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中文摘要 

 在本計畫中，我們提出以貝氏階層式結構

為基礎的分析方法，讓視訊監控系統得以用一

致的架構，同時分析影像內容以及推論空間中

場景的資訊。在真實的場景中，為了實現一套

穩健的視訊監控系統，往往會面臨許多挑戰，

諸如物體間相互遮蔽、前景物體與背景物體外

貌相似而產生的混淆、透視投影所造成的物體

形變、陰影的變化、還有外在光線變化造成的

影像變異。透過將空間場景適當的參數化，並

同時依據場景模型和擷取到的影像資料來進行

分析，系統將能更輕易地處理前面所提及的變

異因素。在貝氏階層式架構中，我們透過階層

式表示法將以像素特徵為基礎的資訊、以區域

影像內容為基礎的資訊、與以物件特性為基礎

的資訊，透過機率的方式進行有系統的整合，

以支援影像內容的分析與場景資訊的推論。透

過所提出的貝氏階層式架構，前面所提到的許

多變異因素可以被有效地解決，除此之外，某

些變異因素還可進一步變成有效的線索來協助

三維場景資訊的推論。 

基於這樣的階層性結構，我們提出一套應

用於多台攝影機之多角度人臉偵測系統。此系

統可根據多攝影機擷取的影像偵測出影像中的

人臉位置，並得到在三維空間中人臉方向的鳥

瞰圖。有別於以往的作法，我們並不在二維的

影像中直接作搜尋與偵測、或是將這些在二維

的影像中的偵測結果投影到三維空間中作結

合；反之，我們的系統直接在三維空間中進行

搜尋，並將三維空間投影回二維影像中加以比

對處理，以判斷在這個三維空間中是否存在著

某種方向的人臉。這樣的做法使得我們的系統

可以有效地結合多攝影機中的二維影像資訊，

並可避免以往因在二維影像中的錯誤偵測所導

致的不明確資訊整合。 

關鍵詞：影像標記、圖學模型、物件偵測、物

件追蹤、影像切割。 

Abstract 

In this project, we present a Bayesian 

hierarchical framework (BHF) to simultaneously 

deal with 3-D scene modeling and image analysis 

in a unified manner. In practice, to develop a 

robust video surveillance system, many 

challenging issues need to be taken into account, 

such as occlusion effect, appearance ambiguity 

between foreground and background, perspective 

effect, shadow effect, and lighting variations. 

Here, we find a way to handle these challenging 

issues by modeling 3-D scene in a parametric 

form and by integrating scene model and image 

observation together in the inference process. In 

the proposed hierarchical framework, we 

systematically integrate pixel-level information, 

region-level information, and object-level 

information in a probabilistic way for the 

semantic inference of image content and 3-D 

scene status. Under this BHF framework, 

occlusion effect, appearance ambiguity, 



perspective effect, shadow effect, and lighting 

variations can be well handled. Actually, in the 

BHF framework, occlusion effect, perspective 

effect, and shadow effect may even provide 

useful clues to support 3-D scene inference. 

Based on this BHF framework, we further 

propose a multi-view face detection system, 

which is capable of detecting all targets’ faces in 

the given images and is able to illustrate the 

bird-eye view direction of each face in the 3-D 

space in a multi-camera surveillance system. 

Unlike existing approaches, the proposed system 

does not directly detect targets over the 2-D 

image domain nor project the 2-D detection 

results back to the 3-D space for correspondence. 

Instead, our system searches for the targets over 

small cubes in the 3-D space. Each searched 3-D 

cube is projected onto the 2-D camera views to 

determine the existence and direction of human 

faces. This approach can help us to efficiently 

combine 2-D information from different camera 

views and to suppress the ambiguity caused by 

2-D detection errors. 

Keywords: Image labeling, Graphical models, 

Object Detection, Object Tracking, Image 

Segmentation 

1. OVERVIEW 

A. System Overview 

The main goal of our multi-camera system 

is to detect, locate, correspond, and label multiple 

targets and their faces, especially for walking 

people within the zone. In our approach, we 

decouple the locating of targets from the analysis 

of inter-occlusion. The basic idea is to detect the 

candidate target locations in the first stage and 

then spend computations only over those 

candidate locations for inter-occlusion inference. 

This two-stage procedure may preserve the 

accuracy of target location without dramatically 

increasing the computational cost.  

The proposed scheme is majorly developed 

upon our earlier works [1-2] with two significant 

modifications. First, to suppress the ghost effect 

caused by geometric ambiguity, the 3-D scene 

model in our framework is defined in a 

probabilistic manner, rather than the deterministic 

form in our previous work [2]. Second, instead of 

applying a fixed 3-D target model to all tracked 

targets, we propose a Bayesian hierarchical 

framework with an expectation-maximization 

mechanism to refine the 3-D target model for each 

individual target. With the modification and 

extension of our previous works, the new system 

can locate, correspond, and label multiple targets 

over a multi-camera surveillance system, with the 

capability of ghost suppression and target model 

refinement. 

B. System Flow 

 
Figure 1.  System flow of the proposed system. 

In our fusion-inference scheme, we design a 

data fusion stage to detect candidate targets and 

their 3-D locations first. After that, in the 

inference stage, target identification, image 

labeling, and inter-occlusion are analyzed under 

the proposed Bayesian hierarchical framework 

(BHF) based on the fused 3-D priors. The inferred 

target labeling and correspondence results are 

further used to refine the 3-D target model, as 

illustrated in Figure 1. 

