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Abstract

In this project, we present a Bayesian
hierarchical framework (BHF) to simultaneously
deal with 3-D scene modeling and image analysis
in a unified manner. In practice, to develop a
robust video surveillance system, many
challenging issues need to be taken into account,
such as occlusion effect, appearance ambiguity
between foreground and background, perspective
effect, shadow effect, and lighting variations.
Here, we find a way to handle these challenging
issues by modeling 3-D scene in a parametric
form and by integrating scene model and image
observation together in the inference process. In
the proposed hierarchical framework, we
systematically integrate pixel-level information,
region-level

information, and object-level

information in a probabilistic way for the
semantic inference of image content and 3-D
Under this

effect,

scene  status. BHF framework,

occlusion appearance  ambiguity,



perspective effect, shadow effect, and lighting
variations can be well handled. Actually, in the
BHF framework, occlusion effect, perspective
effect, and shadow effect may even provide
useful clues to support 3-D scene inference.

Based on this BHF framework, we further
propose a multi-view face detection system,
which is capable of detecting all targets’ faces in
the given images and is able to illustrate the
bird-eye view direction of each face in the 3-D
space in a multi-camera surveillance system.
Unlike existing approaches, the proposed system
does not directly detect targets over the 2-D
image domain nor project the 2-D detection
results back to the 3-D space for correspondence.
Instead, our system searches for the targets over
small cubes in the 3-D space. Each searched 3-D
cube is projected onto the 2-D camera views to
determine the existence and direction of human
faces. This approach can help us to efficiently
combine 2-D information from different camera
views and to suppress the ambiguity caused by
2-D detection errors.
Keywords: Image labeling, Graphical models,
Object Detection, Object Tracking, Image
Segmentation

1. OVERVIEW

A.  System Overview

The main goal of our multi-camera system
is to detect, locate, correspond, and label multiple
targets and their faces, especially for walking
people within the zone. In our approach, we
decouple the locating of targets from the analysis
of inter-occlusion. The basic idea is to detect the
candidate target locations in the first stage and
then spend computations only over those
candidate locations for inter-occlusion inference.

This two-stage procedure may preserve the

accuracy of target location without dramatically
increasing the computational cost.

The proposed scheme is majorly developed
upon our earlier works [1-2] with two significant
modifications. First, to suppress the ghost effect
caused by geometric ambiguity, the 3-D scene
model in our framework is defined in a
probabilistic manner, rather than the deterministic
form in our previous work [2]. Second, instead of
applying a fixed 3-D target model to all tracked
targets, we propose a Bayesian hierarchical
framework with an expectation-maximization
mechanism to refine the 3-D target model for each
individual target. With the modification and
extension of our previous works, the new system
can locate, correspond, and label multiple targets
over a multi-camera surveillance system, with the
capability of ghost suppression and target model
refinement.

B. System Flow

Model-driven

Data Fusion 3D Scene Model

I After initial Multi-object Labeling

Multi-camera
Observation

Initial
Bayesian Hierarchical Framework

Figure 1. System flow of the proposed system.

In our fusion-inference scheme, we design a
data fusion stage to detect candidate targets and
their 3-D After that,

locations  first. in the

inference stage, target identification, image
labeling, and inter-occlusion are analyzed under
the proposed Bayesian hierarchical framework
(BHF) based on the fused 3-D priors. The inferred
target labeling and correspondence results are
further used to refine the 3-D target model, as
illustrated in Figure 1.

In the data fusion stage, a model-based



approach is used to efficiently fuse consistent 2-D
foreground detection results from multiple
camera views. Here, we formulated a posterior
distribution, named target detection probability
(TDP), as the message pool to indicate the
probability of having a moving target at a certain
ground location. With the TDP distribution,
candidate targets and their locations can be
identified in a probabilistic manner. Moreover,
with the use of 3-D target model, our fusion
scheme may work well even with imperfect
foreground extraction.

After data fusion, a set of candidate targets
are detected, including both true targets and ghost
targets. In our system, we use a few 3-D priors
about the surveillance scenario, such as the
probability distributions of target height and
target location, to distinguish true targets from
ghost targets. By properly integrating these priors
into the scene knowledge, we can greatly simplify
the ghost suppression problem. Moreover, in the
BHF framework, we introduce a labeling layer as
the interface between scene knowledge and
multi-camera  observations.  This  3-layer
framework unifies the target labeling, target
correspondence, and ghost suppression into a
Bayesian inference problem. Besides the
intermediate role in the hierarchical framework,
the labeling layer also provides a feedback route
to refine the scene knowledge based on an EM
(Expectation-Maximization) mechanism.

