 4. Next, all candidate branching 
cells for the topCell are added into a branching pool. 
A candidate branching cell is one that is not 
eliminated after applying bounding rules described 
later for the Bound step of this algorithm. One of the 
candidate branching cells is then selected (branched), 
down to the next level of the tree; in each level a cell 
is selected. The candidate branching cells for this 
newly added cell are collected as the branching pool 
of the new cell. This procedure is repeated until the 
number of selected cells satisfies the required siting 
size. Such a set of selected cells is termed a site and 
is then checked for its feasibility and noninferiority. 
If the site passes the check, objective and factor 
values of the site are recorded, and the best values 
obtained so far are used as bounds. After a site is 
checked, another site is formed by replacing the most 
recently selected cell by another cell in the same 
branching pool. Again, the new site is checked, and, 
if passed, its objective and factor values are recorded 
once more. These values, if superior to all previous 
values, are recorded as the best bounds. This 
procedure is repeated until no new cell in the 
branching pool in the current level can be selected. 
The searching process then moves up one level in the 
tree (see Fig. 4) and continues the checking procedure 
from another candidate branching cell in the 

branching pool of the upper level. If no new cell can 
be selected in the branching pool of the upper level, 
the searching process moves further up in the tree. 
This procedure is repeated until all branching 
pools are empty and each cell has been used as a 
topcell. This branching process is basically a 
depth-first searching procedure to traverse cells on 
the tree. 

Bound. The size of the branching tree can be 
increased rapidly with an increase in the number of 
marked cells available in the siting area, thereby 
making the problem difficult to solve within an 
acceptable time. Therefore this step is applied to 
prune subtrees of the branching tree that are not 
necessary to explore. Pruning the subtrees as early as 
possible saves a significant amount of computing 
time. Two sets of bounding rules are provided in this 
function to prune subtrees. 

The first set includes four rules that are always 
checked, that is: possible cells, bounds of factor 
values, bounds of estimated site factor values, and 
improvement of the objective function value based on 
an estimated current objective value. Figure 5A 
illustrates possible cells to be branched next for the 
currently selected cell. Because all cells are traversed 
in row order and from left to right, branching 
backward to those cells having been traversed is 
unnecessary. Furthermore, the required size of a site 
is known before applying the program, thereby 
making it unnecessary to branch on cells that are too 
far away from the currently selected cell. In an earlier 
version of the program, branching was performed 
only for cells adjacent to the currently selected cell, 
as illustrated in Figure 5B. However, such a 
branching approach misses good solutions sometimes 
such as the one in Figure 5C. Although the branched 
cells are not immediately adjacent to the currently 
selected cell, contiguity of the finally selected site is 
guaranteed because a site with unconnected cells has 
a poor compactness value and will not be selected. 

The estimated value of a factor for a site is 
computed by the following equation: 

where F, is the estimated value of a factor for the 
currently selected site; s is the number of currently 
selected cells; f; is the factor value of cell i; r is the 
number of cells required for a site; and,f: is the lower 
bound of the factor value of cell j. The value of 
compactness can be determined easily by checking 
the two cells on the left and top sides of each selected 
cell. According to Equation (4), if any left or top cell 
is not selected, the compactness value is increased by 
1. The estimated objective function value can then be 
determined by the estimated site factor values and the 
compactness value. Moreover, comparing the esti- 
mated objective function value against the best one 
recorded so far reveals that the subtree following the 
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(D) 

Figure 8. Mask and factor map layers with solutions for sample problem: A, mask and solutions for cases 
4-7; B, factor map layer for land cost with solutions for case 1; C, factor map layer for land slope with 

optimal solution for case 2; and D, factor map layer for soil with optimal solutions for case 3. 
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Table 1. Listing of pseudocode 

readmaskandfactorma~layers; 

readuser-~rovi&doPtionswith~i&jd(); 

for each marked cell, tapcell, (rowwise and left to right) & loopbnmch(); 

report the result. 

loopataach(): for ease of explanation hmmding rules are not listed in the same order shown in 

theprogram. Insteadthey are grouPed intotwo categories of non-oPtionaJ and aptional 

rules.) 

iI@elnentbounding rules: 

-Possible cells only: 

-boundsoffactorvalues; 

-bounds on estimated site factor values; 

-ohjectivefunction inprovementbasedon anestimatedcbjective functionvalue; 

inplasnent SelectedoPtional bounding rules: 

+aximally allowablewidth and/orheighttotqCell; 

4aximally allcwablewidthof a horizontal bridge: 

mly allowable nun&r of corner cells: 

if a possible site is found, do valilyh"L() for checking feasibility and/or noninferiority; 

collect candidate branching cells that can be branched into array adjacentCell; 

for each cell in adjacentcell do loo@rach(); 

vali(): 

check feasibility with constrainta Provi&d by 4wdcCumtraint(); 

check noninferiority by der5.or(): 

if it is valid site, outPut the site information. 

current cell can be pruned if the estimated one is 
worse than the current best one. 