In the data fusion stage, a model-based 



approach is used to efficiently fuse consistent 2-D 

foreground detection results from multiple 

camera views. Here, we formulated a posterior 

distribution, named target detection probability 

(TDP), as the message pool to indicate the 

probability of having a moving target at a certain 

ground location. With the TDP distribution, 

candidate targets and their locations can be 

identified in a probabilistic manner. Moreover, 

with the use of 3-D target model, our fusion 

scheme may work well even with imperfect 

foreground extraction.  

After data fusion, a set of candidate targets 

are detected, including both true targets and ghost 

targets. In our system, we use a few 3-D priors 

about the surveillance scenario, such as the 

probability distributions of target height and 

target location, to distinguish true targets from 

ghost targets. By properly integrating these priors 

into the scene knowledge, we can greatly simplify 

the ghost suppression problem. Moreover, in the 

BHF framework, we introduce a labeling layer as 

the interface between scene knowledge and 

multi-camera observations. This 3-layer 

framework unifies the target labeling, target 

correspondence, and ghost suppression into a 

Bayesian inference problem. Besides the 

intermediate role in the hierarchical framework, 

the labeling layer also provides a feedback route 

to refine the scene knowledge based on an EM 

(Expectation-Maximization) mechanism.  

2. INFORMATION FUSION AND 

SUMMARIZATION 

A. Foreground Detection on Single Camera 

To fulfill the speed requirement of a 

real-time multi-camera system, we only consider 

2-D foreground detection results as the 

observation data. For each camera, we build its 

reference background based on the Gaussian 

mixture model (GMM) approach [3]. To remove 

shadows, the frame difference operation is 

performed over the chromatic domain.  

B. Information Fusion 

To improve the accuracy in the estimation of 

target location, we adopt a model-driven approach 

to fuse 2-D information. In the proposed method, 

we define a Target Detection Probability (TDP) 

distribution to estimate the probability of having a 

moving target at a ground location, as expressed 

below: 

);|,,()(~);,,|()( 11  XFFpXpFFXpXG NN 

(1) 

In (1), X represents a location (x1,x2) on the 

ground plane of the 3-D space. N is the total 

number of cameras in the multi-camera system. Fi 

denotes the foreground detection result of the ith 

camera view.  defines the set of camera 

parameters of all N cameras.  

To define Fi, we use (m,n) to represent the 

2-D coordinate system of the ith camera. Based 

on the foreground detection result on the ith 

camera view, we define Fi as 
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Moreover, given the location X, we assume the 

foreground detection results are conditionally 

independent of each other.  With this assumption, 

we rewrite (1) as 
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To formulate p(Fi|X), we model a moving person 

at the ground position X as a rectangular pillar, as 

shown in Figure 2. The height H and width R of 

the pillar are modeled as independent random 



variables. Their prior probability p(H) and p(R) 

are assumed to be Gaussian and are pre-trained 

based on the data collected from the health center 

of our university. Based on the pre-calibrated 

projection matrix of the ith camera, a target at X 

with height H and width R is projected onto the 

image plane of the ith camera to obtain the 

projection region. Here we define the projection 

image Mi on the ith camera view as 
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Figure 2.  Proposed pillar model in the 3-D space and 

the estimated TDP distribution based on the 

foreground images. 

With Fi and Mi, the normalized overlapping 

area i is defined as 
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By taking into account the prior probabilities p(H) 

and p(R), an estimate of p(Fi|X) is defined as 

 dHdRRpHpXRHXFp ii )()(),,()|(  (6) 

C. Information Summarization 

Based on the TDP distribution, we obtain some 

useful information about the 3-D scene, including 

the number of candidate targets, the most likely 

position of each candidate target, and the unique 

ID of each candidate target. Typically, the TDP 

distribution contains several clusters, with each 

cluster indicating a moving target on the ground 

plane. Hence, the detection of multiple moving 

targets can be treated as a clustering problem over 

the TDP distribution.  

 

(a) (b) 

Figure 3. (a) TDP of four moving targets in the 

surveillance zone. (b)Bird-eye view of (a). 

To perform clustering over the TDP 

distribution, we adopt the mean-shift clustering 

algorithm [4]. In the mean-shift algorithm, by 

iteratively calculating the next position yj+1 based 

on the following formula 
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we can identify a few converging points. Those 

samples that converge to the same converging 

point are thought to belong to the same candidate 

target and are assigned the same ID. In (7), h is a 

parameter that controls the kernel size.  

Assume we have identified M candidate 

targets on the ground plane with the ID’s {T1, T 

2, … , TM}. If we denote the Rs samples that 

belong to Tk as {Xk,0, Xk,1, …, Xk,Rs-1} with the 

corresponding weights {Wk,0, Wk,1, …, Wk,Rs-1}, we 

can estimate the position distribution function 

p(X|Tk) for Tk. Here we model p(X|Tk) as a 

Gaussian distribution. The mean vector and 

covariance matrix of p(X|Tk) are estimated based 

on (8) and (9). 
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D. Ghost Object 

From time to time, ghost clusters may occur 

in the TDP distribution. Geometrically, the ghost 

effect happens when the projection of a 

rectangular pillar at an incorrect location 

accidentally matches the foreground detection 

results on the camera views. In Figure 4, we 

present an illustration of the ghost problem when 

trying to reconstruct the 3-D scene based on two 

camera views.  