2. INFORMATION FUSION AND

SUMMARIZATION
A. Foreground Detection on Single Camera

To fulfill the speed requirement of a
real-time multi-camera system, we only consider
2-D foreground detection results as the

observation data. For each camera, we build its

reference background based on the Gaussian
mixture model (GMM) approach [3]. To remove
shadows, the frame difference operation is
performed over the chromatic domain.
B. Information Fusion

To improve the accuracy in the estimation of
target location, we adopt a model-driven approach
to fuse 2-D information. In the proposed method,
we define a Target Detection Probability (TDP)
distribution to estimate the probability of having a
moving target at a ground location, as expressed
below:
G(X)=p(X R, Fy;0) ~ p(X) p(F, -+, Fy | X;©)

@)

In (1), X represents a location (X3,Xx;) on the
ground plane of the 3-D space. N is the total
number of cameras in the multi-camera system. F;
denotes the foreground detection result of the ith
camera view. © defines the set of camera
parameters of all N cameras.

To define F;, we use (m,n) to represent the
2-D coordinate system of the ith camera. Based
on the foreground detection result on the ith

camera view, we define F; as

1 if (mn)eV and (m,n)e foreground regions
F(mn)=<0 if (mn)eV and (m,n)e background regions
B if (mn)eV
)
Moreover, given the location X, we assume the
foreground detection results are conditionally
independent of each other. With this assumption,

we rewrite (1) as
POOP(F, - Fy 1 X) = pOO [ p(F %) G)

To formulate p(F;|X), we model a moving person
at the ground position X as a rectangular pillar, as
shown in Figure 2. The height H and width R of

the pillar are modeled as independent random



variables. Their prior probability p(H) and p(R)
are assumed to be Gaussian and are pre-trained
based on the data collected from the health center
of our university. Based on the pre-calibrated
projection matrix of the ith camera, a target at X
with height H and width R is projected onto the
image plane of the ith camera to obtain the
projection region. Here we define the projection
image M; on the ith camera view as

1 if (m,n) e projected regions
0 if (m,n) ¢ projected regions

T

Figure 2.

Mi(m,n|H,R,X)_{

Proposed pillar model in the 3-D space and
the estimated TDP distribution based on the
foreground images.

With F; and M;, the normalized overlapping
area Q; is defined as

Q. (H,R, X ~[[F(m.m)M (m,n[H, R, X)dmdn
: - [™ (m.n H R X)dmdn

(®)
By taking into account the prior probabilities p(H)
and p(R), an estimate of p(F;|X) is defined as

p(F, 1 X) = [[2,(H,R, X)p(H) p(R)dHdR (6)

C. Information Summarization

Based on the TDP distribution, we obtain some
useful information about the 3-D scene, including
the number of candidate targets, the most likely
position of each candidate target, and the unique
ID of each candidate target. Typically, the TDP
distribution contains several clusters, with each

cluster indicating a moving target on the ground

plane. Hence, the detection of multiple moving
targets can be treated as a clustering problem over
the TDP distribution.
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(@) (b)
Figure 3. (@) TDP of four moving targets in the
surveillance zone. (b)Bird-eye view of (a).
To perform clustering over the TDP
distribution, we adopt the mean-shift clustering
algorithm [4]. In the mean-shift algorithm, by
iteratively calculating the next position yj.; based

on the following formula

= h ()

we can identify a few converging points. Those
samples that converge to the same converging
point are thought to belong to the same candidate
target and are assigned the same ID. In (7), his a
parameter that controls the kernel size.

Assume we have identified M candidate
targets on the ground plane with the ID’s {T,, T
2 . , Im} If we denote the Ry samples that
belong to Tx as {Xxo, Xk1, ---» Xkrs1} With the
corresponding weights {Wy o, Wx 1, ..., Wkprs.1}, We
can estimate the position distribution function
p(X|T) for Ty

Gaussian distribution. The mean vector and

Here we model p(X|T,) as a

covariance matrix of p(X|T,) are estimated based
on (8) and (9).

ﬂk :(iwk,jxk,j) (iwkwj) ®



Ct= (_SZ_:Wk,j(Xk,j _:uk)(xk,j _,uk)T) (SZ::WKJ)

9)

D. Ghost Object
From time to time, ghost clusters may occur
in the TDP distribution. Geometrically, the ghost
effect happens when the projection of a
rectangular pillar at an incorrect location
accidentally matches the foreground detection
results on the camera views. In Figure 4, we
present an illustration of the ghost problem when
trying to reconstruct the 3-D scene based on two

camera views.

/ Ground

Figure 4. lllustration of the ghost problem.