The other set of bounding rules include: maximally 
allowable width and height to the topCell, maximally 
allowable width of a horizontal bridge, and 
maximally allowable number of corner cells. Options 
are provided for the user to adjust the default values 
of these rules. Maximally allowable width and height 
to the topCell are set to avoid branching on those 
cells that are too far away from previously selected 
cells. Maximally allowable width of a horizontal 
bridge is set to avoid searching for sites having a poor 
shape. As shown in Figure 6A, a bridge exists 
between two land parcels. The default rule is set to 
avoid any bridge of a selected site. A comer cell is 
defined as a selected cell without any cell that is 
selected on its left-hand and top sides, as illustrated 
in Figure 6B. If the number of such comer cells is 
limited to 1, all sites having rectangular shapes led by 
the comer cell are evaluated. For a new problem, 
defined limits are recommended to solve the problem 

of finding the initial solution. Subsequently, the limits 
can be relaxed with the objective function value of the 
first solution used as a bound to avoid searching 
solutions inferior to the first one. 

Properly using these rules can reduce significantly 
the size of the branch-and-bound tree. With this 
special branch-and-bound algorithm, the computing 
time is significantly less than that used by 
XMP/Zoom. Additional rules can be added to this 
function to improve further the computational speed. 
However, a rule should not be added if too many 
steps are required to implement it. A complex rule 
may prune several subtrees; however, the compu- 
tational time spent in each branch for checking the 
rule may not justify the time saved from subtrees it 
prunes. For instance, although the vertical bridge 
width can be checked by adding additional state- 
ments into the program, this check is not as simple 
as checking the horizontal bridge width because cells 
are traversed horizontally from left to right instead of 
vertically. 
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Factor 

Table 2. Tested weight sets for sample problem 

Compactness Land cost Land slope Soil 

Case I 100 I 0 0 
Case 2 100 0 1 0 
Case 3 100 0 0 1 
Case 4 10 IO 10 0 
Case 5 IO 10 0 10 
Case 6 10 0 10 10 
Case 7 50 10 10 10 

Cells that are not eliminated in this Bound step are 
termed “candidate branching cells”. If any candidate 
branching cell exists in the branch-and-bound tree, 
the Branch step is repeated by branching out of one 
of the candidate branching cells. The two steps are 
repeated until no candidate branching cell is available 
on the tree. 

THECPROGRAM 

The structure 

The pseudocode listed in Table 1 describes the 
structure of the C program developed to implement 
the raster-based compactness model with the 
branch-and-bound algorithm. 

Before applying the program, the user must 
prepare a map layer to specify the siting area, where 
a site is to be located. This map layer is termed the 
mask map layer. The value of each cell of this mask 
map layer is either 1 or 0, indicating that the cell is 
either part, or not part, of the siting area. Such a map 
layer can be created by GRASS from an existing map 
layer after excluding obviously unsuitable areas. 
Appendix 1 presents a sample list of GIS cell values 
for the mask used in the example described later. In 
addition to the mask, at least one factor map layer 
should be provided to evaluate the suitability of a 
site. For the objective function, different weights 
can be assigned for a range of factors and the 
compactness. 

Primary C functions of the program are described 
next in the order of loopBranch, validcheck, 
and readUeerProvied, followed by a description 
of how to use the program. 

Function loopBranch: branch-and-bound algorithm 

Function loopBranch is a recursive function. It 
is the most important function in this program for 
executing the depth-first branch-and-bound algor- 
ithm specifically designed for solving the raster-based 
siting problem. 

Function validcheck 

Two functions of checkConstraint and non- 
inferior are called by this function to check a 
possible site. User provided constraints are specified 
in checkConstraint and, if asked, noninfe- 
rior is initiated to check the noninferiority of a site. 