 

Figure 4. Illustration of the ghost problem. 

 

3. BAYESIAN INFERENCE AND GHOST 

SUPPRESSION 

After information summarization, we 

identify a few candidate targets and their 

locations. For each candidate, we have to decide 

whether its status is “true” or “ghost”. To 

determine the status of candidate targets, we 

consider not only foreground observations and 

geometric consistence but also some helpful prior 

knowledge about the targets. 

A. System Modeling 

A.1. Bayesian Hierarchical Framework 

Here, we propose a 3-layer Bayesian 

hierarchical framework (BHF) to simultaneously 

infer the status of candidate targets. In Figure 5, 

without loss of generality, we consider an 

example of TDP distribution fused from four 

camera views. The top layer of the BHF 

architecture is the scene layer SL that indicates the 

3-D scene knowledge built at the fusion stage. 

The bottom layer is the observation layer OL, 

which contains both the original images and the 

foreground detection results. Here, we define 

Ii(m,n) and Fi(m,n) as the original image and the 

foreground detection result of the ith camera view. 

The value of Fi(m,n) is defined as in Equation (2). 

Between the scene layer and the observation layer, 

a labeling layer LL is inserted to deal with image 

labeling, target correspondence, and ghost 

removal. Here, we define Li(m,n) as the labeling 

image of the ith camera view. 

 

(a) 
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(b) 

Figure 5. (a) An example of TDP distribution fused 

from four camera views. (b) The corresponding 

Bayesian hierarchical framework. 

 



A.2. Problem Formulation 

In the “five candidate targets” case in Figure 

6, the scene layer SL = {s1, s2, s3, s4, s5} 

corresponds to the status of five candidate targets, 

with each status node being either true “1” or 

ghost “0”. With five candidate targets, we have 25 

status combinations in total. For each 

combination, we can generate the expected 

foreground occlusion pattern by approximating 

each “true” target as a rectangle pillar on the 

ground. By projecting the 3-D rectangle pillars 

onto each camera view, we form the expected 

foreground image. Ideally, the optimal status 

combination would lead to the best match 

between the expected foreground image and the 

detected foreground image. In Figure 6, we show 

two status combinations based on the example in 

Figure 5. By checking the projected foreground 

images, it appears that the latter combination is 

less likely than the former one. 
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Figure 6. (a) The scene layer in Figure 5 and two of 

the four camera views. (b) The combination {s1, s2, s3, 

s4, s5}={1,0,1,1,1} and the expected foreground images 

overlaid with the detected foreground images. (c) The 

combination {1,1,1,1,1} and the expected foreground 

images overlaid with the detected foreground images. 

If we denote I as the set of N original images, 

F as the set of N foreground detection images, L 

as the set of N labeling images, and S as a status 

combination, we unify the target labeling problem 

and the ghost suppression problem in a single 

MAP (Maximum A Posteriori) problem. In this 

problem, we seek the optimal status combination 

S* and the optimal target labeling L* that 

maximize the posteriori probability p(L,S|I,F): 
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,
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This equation is reformulated as below to 

decompose the inference problem into the 

combination of a few cross-layer issues in the 

BHF architecture 
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In (11), we assume p(I,F|L,S) = p(I,F|L). That is, 

we assume the probabilistic property of the 

observed data I and F are independent of the 

status combination (S) once if the pixel labels (L) 

are determined. Besides, ln[p(I,F|L)] describes the 

relation between the labeling images and the 

observation data, ln[p(L|S)] describes the relation 

between the 3-D scene model and the 2-D 

labeling images, and ln[p(S)] describes the prior 

information about the 3-D scene model. 

A.3. Formulation of p(I,F|L) 

In our system, we formulate p(I,F|L) as 
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i m n
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In (12), K is a normalization term. 

ED[Fi(m,n),Li(m,n)] denotes the “detection 

energy” that relates the ith foreground detection 

image with the ith labeling image. 



EA[Ii(m,n),Li(m,n);Np] denotes the “adjacency 

energy” that relates the ith original image with 

the ith labeling image by checking the adjacent 

property within the neighborhood Np. 

On the other hand, we define 

ED[Fi(m,n),Li(m,n)] as 

))]},((),,([1{)),(),,(( nmLTnmFnmLnmFE iiiiD  
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

 


     otherwise         1

),( if     0
)),(( 0TnmL

nmLT i
i

        (14) 

and [pa,qa] being defined as 

1     if    
[ , ]

0     otherwise
a a

a a

p q
p q


 


             (15) 

In our system, by taking the original image Ii(m,n) 

into consideration, we define the adjacency 

energy EA[Ii(m,n),Li(m,n);Np] based on a Markov 

random field  to provide a smoothness constraint 

between adjacent labeling nodes [5]. Here, we 

define 
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In (16), Np denotes the (2p+1)(2p+1) 

neighborhood around (m,n), and  is a learned 

penalty constant whose value is to be determined 

later. In (17), [pa,qa] is defined as in (15). In our 

system, we design GS(U) to be a discriminative 

function similar to a logistic sigmoid function: 

  ( - ) ( - )( ) 1 (1- ) (1 ) 1th thU C U C
SG U Sigm U e e       

(18) 

Here, Sigm(U) outputs a positive value if U is 

smaller than Cth, and outputs a negative value 

otherwise. With this design, CA[.] is equal to zero 

when Li(m,n) and Li(m+m,n+n) are the same. If 

Li(m,n) and Li(m+m,n+n) are different, CA[.] 

gives a larger penalty if the difference between 

Ii(m,n) and Ii(m+m,n+n) is smaller than Cth. 