3. BAYESIAN INFERENCE AND GHOST
SUPPRESSION

After information summarization, we
identify a few candidate targets and their
locations. For each candidate, we have to decide
whether its status is “true” or “ghost”. To
determine the status of candidate targets, we
consider not only foreground observations and
geometric consistence but also some helpful prior
knowledge about the targets.
A.  System Modeling
A.1. Bayesian Hierarchical Framework

Here, we propose a 3-layer Bayesian
hierarchical framework (BHF) to simultaneously
infer the status of candidate targets. In Figure 5,
without loss of generality, we consider an

example of TDP distribution fused from four

camera views. The top layer of the BHF
architecture is the scene layer S"- that indicates the
3-D scene knowledge built at the fusion stage.
The bottom layer is the observation layer O,
which contains both the original images and the
foreground detection results. Here, we define
Ii(m,n) and F;(m,n) as the original image and the
foreground detection result of the ith camera view.
The value of F;j(m,n) is defined as in Equation (2).
Between the scene layer and the observation layer,
a labeling layer L" is inserted to deal with image
labeling, target correspondence, and ghost
removal. Here, we define Lj(m,n) as the labeling

image of the ith camera view.

Scene Layer

Labeling
Layer

i}
Wi R o o

Observation Layer

(b)
Figure 5. (@) An example of TDP distribution fused

from four camera views. (b) The corresponding

Bayesian hierarchical framework.



A.2. Problem Formulation

In the “five candidate targets” case in Figure
6, the scene layer S = {si, S, Ss Ss Ss}
corresponds to the status of five candidate targets,
with each status node being either true “1” or
ghost “0”. With five candidate targets, we have 2°
status combinations in total. For each
combination, we can generate the expected
foreground occlusion pattern by approximating
each “true” target as a rectangle pillar on the
ground. By projecting the 3-D rectangle pillars
onto each camera view, we form the expected
foreground image. Ideally, the optimal status
combination would lead to the best match
between the expected foreground image and the
detected foreground image. In Figure 6, we show
two status combinations based on the example in
Figure 5. By checking the projected foreground

images, it appears that the latter combination is

less likely than the former one.

(©
Figure 6. (a) The scene layer in Figure 5 and two of
the four camera views. (b) The combination {si, S, Ss,
s4, S53={1,0,1,1,1} and the expected foreground images
overlaid with the detected foreground images. (c) The
combination {1,1,1,1,1} and the expected foreground

images overlaid with the detected foreground images.

If we denote | as the set of N original images,
F as the set of N foreground detection images, L
as the set of N labeling images, and S as a status
combination, we unify the target labeling problem
and the ghost suppression problem in a single
MAP (Maximum A Posteriori) problem. In this
problem, we seek the optimal status combination
S and the optimal target labeling L* that
maximize the posteriori probability p(L,S|I,F):

L*,S*zargnzasx p(L,S|I1,F) (10)

This equation is reformulated as below to

decompose the inference problem into the
combination of a few cross-layer issues in the
BHF architecture
L",S" =arg nE%xIn p(L,S|I,F)
=argmaxIn[p(l, F | L, S)p(L|S)p(S)] (11)
=argmaxInfp(l, F[L)p(L[S)p(S)]
=arg nE%x[In p(I,F|L)+InP(L|S)+Inp(S)]
In (11), we assume p(I,F|L,S) = p(I,F|L). That is,
we assume the probabilistic property of the
observed data | and F are independent of the
status combination (S) once if the pixel labels (L)
are determined. Besides, In[p(l,F|L)] describes the
relation between the labeling images and the
observation data, In[p(L|S)] describes the relation
between the 3-D scene model and the 2-D
labeling images, and In[p(S)] describes the prior
information about the 3-D scene model.
A.3. Formulation of p(I,F|L)

In our system, we formulate p(l,F|L) as

p(LFIL)
=K-[ T I Texp(-Eo[F (m.n), L(m.nDexp(~E,[1;(m.n), L (m.n); N, )

(12)
In (12), K is a normalization term.
Ep[Fi(m,n),Li(m,n)] denotes the “detection

energy” that relates the ith foreground detection

image with the ith labeling image.



Ea[li(m,n),Li(m,n);N,] denotes the *adjacency
energy” that relates the ith original image with
the ith labeling image by checking the adjacent
property within the neighborhood N,

On the
Ep[Fi(m,n),Li(m,n)] as
E, (F,(m,n),L,(m,n)) = ax{l-5[F (m,n),T (L, (m,n)I}

other hand, we define

(13)
with T(L;j(m,n)) being defined as
T(L (m,n)) = {0 L. =T, (14)
1 otherwise
and d[pa,d.] being defined as
S[p..a.]= e T (15)
[P., ] {0 otherwise