Both functions are optional to the user. If the user 
attempts to provide additional constraints in 
checkConstraint, the program must be recom- 
piled to reflect the change. A noninferior site is 
defined as a site for which no other possible sites are 
strictly superior to it for both factor and objective 
function values. 

Function readUserProvided 

This function allows the user to define options 
from an ASCII file without recompiling the entire 
program. The file format and related options are 
described in the next sub-section for the usage of the 
program. 

Usage 

The program can be executed with the following 
command: 

sitecaq < mask-file> <factor-file 1~ - 

<factor file_2>... - 

where sitecornp is the program name, 
<mask-file > is the file name of the mask map 
layer, and < factor-file-n > is the file name of the 
map layer for factor n. At least one 
< factor file-n> must be provided. Appendix 1 
provides a-sample of the format of mask and factor 
files. For a mask file, all values are either 1 or 0, and 
for a factor file any value can be presented. The size 
of factor files should be the same as that of the mask 
file in numbers of columns and rows. One 
pseudo-column, must be added to the left-hand side 
of the map, and one pseudorow is added to the top 
of the map layer to guarantee that each marked cell 
has cells immediately adjacent to it on the left and top 
sides for computing compactness values. 

An additional file, whose name is defined by the 
constant USERPROVIDEDF in the program, also 
must be provided to set appropriate options for the 
problem to be solved. Appendix 2 presents a sample 
of this file. The following options are available for the 
program: 

1. Minimal and maximal sizes of the site to be 
searched (option names: AREAtnin and ARRAntax); 

2. Weights in the objective function, see Equation 
(6) (option names: w0, wl,..., etc.); 
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3. Upper and lower bounds of values for each 
factor (option names: ul, u2 ,..., and 11, 12 ,..., etc.); 

4. Upper and lower bounds of summation of 
values for cells in a site for each factor (option names: 
Ul, U2 ,..., and Ll, L2 ,..., etc.); 

5. The best objective value currently known, or a 
best estimate (option name: currBestOb j); 

6. The optimal direction of the objective function 
(option name: ob jOptDir); 

7. The optimal direction of each factor (option 
names: 01, 02 ,..., etc.); 

8. An option to check noninferiority of a site 
(option name: CheckNoninferior); 

9. Maximally allowable horizontal bridge width 
(option name: checkHcon); 

10. Maximally allowable width and height to the 
topCell (option names: maxWidthTolst and max- 
HeightTolst); 

11. A limit on the allowable number of corner cells 
(option name: maxcornercells); and 

12. An option to avoid overlapping of selected 
sites (option name: alternative). 

SAMPLE PROBLEM 

A sample data set from Shihu County in central 
Taiwan is presented to demonstrate the effectiveness 
of the program. A mask map layer and the suitability 
values of three factors of land cost, land slope, and 
soil for the mask area are prepared. The mask map 
layer is created by GIS map analysis functions 
provided by GRASS to exclude obviously inappro- 
priate areas. Figure 7 shows a typical procedure for 
creating such a map layer. The factor suitability map 
layers are created by a scoring system based on their 
values. For instance, high land cost is assigned a low 
suitability value, and vice-versa. In this sample 
problem, to formulate the objective function easily, a 
low value implies a high suitability and a high value 
implies a low suitability. 

Figure 8 illustrates the mask map and associated 
factor maps. The number of marked cells in the mask 
map layer is 518. Appendix 2 lists one of the option 
files used for this problem. The C program is applied 
to identify the optimal site for each factor, with 
weights for other factors in the objective function 
being set to zero. The weight for compactness is set 
to be significantly larger than the weight for each 
factor to .gp aittee the solution with optimal 
compactness. K e associated factor map of Figure 8 
displays the solution. This figure reveals that with a 
different factor, a different solution may be obtained. 
Moreover, the optimal solution may not be unique. 
For instance, for the cost factor example, two 
alternative optimal solutions with the same objective 
value are obtained. For the soil factor, many 
alternative optimal solutions are possible. 

The problem is tested further with two or all three 
factors (other than the compactness) considered 
simultaneously. Table 2 summarizes the weight sets 

tested. Figure 8A illustrates solutions for examples 
4-7. Because the weights assigned to the compactness 
are insufficiently large to dominate the accumulated 
effect of other factors, the solutions obtained for 
these four examples are not so compact as the 
solutions for examples l-3. The larger the weight of 
the compactness implies the greater the compactness 
of the obtained solution. 