Hence, Li(m,n) and Li(m+m,n+n) tend to share 

the same label when the difference between Ii(m,n) 

and Ii(m+m,n+n) is small, and tend to have 

different labels otherwise.  

  

Figure 7.  Examples of p(Li(m,n) = Tk | S) 

A.4. Formulation of p(L|S) 

Given a status combination S, we define a 

conditional probability p(Li(m,n)=Tk| S) to express 

the likelihood of having a label Tk at the pixel 

(m,n) of the ith labeling image. Here, with the 

status combination S, we define a few rectangular 

pillars on the ground. The height and width of 

each pillar are sampled from p(H) and p(R). The 

locations of the pillars are sampled from p(X|Tk), 

where Tk indicates the kth target. With the camera 

projection parameters, the expected foreground 

patterns for each target can be generated by 

projecting these rectangular pillars onto each 

camera view. Occasionally, more than two targets 

may project onto the same image region and 

cause occlusion. The inter-occluded patterns can 

be determined by checking the distance from the 

camera to the mean location of the targets. In 

Figure 7, we demonstrate the occlusion effect by 

plotting p(Li(m,n)=Tk| S) individually for each of 

the four targets in Figure 5(b). 

Based on the definition of p(Li(m,n)=Tk| S), 

we define the log probability function ln[p(L|S)] 

as 
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In our system, we assume the number of true 

targets at the current moment would be similar to 

that at the previous time instant. Hence, if we 

denote 1t
oS  as the optimal status combination at 

the previous time instant (t-1) and tS as a status 

combination at the current time instant t, we 

define the prior probability of tS  as 
1
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2

,    if 1 
( )

,                       otherwise  

t t
ot W N(S ) N(S )

p S
W

   


  (21) 

where W1 and W 2 are two constants with W1  W 

2. In (21), N(S) denotes the number of true targets 

in the status combination S. In detail, if we know 

the ratio between W1 and W2, we can determine 

the value of W2 such that the probability 

summation equals to 1.  

B. Multi-Target Labeling with Ghost 

Suppression 

B.1. System Formulation 

With the above deduction, the labeling of 

targets and the suppression of ghost targets can be 

solved by finding the optimal labeling images (L*) 

and status combination (S*) that maximize the 

following potential function Cp(L,S): 

* *
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(22) 

In (22), we incorporate detection energy ED, 

adjacency energy EA, likelihood function p(L|S), 

and prior probability p(S). As mentioned before, 

the detection energy ED(Fi(m,n),Li(m,n)) 

represents the bottom-up constraint between the 

foreground detection images and the labeling 

images. The likelihood function p(L|S) represents 

the expected labeling layout based on the status 

combination S. The expected inter-occluded 

patterns among candidate targets are modeled in 

p(L|S) to influence the classification of local 

labeling nodes. By introducing the adjacency 

energy EA[Ii(m,n),Li(m,n);Np], the proposed 

framework can not only infer the labeling based 

on the fusion of scene knowledge and foreground 

detection results, but also refine the labeling 

results based on the original image data. Last, the 

prior probability p(S) includes the temporal 

prediction based on the previous decision. 

B.2. System Formulation 

In Equation (22), (,) control the weights of 

detection energy ED and adjacency energy EA in 

the potential function Cp(L,S). To determine (,), 

the method proposed by Yu et al. [3] is adopted. 

In detail, With the ground truth of our training 

data, we can manually label the optimal solution 

(L*,S*) and the true target locations on the ground 

plane that maximize Cp(L,S). For any other 

degraded solution (Ld,Sd), we have the 

relationship Cp(L
*,S*;,)  Cp(L

d,Sd ;,) that 

leads to an inequality constraint for  and . After 

having collected an enough number of constraints 

for  and , the optimal parameter set (*,*) can 

be found by finding the maximal summation over 

the entire solution space of  and  subject to the 

collected constraints. That is, 

* *
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(23) 

where Tn is the number of the degraded solutions 

used for training. The optimization problem in (23) 



is then solved by using a Linear Programming 

method. 

B.3. Optimal Status Inference and Target 

Labeling 

For each status hypothesis SH, we deduce the 

optimal L that maximizes the potential function 

Cp(L,S=SH) in (22). If we treat 

ED(Fi(m,n),Li(m,n)), p(Li(m,n)|S=SH), and p(S=SH) 

as data terms and treat EA[Ii(m,n), Li(m,n);Np] as a 

smoothness term, Cp(L,S=SH) actually follows a 

canonical form that can be maximized based on 

many existing optimization algorithms [5-7]. 