In our system, by taking the original image l;(m,n)
into consideration, we define the adjacency
energy Ea[li(m,n),Li(m,n);N,] based on a Markov
random field to provide a smoothness constraint

between adjacent labeling nodes [5]. Here, we

define
EL[1;(m.n), Li(mn);N,]
o (16)
=Bx D D Cull; L, m,n,Am, An]
Am=—p An=-p
where
C.[l;, L, m,n,Am,An]
—@-s[L(m,n), L(m+Amn+any) A7
x Gg ([1;(m,n) = 1;(m+ Am,n + An)|)
In (16), N, denotes the (2p+1)x(2p+1)

neighborhood around (m,n), and g is a learned
penalty constant whose value is to be determined
later. In (17), d[pa,qa] is defined as in (15). In our
system, we design Gs(U) to be a discriminative
function similar to a logistic sigmoid function:
Gs (U) = Sigm(U)+1= (1-eY" ™) /(1+e7V ) +1
(18)
Here, Sigm(U) outputs a positive value if U is
smaller than Cy, and outputs a negative value

otherwise. With this design, Ca[.] is equal to zero

when L;j(m,n) and L;(m+Am,n+An) are the same. If
Li(m,n) and Li(m+Am,n+An) are different, Ca[.]
gives a larger penalty if the difference between
li(m,n) and lj(m+Am,n+An) is smaller than Cy,.
Hence, L;(m,n) and L;(m+Am,n+An) tend to share
the same label when the difference between I;(m,n)
and lj(m+Am,n+An) is small, and tend to have

different labels otherwise.

Examples of p(L;j(m,n) = Ti| S)

Figure 7.
A.4. Formulation of p(L|S)
Given a status combination S, we define a
conditional probability p(Li(m,n)=T,| S) to express
the likelihood of having a label T, at the pixel
(m,n) of the ith labeling image. Here, with the
status combination S, we define a few rectangular
pillars on the ground. The height and width of
each pillar are sampled from p(H) and p(R). The
locations of the pillars are sampled from p(X|T),
where T, indicates the kth target. With the camera
projection parameters, the expected foreground
patterns for each target can be generated by
projecting these rectangular pillars onto each
camera view. Occasionally, more than two targets
may project onto the same image region and
cause occlusion. The inter-occluded patterns can
be determined by checking the distance from the
camera to the mean location of the targets. In
Figure 7, we demonstrate the occlusion effect by
plotting p(Li(m,n)=T, S) individually for each of
the four targets in Figure 5(b).

Based on the definition of p(Li(m,n)=Ty S),
we define the log probability function In[p(L|S)]

as



(19)

PLIS)=TTTTTp(Li(m.n)Is)
and thus
INP(LIS)=2> > > Inp(L(mn)|S) (20)

In our system, we assume the number of true
targets at the current moment would be similar to
that at the previous time instant. Hence, if we
denote s'* as the optimal status combination at
the previous time instant (t-1) and S'as a status
combination at the current time instant t, we
define the prior probability of S' as

o(S) - {wl, if [N(S') - N(S )| <1

W,, otherwise

(21)

where 177 and 1V, are two constants with 173 > W/
2. In (21), N(S) denotes the number of true targets
in the status combination S. In detail, if we know
the ratio between 174 and W15, we can determine
the value of W, such that the probability
summation equals to 1.
B. Multi-Target Labeling with Ghost

Suppression
B.1. System Formulation

With the above deduction, the labeling of
targets and the suppression of ghost targets can be
solved by finding the optimal labeling images (L")
and status combination (S°) that maximize the

following potential function Cy(L,S):
L',S" =arg maxC, (L,S)
=argmax{-3> > E,[F(m,n),L;(m,n)]

_ZZZEA[Ii(m:n): L (m,n); Np]
+ 223 Inp(L (m,n)|S) +In p(S)}

(22)

In (22), we incorporate detection energy Ep,
adjacency energy Ej,, likelihood function p(L|S),
and prior probability p(S). As mentioned before,
Ep(Fi(m,n),Li(m,n))

the  detection  energy

represents the bottom-up constraint between the
foreground detection images and the labeling
images. The likelihood function p(L|S) represents
the expected labeling layout based on the status
combination S. The expected inter-occluded
patterns among candidate targets are modeled in
p(L|S) to influence the classification of local
labeling nodes. By introducing the adjacency
energy  Ea[li(m,n),Li(m,n);Ny], the proposed
framework can not only infer the labeling based
on the fusion of scene knowledge and foreground
detection results, but also refine the labeling
results based on the original image data. Last, the
prior probability p(S) includes the temporal
prediction based on the previous decision.