CONCLUSION 

The C program developed in this study is capable 
of locating the optimal site within a candidate area 
and simultaneously considering site compactness and 
other factors. The program is primarily used for data 
created from a raster-based GIS. The branch-and- 
bound algorithm proposed specifically for a raster- 
based siting problem effectively reduces the size of the 
searching tree if options provided to implement the 
algorithm are selected properly. The computing time 
required for solving a siting problem is reduced 
significantly. Multiple factors with prespecified 
weights can be included also. Appropriate factors and 
assigned weights should, however, be carefully 
evaluated. Different sets of factors and weights may 
yield different solutions, as indicated by the solutions 
in Figure 8 for the sample problem. Determining an 
appropriate set of siting factors with appropriate 
weights requires evaluating the relative importance 
and associated utility functions of factors by close 
interaction with decision makers. Decision makers 
may assign a different set of factors with different 
weights after they have evaluated solutions similar to 
those in Figure 8. The program may then be applied 
iteratively several times until the decision makers 
accept the final solution. The source code is available 
by anonymous FTP from the server IAMG.ORG. 
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APPENDIX 1 

Sample Mask Map Layer 

000000000000000000000000000 
000000000111111111000000000 
000000001111111111000000000 
000000011111111111100000000 
000000011111111111110000000 
000001111111111111111000000 
000011111111111111111100000 
000111111111111111111100000 
000111111111111111111111100 
000111111111111111111111100 
001111111111111111111111100 
001111111111111111111111110 
000111111111111111111111100 
000011111111111111111111110 
000001111111111111111111110 
000001111111111111111111100 
000001111111111111111111100 
000001111111111111111111000 
000000011111111111111110000 
000000011111111111111110000 
000000011111111111111110000 
000000001111111111111110000 
000000001111111111111111000 
000000000111111111111111000 
000000000111111111111111000 
000000000111111111111111000 

000000000001111111111l1l000 
000000000001111111111100000 
000000000011111111111000000 
000000000001111111111000000 
000000000000010111111000000 
000000000000000111110000000 
000000000000001111100000000 
000000000000001111000000000 
000000000000011110000000000 
000000000000011110000000000 
000000000000001100000000000 
000000000000000000000000000 



A raster-based C program for siting a landfill 

APPENDIX 2 

847 

Sample Option File 

# This is a sample file for 8USERPROVIDED. (see sitec0mp.c for file name.) 
# Lines with a leading '#' are comment lines. Blanks are ignored. 
# Set approriate values of options will reduce the size of the B&B tree. 
# Format for each option is 
# optionName [=] value [;] # although '=' and ';' can be omitted, it 
# is better to keep them for better readability 

# Must define ABEAmin and ABEAmax 
ABEAmin=12; 
ABEAmax=12: 

# wx: for objweight [xl; x=0 is for compactness value 
w0 = 100; # for compactness 
wl = 1; # for factor 1 
w2 = 0; # for factor 2 

w3 = 0; # for factor 3 

# lx, ux: for facLB[x] and FacUB [x];NOTE: facLB [0] is not used. 
# actually, LB and UB will be computed, so if you set 
# LB < actual LB, I will charge it to LB = actual LB; and 
# UB z= actual UB, I will charge it to UB = actual UB. 
# e.g, ll=l; or ul=lO; 

# Lx, Ux: for siteFacLB[x], siteFacUB [xl; NOTE; siteFacLB [0] is meaningless 
# siteFacUB [0] is for compactness value. Note UO is not checked in 
# ValidCheck(). So, you may still see some compact values > UO. 
# uo = 10; 

# Define current known best ojective value. (or a best guess) 
A currBestObj = 800; 

# If there are several alternative sites and do not allow overlapping. 
# You may use this option to disable overlapping. 
# alternative = false; 

#objOptDir=tominimize; to define tominimize or tomaximize for MIN or MAX 

#ox=tominimize; # for optimization direction for each factor 

#checkNoninferior default: true; please see description provided in the paper. 
checkNoninferior=false; 

#checkBestObj default: false; if false, will report all processed solutions. 
#checkBestObj=true; 

#checkHcon default: 0; # of continuous horizontal grids of a bridge 
checkHcon=3; 

#maxWidthTolst default=AEEAmax; actual width should add 1 
maxWidthTolst=6; 

#maxWidthTolst default=AREAmax: 
maxHeightTolst=6; 

#maxCornerGrids default=AREAmax/2.0: 
maxCornerGrids=3; 