Based on a recent study, the graph cuts method is 

proved to be more efficient in terms of running 

time as compared to loopy belief propagation, 

tree-reweighted, and iterated conditional mode 

algorithms [7]. Hence, in our system, the graph 

cuts algorithm [8-10] is used for the 

maximization of Cp(L,S=SH). 

In our system, the optimal image labeling 

under SH are achieved by assigning to each pixel 

a suitable ID from the set {T0, T1, …, TM}. Based 

on the graph cuts theory [8-10], we form a graph 

in Figure 8 to represent our optimization problem. 

In this graph, a candidate target, say T1, can only 

affect a portion of labeling nodes in the labeling 

image. Through the projection of the 3-D 

candidate target onto the ith camera view, the 

relation is represented by a collection of “t-links”. 

In our system, we combine ED(Fi(m,n),Li(m,n)), 

p(Li(m,n)|S=SH), and the prior p(S= SH) as the 

data term to define the weight of each t-link. 

Moreover, the “n-links” in the graph represent the 

smoothness term, which is modeled as 

EA[Ii(m,n),Li(m,n);Np]. After forming this graph, 

our optimization problem is equivalent to the 

cutting of the t-links and n-links with the minimal 

cost so that all terminals are separated and each 

labeling node Li(m,n) only connects to one 

terminal through a t-link. 

 

Figure 8. The graph cut model for the optimal labeling. 

Moreover, in the graph cuts algorithm, the 

initial guess of L is obtained by finding the 

labeling image of each camera view that 

maximizes the probability function in (19) under 

the status hypothesis SH. That is, we find the 

initial labeling image ( , )ini
iL m n  of the ith camera 

view such that 

( , ) arg max ( ( , ) | ).
i

ini H
i i

L
m n

L m n p L m n S S   

(24) 

Among all status hypotheses, the status 

hypothesis that achieves the maximum posterior 

probability is picked as the optimal status 

combination S*. The optimal labeling of S* is then 

inferred as the optimal labeling L*. 

B.4. 3-D Target Model Refinement 

In our system, the 3-D model of each target 

is a pillar model with parameters height (H) and 

width (R) standing at a location X on the ground 

plane. However, different targets may have 

different heights and widths. In our system, we 

treat these model parameters as latent random 

variables and introduce an EM-based algorithm to 

iteratively refine the parameters. 

Initially, the proposed EM algorithm adopts 

the pre-trained probability distributions p(H) and 

p(R) to model the uncertainty of each target’s 

height and width. Since the BHF framework 



combines not only the 3-D scene priors and target 

priors but also the observed image data and the 

corresponding foreground detection result, the 

optimal target labeling reveals personal properties 

of each detected target. Hence, based on the 

labeling results, we update the probability 

distributions of H and R and establish 

personalized 3-D models gradually. 

   
(a) 

   
(b) 

   
(c) 

Figure 9. (a) Two camera views. (b) Labeling results 

without target model refinement. (c) Labeling results 

with target model refinement. 

In detail, we assume the model height and 

width are independent and can be refined 

separately. With Bayes rule, the refinement of the 

posterior probability is defined as 

( | ) ( | ) ( )r r r r r
k k kp Q L C p L Q p Q       (25) 

where 
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In (25), Lr denotes the labeling results of 

multiple image views at the rth iteration. The 

notation { , }r r r
k k kQ H R  represents the height or 

the width of the kth target at the rth iteration. Also, 

C is a normalization constant, ( | )r r
kp L Q  is the 

likelihood term to be defined later, and ( )r
kp Q  is 

the prior probability of r
kQ . In our system, we 

treat 1  1( | )r r
kp Q L 

 as the prior information 

propagated from the previous iteration. For the 

first iteration, 1( )kp Q  is set to the pre-trained 

probability. 

To formulate the likelihood term ( | )r r
kp L Q , 

we project the pillar model at the ground position 

of the kth target with height r
kH  and width r

kR  

onto multiple camera views to check the 

overlapping regions with the labeling results. 

Ideally, if a more accurate model parameter is 

chosen, the projected region will better fit the 

labeling result. Hence, the likelihood is termed as 

 
1

,
,

( | ) ( )
k
i

N
r r i

k m n
i m n A

p L Q p l


 
   
 
       (26) 

In (26), k
iA  is the projected region of the kth 

target onto the ith camera view. , ( )i
m np l  is the 

probability of labeling the pixel at (m,n) with the 

ID l. N is the total number of pixels within the 

projected region. Since different r
kQ  may 

generate different projected regions, we take the 

1/N power for normalization. Moreover, we 

assume the statuses of different labeling pixels are 

independent and we evaluate only those pixels 

inside the projected region of the kth target. In 

principle, the label ID tends to be Tk. Hence, 

, ( )i
m np l  has a higher probability if l equals to Tk 

and has a lower probability if l equals to T0. 