B.2. System Formulation

In Equation (22), («,f) control the weights of
detection energy Ep and adjacency energy E, in
the potential function C,(L,S). To determine (e, /),
the method proposed by Yu et al. [3] is adopted.
In detail, With the ground truth of our training
data, we can manually label the optimal solution
(L",S") and the true target locations on the ground
plane that maximize Cy(L,S). For any other
degraded (L'SY,  we
relationship Co(L",S";af) > Cy(L%S" ;af9) that

solution have the

leads to an inequality constraint for « and 8. After

having collected an enough number of constraints

for oz and 3, the optimal parameter set («,4) can

be found by finding the maximal summation over

the entire solution space of « and g subject to the

collected constraints. That is,

(", f7) = arg Max(a + )

subject to: ¢>0and >0

subject to: C,(L',S"a, 8)=C (L', 81, B) | 1.1
(23)

where T, is the number of the degraded solutions

used for training. The optimization problem in (23)



is then solved by using a Linear Programming
method.
B.3. Optimal Status Inference and Target
Labeling

For each status hypothesis S, we deduce the
optimal L that maximizes the potential function
CoL,S=s™y in  (22. If we
Ep(Fi(m.n),Li(m.n)), p(Li(m,n)|S=S"), and p(S=S")

as data terms and treat Ex[li(m,n), Li(m,n);N,] as a

treat

smoothness term, Cp(L,S=SH) actually follows a
canonical form that can be maximized based on
many existing optimization algorithms [5-7].
Based on a recent study, the graph cuts method is
proved to be more efficient in terms of running
time as compared to loopy belief propagation,
tree-reweighted, and iterated conditional mode
algorithms [7]. Hence, in our system, the graph
[8-10] s

maximization of C,(L,S=S").

cuts algorithm used for the

In our system, the optimal image labeling
under S are achieved by assigning to each pixel
a suitable ID from the set {Tq, Ty, ..., Tw}. Based
on the graph cuts theory [8-10], we form a graph
in Figure 8 to represent our optimization problem.
In this graph, a candidate target, say T,, can only
affect a portion of labeling nodes in the labeling
image. Through the projection of the 3-D
candidate target onto the ith camera view, the
relation is represented by a collection of “t-links”.
In our system, we combine Ep(Fi(m,n),Li(m,n)),
p(Li(m,n)|S=S"), and the prior p(S= S") as the
data term to define the weight of each t-link.
Moreover, the “n-links” in the graph represent the
smoothness term, which is modeled as
Ea[li(m,n),Li(m,n);N,]. After forming this graph,
our optimization problem is equivalent to the
cutting of the t-links and n-links with the minimal

cost so that all terminals are separated and each

labeling node L;(m,n) only connects to one

terminal through a t-link.

Terminals (labels)

Figure 8. The graph cut model for the optimal labeling.

Moreover, in the graph cuts algorithm, the
initial guess of L is obtained by finding the
labeling image of each camera view that
maximizes the probability function in (19) under
the status hypothesis S™. That is, we find the
initial labeling image " (m,n) of the ith camera

view such that

L"(m,n) = arg mexl?[l?[ p(L,(m,n)|S =S").

(24)

Among all status hypotheses, the status
hypothesis that achieves the maximum posterior
probability is picked as the optimal status
combination S”. The optimal labeling of S” is then
inferred as the optimal labeling L".
B.4. 3-D Target Model Refinement

In our system, the 3-D model of each target
is a pillar model with parameters height (H) and
width (R) standing at a location X on the ground
plane. However, different targets may have
different heights and widths. In our system, we
treat these model parameters as latent random
variables and introduce an EM-based algorithm to
iteratively refine the parameters.

Initially, the proposed EM algorithm adopts
the pre-trained probability distributions p(H) and
p(R) to model the uncertainty of each target’s

height and width. Since the BHF framework



combines not only the 3-D scene priors and target
priors but also the observed image data and the
corresponding foreground detection result, the
optimal target labeling reveals personal properties
of each detected target. Hence, based on the
results,

labeling we update the probability

distributions of H and R and establish

personalized 3-D models gradually.
e P

Figure 9. () Two camera views. (b) Labeling results
without target model refinement. (c) Labeling results
with target model refinement.

In detail, we assume the model height and
width are independent and can be refined
separately. With Bayes rule, the refinement of the
posterior probability is defined as

pQcIL)=C-p(L"[Q)-p(Q)  (25)
where

p(H) or p(R) if r=1

PQJ= p(Q|L™) otherwise

In (25), L" denotes the labeling results of

multiple image views at the rth iteration. The
notation Q' e{H/,R'} represents the height or

the width of the kth target at the rth iteration. Also,

C is a normalization constant, p(L"|Q;) is the
likelihood term to be defined later, and p(Q/) is

the prior probability of Q. In our system, we
treat p(Q.'|L"™") as the prior information
propagated from the previous iteration. For the
first iteration, p(Q;) is set to the pre-trained
probability.