Occasionally, owing to occlusion, l may equal to 

some other foreground target. In this case, we 

assign , ( )i
m np l  to be an intermediate value. That 

is, we define , ( )i
m np l  as 



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
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          (27) 



where λ is a normalization constant to make 

the probability summation equal to 1. In (27), x, y, 

and z are the weighting parameters with the value 

5, -3, and 0, respectively, which satisfies the 

relation x > z > y. If we rewrite (24) based on (25), 

we get a likelihood form as follows 

0

1
( | ) exp{ ( )}r r

k k otherp L Q x N y N z N
N

        

(28) 

where Nk, is the number of Tk-labeled pixels, N0 is 

the number of T0-labeled pixels, and Nother is the 

number of the other pixels inside the projected 

regions in all camera views. Basically, (28) 

measures the degree of matching by accumulating 

the weighted sum of different labeling pixels 

inside the projected regions with the weighting 

parameters (x,y,z). Once the likelihood term 

( | )r r
kp L Q  is determined, the refined probability 

distribution of the height and width of the kth 

target height in the current iteration can be 

obtained based on (25). The refined models 
 ( | )r r

kp H L and  ( | )r r
kp R L  are inputted to the 

proposed BHF for the next iteration of the 

optimal object labeling. In our experiments, it 

usually takes only 2 to 3 iterations to construct 

the refined target model. 

4. MULTI-VIEW FACE DETECTION 

FRAMEWORK 

After the position estimation, we identify the 

ground locations X of detected candidate targets 

on the 3-D ground. However, the head location of 

each candidate is still unknown. Even so, the 

extracted locations are useful for speeding up 

head finding. In next subsections, we aim to 

search head positions and determine the face 

directions. We will formulate the problem and 

explain our multi-view face detection framework. 

 

Figure 10. The sliding cube in 3-D space. 

A. Finding Target Heads and Face 

Directions 

Many detection algorithms are already 

proposed for multi-view face detection. Most of 

these methods based on some learning approaches 

to train suitable detectors. After the training 

process, the trained detectors are able to detect 

specific object based on the sliding window 

approach in the image. However, because of some 

reasons, this sliding window approach in 2-D 

image may not be suitable for our application. 

First, it would not be easy to train a high accuracy 

detector for all face views. Second, from time to 

time, we need to search all scales to detect faces 

with different sizes including very small faces in 

the image. These small faces are usually too small 

to correctly identify. Also, the heavy searching 

time is unwelcome. Third, there could be some 

occlusions in the scene. Sometimes, we may need 

to detect faces that are incompletely observed in 

the image view. Due to the above reasons, 

detecting face directly in 2-D images usually 

generates many inevitable false detection and 

false rejection. 

A multi-camera system may provide us more 

information about the scene and could 

theoretically decrease the false positive rate and 

increase the detection rate. However, the 

performance of the multi-camera system depends 

heavily on the way we utilize the 3-D geometric 

information. A conventional way is to detect faces 

in each 2-D image and then the 2-D detection 



results are projected back to the 3-D space for the 

final decision. Strictly speaking, this intuitive 

way is too ideal to be used in practical 

applications. This approach could work only 

when the detection rate of the 2-D face detector is 

high enough and the false alarm is low. 

Otherwise, the presence of plentiful false 

positives and false negatives would make the 

inference in the 3-D space very complicated and 

mistake-prone. The wrong information comes 

from 2-D images would accumulate and generate 

a lot of ambiguous results in the 3-D space. 

Instead of searching and detecting the targets 

in 2-D images and then combining the outcome 

of each camera view in the 3-D space, in our 

system, we try to search and detect the targets in 

the 3-D space. This approach is like an extension 

from the 2-D sliding window approach to a 3-D 

sliding cube approach. In Figure 10, we illustrate 

this concept. 

We now slide a cube in the 3-D space and 

determine 3-D head locations and face directions. 

However, we do not have the reconstructed 3-D 

scene for the 3-D based detection. In practical 

situations, what we have are the observations of 

2-D images. Also, the reconstruction of the 3-D 

scene from all 2-D images is not reliable due to 

the limited number of cameras and the 

insufficient information from 2-D images. Hence, 

in our approach, we directly look for supports in 

the 2-D images. Here, we well utilize the 

geometric connection between 3-D space and 2D 

images according to the process of camera 

calibration beforehand. Based on the prior 

knowledge of 3-D geometric space, we generate 

hypotheses of head locations and face directions 

in the 3-D domain and base on the observed data 

from multiple 2-D images to make the final 

decisions. In each hypothesis, we assume the 

target face is at a specific location and direction in 

the 3-D space and confirm this hypothesis in its 

corresponding 2-D image regions. Figure 11 

shows an example of this process. In this example, 

a person is assumed to walk in a 3-D surveillance 

zone and a cube is sliding in the 3-D space to find 

where the head and what face direction of this 

person are. If the cube is slid to a suitable location 

that contains the human’s head, the corresponding 

regions in 2-D images will fit the face portion 

with a proper face view. On the contrary, if the 

cube is at a place without any person’s head, then 

the corresponding region will map to the 

background region and will not fit the face 

portion in each camera view. 

 

Figure 11. A 3-D sliding cube approach for the finding 

of human heads and face directions. 

B. Problem Formulation 

Based on all the discussion in the previous 

sections, we now formulate our system goal as an 

optimization problem in a unified manner. Until 

now, we have detected NT candidate targets and 

their ground locations {Xi}i=1~ TN . Here, we use Ti 

to represent the ID of the ith target. For each 

target, we still need to determine its head location 

and face orientation. As mentioned before, we use 

a sliding cube approach to find the optimal 

location (l*) and orientation (h*) of the target Ti. 

Here, we define the optimal solution as 



  |
( , ) arg max ( , | , , , ). 

i i
Ti

T T i
h H l L

h l p h l D I X C 

 


  (29) 

To numerically analyze this optimization problem 

in (29), we uniformly quantize the solution spaces 

of 3-D head positions and face orientations and 

denote the spaces as L and H respectively. In our 

system, the interesting 3-D space L, bounded by 

the surveillance zone and a user-defined height 

200cm, is divided into 100x100x50 cubes. The 

orientation space H, ranging from zero to 360 

degree, is divided into eight face directions. We 

also define other notations in (29) as below: 

(D): The set of eight image-based face classifiers 

pre-trained for different face orientations.  

(I): The set of multi-camera image views. 

(
iX ): The ground location of candidate target Ti. 

(C): Camera layout and geometry information.  

( |
iTL ): The possible 3-D head positions of 

candidate target Ti. 

Here, |
iTL  needs to be detailed. In our system, 

TNX  indicates the set of estimated ground 

positions of the NT detected targets in the 3-D 

space and could be utilized to reduce the solution 

space of the head locations. We Assume Xi = {xi, 

yi, 0}, where (xi, yi) is the ground position of the 

ith detected target. If we know the mean of 

human height is z0 beforehand, we can reduce the 

interesting 3-D head positions of the target Ti, and 

define the reduced space |
iTL  as 

0 0

2 2

| ( , , )  .    2 2

2 2

i

i i

T i i

s sx x x

s sL x y z y y y

s sz z z

    
 
      
 

       (30) 

In (30), s defines a search range and is 

determined by the average size of a 3-D head. In 

our system, we set s as three times of the average 

size in order to account for the uncertainty. Also 

in (8), the average 3-D human height z0 is 

obtained through statistical training. In Figure 12, 

we illustrate the reduced position space given the 

plane location (x0, y0, 0) of the first detected 

target. 

To solve (29), we still need to define the 

calculation of p(h,l|D,I,Xi,C). In detail, for each 

hypothesis (h,l) in the 3-D space, we project a 

cube at 3-D location l onto 2-D images to locate 

the focused patches and also generate the 

expected face orientations in different camera 

views based on h, I, and C. Here, we use Equation 

(31) to expresses the 3-D to 2-D projection 

process, where the function B(.) projects the 3-D 

cube and generates the expected face direction; 

In,ED,l indicates the projected image patch with the 

expected face direction EDn in the nth camera 

views of our four-camera system 

, , ( , | , )  |   1,2,3,4  
in ED l TI B l h I C l L n   

 
(31) 

For each camera view, we based on the 

expected face direction ED to select the 

corresponding face classifier from the classifier 

set D. By feeding the image patch In,ED,l into the 

selected classifier, we could evaluate the 

likelihood pn,l,h of the hypothesis (h,l) based on 

information form this camera view. This process 

could be defined as 

, , , ,( ; )     1,2,3,4.    n l h n ED l np D I ED n 
(32) 

 

Figure 12. The reduced position space given a detected 

target location (x0, y0, 0). 



Note that EDn determines one of the eight 

pre-trained face classifiers from the classifier set 

D. By combining the likelihoods from all camera 

views, we then define p(h,l|D,I,Xi,C) as 

4

, ,
1

( , | , , , )          i n l h
n

p h l D I X C p



        (33) 

Finally, we exhaustively search the solution 

spaces H and |
iTL  in order to determine the 

optimal head location (l*) and face orientation (h*) 

for target Ti in (29). Thanks for the pre-process of 

3-D position estimation step introduced in Sec. 3, 

the solution space |
iTL  is greatly reduced and the 

searching process is speeded up. Moreover, based 

on the automatically extracted target number NT, 

we know the number of targets we need to search. 

Unlike many conventional face detection 

methods, no more lots of detected windows 

around a face region but only NT face window 

with suitable scales are detected. In the next 

subsection, we would like to introduce how we 

train the classifier set D. 

5. EXPERIMENTS RESULTS  

To test our system over real video sequences, 

we set up four static cameras in our lab to capture 

test sequences. In our test sequences, the 

coverage is about 4.5m by 4.5m, with 3 to 5 

targets moving within the zone. A set of snap 

shots with 5 persons inside the scene are shown 

in Figure 13(a). On the other hand, we also tested 

our system over the video sequences provided by 

the M2Tracker project [11] and the sequence 

used in Fleuret’s papers [12-14]. Both video 

sequences are publicly available. The M2Tracker 

sequence was captured by 15 synchronized 

cameras over a 3.0m by 3.0m area, while 

Fleuret’s sequence was captured by four 

synchronized cameras in a 12.8m2 room. 

    

(a) 

    

(b) 

 

(c)   (d)   (e) 

    

(f) 

Figure 13. One experiment result of our LAB sequence. 

(a) Four camera views. (b) Foreground detection 

images. (c) TDP distribution. (d) Voxel histogram 

based on visual-hull reconstruction. (e) Bird-eye view 

of target location. (f) Labeling and correspondence of 

targets in pseudo-color. 

For each sequence, the cameras have been 

geometrically calibrated with respect to a world 

coordinate system. Except the M2Tracker 

sequence, each video sequence contains more 

than 300 frames. Especially, Fleuret’s video 

sequence contains as many as 3900 frames. For 

the evaluation of object ground location, we 

acquired the ground truth of M2Tracker sequence 

from Dr. Guan Li, the author of [15]. To establish 

the ground truth of Fleuret’s sequence, we 

manually identified the image positions of human 

necks and used them as the corresponding points 

among images. By backprojecting these 

corresponding points onto the 3-D space, object 

locations on the ground plane can be estimated. 