To formulate the likelihood term P(L[Q(),
we project the pillar model at the ground position
of the kth target with height H and width R/
onto multiple camera views to check the
overlapping regions with the labeling results.
Ideally, if a more accurate model parameter is
chosen, the projected region will better fit the
labeling result. Hence, the likelihood is termed as

%
p(L" IQ£)=[H Hk(p‘m,nm)J (26)

i mneA

In (26), A is the projected region of the kth
target onto the ith camera view. p;,,(I) is the
probability of labeling the pixel at (m,n) with the

ID I. N is the total number of pixels within the

projected region. Since different Q; may
generate different projected regions, we take the
1/N power for normalization. Moreover, we
assume the statuses of different labeling pixels are
independent and we evaluate only those pixels
inside the projected region of the kth target. In
principle, the label ID tends to be T, Hence,
() has a higher probability if | equals to Ty
and has a lower probability if | equals to T,.
Occasionally, owing to occlusion, | may equal to
some other foreground target. In this case, we
assign pn,() to be an intermediate value. That

is, we define p;,,(I) as

A-ef ifl=T,
pL()=14-e ifl=T, @7
A-e?  otherwise



where 4 is a normalization constant to make
the probability summation equal to 1. In (27), X, v,
and z are the weighting parameters with the value
5, -3, and 0, respectively, which satisfies the
relation x >z >y. If we rewrite (24) based on (25),

we get a likelihood form as follows
r r l
p(L IQk)=ﬂ~exp{W(X~Nk+y~No+Z’Nomer)}

(28)
where Ny, is the number of Ty-labeled pixels, Ny is
the number of Ty-labeled pixels, and Noger is the
number of the other pixels inside the projected
regions in all camera views. Basically, (28)
measures the degree of matching by accumulating
the weighted sum of different labeling pixels
inside the projected regions with the weighting
parameters (x,y,z). Once the likelihood term
P(L"|Q,) is determined, the refined probability
distribution of the height and width of the kth
target height in the current iteration can be
obtained based on (25). The refined models
p(H, |L") and p(R¢|L") are inputted to the
proposed BHF for the next iteration of the
optimal object labeling. In our experiments, it
usually takes only 2 to 3 iterations to construct
the refined target model.

4. MULTI-VIEW FACE DETECTION

FRAMEWORK

After the position estimation, we identify the
ground locations X of detected candidate targets
on the 3-D ground. However, the head location of
each candidate is still unknown. Even so, the
extracted locations are useful for speeding up
head finding. In next subsections, we aim to
search head positions and determine the face
directions. We will formulate the problem and

explain our multi-view face detection framework.

Figure 10. The sliding cube in 3-D space.

A. Finding Target Heads and Face
Directions

Many detection algorithms are already
proposed for multi-view face detection. Most of
these methods based on some learning approaches
to train suitable detectors. After the training
process, the trained detectors are able to detect
specific object based on the sliding window
approach in the image. However, because of some
reasons, this sliding window approach in 2-D
image may not be suitable for our application.
First, it would not be easy to train a high accuracy
detector for all face views. Second, from time to
time, we need to search all scales to detect faces
with different sizes including very small faces in
the image. These small faces are usually too small
to correctly identify. Also, the heavy searching
time is unwelcome. Third, there could be some
occlusions in the scene. Sometimes, we may need
to detect faces that are incompletely observed in
the image view. Due to the above reasons,
detecting face directly in 2-D images usually
generates many inevitable false detection and
false rejection.

A multi-camera system may provide us more
information about the scene and could
theoretically decrease the false positive rate and
increase the detection rate. However, the
performance of the multi-camera system depends
heavily on the way we utilize the 3-D geometric
information. A conventional way is to detect faces

in each 2-D image and then the 2-D detection



results are projected back to the 3-D space for the
final decision. Strictly speaking, this intuitive
way is too ideal to be used in practical
applications. This approach could work only
when the detection rate of the 2-D face detector is
high enough and the false alarm is low.
Otherwise, the presence of plentiful false
positives and false negatives would make the
inference in the 3-D space very complicated and
mistake-prone. The wrong information comes
from 2-D images would accumulate and generate
a lot of ambiguous results in the 3-D space.

Instead of searching and detecting the targets
in 2-D images and then combining the outcome
of each camera view in the 3-D space, in our
system, we try to search and detect the targets in
the 3-D space. This approach is like an extension
from the 2-D sliding window approach to a 3-D
sliding cube approach. In Figure 10, we illustrate
this concept.