Here, we manually created a ground truth frame 



for every other 25 frames. To see the details of 

our experimental results, please visit our website 

[16]. 

To understand the process of head localization 

and multi-view face detection in our system, we 

show the projected windows under different 3-D 

location hypotheses in the four camera views. In 

Figure. 14(a), owing to a correct 3-D location 

hypothesis, the projected windows match the face 

regions well, while in Figure 14(b), the projected 

windows shift away from the correct face regions 

due to the wrong 3-D location hypothesis. To 

quantitative compare, we draw the calculated 

likelihood values under both the correct 3-D 

location and the wrong 3-D location over eight 

hypotheses of face orientations as shown in 

Figure. 14(c). Please note the blue curve, 

indicating the values under the correct location, is 

always higher than the green curve, representing 

the values under the wrong location. Also, the 

largest likelihood value over the blue curve 

indicates the optimal hypothesis of face 

orientation.  

We tested our system over the video sequence 

provided by Fleuret’s work [17]. Note the 

sequence contains more than 2000 frames. To 

quantitatively evaluate the detection and 

correspondence performance, false positive rate 

(FPR) and false negative rate (FNR) are used. In 

our system, the target detection and 

correspondence are defined as “correct” when the 

projected regions of the detected target in all 

camera views intersect the same individual and 

the detected face directions match the ground 

truth. Based on this definition, the calculated FPR 

and FNR of all tested sequence are 0.065 and 

0.023. 

We also show some detection results in 

Figure. 15. To clearly present our outputs, we use 

bounding boxes with different colors to indicate 

different targets. We also mark the detected face 

direction onto the bird-eye view of the 

surveillance zone. In this example, there are two 

persons in the scene. As shown in the figure, our 

system can detect faces and identify the face 

directions even if some serious occlusion occurs 

or someone is out of image view. In Figure. 15(a), 

there is an occlusion case in the top-left image 

and there is a missing person in the lower-right 

image. For this example, our system can still find 

the approximate locations of the faces and the 

face directions, as shown in Figure. 15(b). 

Another experimental result is illustrated in 

Figure. 15(c-d). 

 

Figure 14. (a) Detection result at a correct 3-D 

position. (b) Detection result at an incorrect 3-D 

position. (c) The blue line corresponds to the likelihood 

values of eight hypotheses of face orientations at the 

correct position, and the green line corresponds to he 

likelihood values of eight hypotheses at the incorrect 

position. 



 

Figure 15 (a) Multi-view face detection results with 

inter-object occlusion. (b) The bird-eye view of 

detected face directions of (a). (c) Another Multi-view 

face detection results. (d) Detected face directions of 

(c). Note white arrows indicate the ground truth. 

Colored arrows indicate our detection results. 
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計畫成果自評 

在本計畫中，我們驗證了以貝氏階

層式結構為基礎的影像分析架構可以

有效地應用到視訊監控的分析與應用

上。透過此架構，我們將像素層級的色

彩資訊、像素間的區域層級資訊、以及

以物體為基本單位的物件層級資訊有

系統地整合在一起，這樣的整合讓系統

可以擁有更多的資訊，並可以針對較複

雜的影像內容進行準確的推論分析。 

在多攝影機視訊監控系統中，我們

自動地定位、標記、與對應在不同攝影

機監控範圍內的多個物體，同時有效壓

抑因為幾何深度上的不確定性所產生

的假物體。多攝影機視訊監控系統在真

實的應用場景中，往往面臨一些具挑戰

性的議題: (a) 場景中未知物體的數量; 

(b)物體間的相互遮蔽; 以及(c)假物體

的出現。有別於過去的方法，我們提出

了一套包含資訊整合與場景推論的兩

步驟策略。在資訊整合的步驟中，我們

整合來自多攝影機的資訊以建立一機

率分佈，藉以描述物體出現於地面某一

位置的可能性。在場景推論的步驟中，

我們應用貝氏階層式結構將場景模型

納入考量，透過此結構，我們將物件在

影像內的標記議題、物件在多攝影機間

的對應議題、以及假物件的消除議題整

合為單一的最佳化問題。此外，我們進

一步採用期望-最大化架構來調整出更

好的物體三維模型，透過貝氏階層式結

構與期望-最大化架構的結合，我們可

以得到更好的系統效能。實驗結果顯

示，我們的系統可以自動地決定場景中

的運動物體數量、有效地標記並對應出

不同攝影機影像中的多個物體、準確地

定位物體在三維場景中的位置、並且能

有效地清除假物件。 

同時我們以此貝氏階層式結構為基

礎。提出一套應用於多台攝影機之多角

度人臉偵測系統。此系統可根據多攝影

機擷取的影像偵測出影像中的人臉位

置，並得到在三維空間中人臉方向的鳥

瞰圖。實驗結果顯示，我們的系統在物

體相互遮蔽，以及前景區域與背景區域

因為外貌相似而混淆的情況下，仍然可

以得到好的效果。 

   此為三年期計畫，若包含前兩年之

執行成果，本計畫在三年期間一共完成
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