We now slide a cube in the 3-D space and
determine 3-D head locations and face directions.
However, we do not have the reconstructed 3-D
scene for the 3-D based detection. In practical
situations, what we have are the observations of
2-D images. Also, the reconstruction of the 3-D
scene from all 2-D images is not reliable due to
the limited number of cameras and the
insufficient information from 2-D images. Hence,
in our approach, we directly look for supports in
the 2-D images. Here, we well utilize the
geometric connection between 3-D space and 2D
images according to the process of camera
calibration beforehand. Based on the prior
knowledge of 3-D geometric space, we generate
hypotheses of head locations and face directions
in the 3-D domain and base on the observed data

from multiple 2-D images to make the final

decisions. In each hypothesis, we assume the
target face is at a specific location and direction in
the 3-D space and confirm this hypothesis in its
corresponding 2-D image regions. Figure 11
shows an example of this process. In this example,
a person is assumed to walk in a 3-D surveillance
zone and a cube is sliding in the 3-D space to find
where the head and what face direction of this
person are. If the cube is slid to a suitable location
that contains the human’s head, the corresponding
regions in 2-D images will fit the face portion
with a proper face view. On the contrary, if the
cube is at a place without any person’s head, then
the corresponding region will map to the
background region and will not fit the face

portion in each camera view.

Figure 11. A 3-D sliding cube approach for the finding
of human heads and face directions.
B. Problem Formulation

Based on all the discussion in the previous
sections, we now formulate our system goal as an
optimization problem in a unified manner. Until
now, we have detected N candidate targets and
their ground locations {X;}i=1- N, - Here, we use T;
to represent the ID of the ith target. For each
target, we still need to determine its head location
and face orientation. As mentioned before, we use
a sliding cube approach to find the optimal
location (I*) and orientation (h”) of the target T;.

Here, we define the optimal solution as



(hy, 1) =arg X, p(h, 1D, 1,X;,C). 9)

To numerically analyze this optimization problem
in (29), we uniformly quantize the solution spaces
of 3-D head positions and face orientations and
denote the spaces as L and H respectively. In our
system, the interesting 3-D space L, bounded by
the surveillance zone and a user-defined height
200cm, is divided into 100x100x50 cubes. The
orientation space H, ranging from zero to 360
degree, is divided into eight face directions. We
also define other notations in (29) as below:

(D): The set of eight image-based face classifiers

pre-trained for different face orientations.

(): The set of multi-camera image views.

(X;): The ground location of candidate target T;.

(C): Camera layout and geometry information.
(LJ ): The possible 3-D head positions of

candidate target T;.

Here, Lk needs to be detailed. In our system,

Xn. indicates the set of estimated ground

positions of the N detected targets in the 3-D
space and could be utilized to reduce the solution
space of the head locations. We Assume X; = {x;,
Vi, 0}, where (x;, ;) is the ground position of the
ith detected target. If we know the mean of
human height is zo beforehand, we can reduce the

interesting 3-D head positions of the target T;, and
define the reduced space Lk as

xi—%SXSXi+%
L} = (x,y.Z)Iyi—%Syﬁyi’L%

zo—%szszo+% 30)

In (30), s defines a search

determined by the average size of a 3-D head. In

range and is

our system, we set s as three times of the average

size in order to account for the uncertainty. Also

in (8), the average 3-D human height z, is
obtained through statistical training. In Figure 12,
we illustrate the reduced position space given the
plane location (Xo, Yo, 0) of the first detected
target.

To solve (29), we still need to define the
calculation of p(h,I|D,I,X;,C). In detail, for each
hypothesis (h,l) in the 3-D space, we project a
cube at 3-D location | onto 2-D images to locate
the focused patches and also generate the
expected face orientations in different camera
views based on h, I, and C. Here, we use Equation
(31) to expresses the 3-D to 2-D projection
process, where the function B(.) projects the 3-D
cube and generates the expected face direction;
Iep, indicates the projected image patch with the
expected face direction ED, in the nth camera
views of our four-camera system
leos =B(LN[I1,C) VleL| n=1234

(31)

For each camera view, we based on the
expected face direction ED to select the
corresponding face classifier from the classifier
set D. By feeding the image patch I,gp, into the
selected classifier, we could evaluate the
likelihood pnn of the hypothesis (h,l) based on
information form this camera view. This process

could be defined as

Poin=D(l, e ED,) n=1234. 32)

-8~

‘_‘ {0, o, 2a)
A lX

= !

{xo, yo, 0)

Figure 12. The reduced position space given a detected

target location (xo, Yo, 0).



Note that ED, determines one of the eight
pre-trained face classifiers from the classifier set
D. By combining the likelihoods from all camera
views, we then define p(h,1|D,l1,X;,C) as
p(h,1| D,I,Xi,C):li[ [

n1 (33)
Finally, we exhaustively search the solution
spaces H and Lk in order to determine the

optimal head location (I*) and face orientation (h")

for target T; in (29). Thanks for the pre-process of
3-D position estimation step introduced in Sec. 3,
the solution space Lk is greatly reduced and the
searching process is speeded up. Moreover, based
on the automatically extracted target number N,
we know the number of targets we need to search.
Unlike many conventional face detection
methods, no more lots of detected windows
around a face region but only Ny face window
with suitable scales are detected. In the next
subsection, we would like to introduce how we

train the classifier set D.

5. EXPERIMENTS RESULTS

To test our system over real video sequences,
we set up four static cameras in our lab to capture
test sequences. In our test sequences, the
coverage is about 4.5m by 4.5m, with 3 to 5
targets moving within the zone. A set of snap
shots with 5 persons inside the scene are shown
in Figure 13(a). On the other hand, we also tested
our system over the video sequences provided by
the M2Tracker project [11] and the sequence
used in Fleuret’s papers [12-14]. Both video
sequences are publicly available. The M2Tracker
sequence was captured by 15 synchronized
cameras over a 3.0m by 3.0m area, while
Fleuret’s

sequence was captured by four

synchronized cameras in a 12.8m? room.

© @

®

Figure 13. One experiment result of our LAB sequence.

(a) Four camera views. (b) Foreground detection
images. (c) TDP distribution. (d) Voxel histogram
based on visual-hull reconstruction. (e) Bird-eye view
of target location. (f) Labeling and correspondence of
targets in pseudo-color.

For each sequence, the cameras have been
geometrically calibrated with respect to a world
coordinate system. Except the M2Tracker
sequence, each video sequence contains more
than 300 frames. Especially, Fleuret’s video
sequence contains as many as 3900 frames. For
the evaluation of object ground location, we
acquired the ground truth of M2Tracker sequence
from Dr. Guan Li, the author of [15]. To establish
the ground truth of Fleuret’s sequence, we
manually identified the image positions of human
necks and used them as the corresponding points
among images. By backprojecting these
corresponding points onto the 3-D space, object
locations on the ground plane can be estimated.

Here, we manually created a ground truth frame



for every other 25 frames. To see the details of
our experimental results, please visit our website
[16].

To understand the process of head localization
and multi-view face detection in our system, we
show the projected windows under different 3-D
location hypotheses in the four camera views. In
Figure. 14(a), owing to a correct 3-D location
hypothesis, the projected windows match the face
regions well, while in Figure 14(b), the projected
windows shift away from the correct face regions
due to the wrong 3-D location hypothesis. To
quantitative compare, we draw the calculated
likelihood values under both the correct 3-D
location and the wrong 3-D location over eight
hypotheses of face orientations as shown in
14(c).

indicating the values under the correct location, is

Figure. Please note the blue curve,
always higher than the green curve, representing
the values under the wrong location. Also, the
largest likelihood value over the blue curve
indicates the of face

optimal hypothesis

orientation.

We tested our system over the video sequence
provided by Fleuret’s work [17]. Note the
sequence contains more than 2000 frames. To
quantitatively evaluate the detection and
correspondence performance, false positive rate
(FPR) and false negative rate (FNR) are used. In
our system, the target detection and
correspondence are defined as “correct” when the
projected regions of the detected target in all
camera views intersect the same individual and
the detected face directions match the ground
truth. Based on this definition, the calculated FPR
and FNR of all tested sequence are 0.065 and

0.023.

We also show some detection results in
Figure. 15. To clearly present our outputs, we use
bounding boxes with different colors to indicate
different targets. We also mark the detected face
direction onto the bird-eye view of the
surveillance zone. In this example, there are two
persons in the scene. As shown in the figure, our
system can detect faces and identify the face
directions even if some serious occlusion occurs
or someone is out of image view. In Figure. 15(a),
there is an occlusion case in the top-left image
and there is a missing person in the lower-right
image. For this example, our system can still find
the approximate locations of the faces and the
face directions, as shown in Figure. 15(b).
Another experimental result is illustrated in
Figure. 15(c-d).

“
Iypothess

Figure 14. (a) Detection result at a correct 3-D
position. (b) Detection result at an incorrect 3-D
position. (c) The blue line corresponds to the likelihood
values of eight hypotheses of face orientations at the
correct position, and the green line corresponds to he
likelihood values of eight hypotheses at the incorrect

position.



Figure 15 (a) Multi-view face detection results with
inter-object occlusion. (b) The bird-eye view of
detected face directions of (a). (c) Another Multi-view
face detection results. (d) Detected face directions of
(c). Note white arrows indicate the ground truth.

Colored arrows indicate our detection results.
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