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Abstract

The credit card industry has been growing rapidly recently, and thus huge numbers of consumers’ credit data are collected by the
credit department of the bank. The credit scoring manager often evaluates the consumer’s credit with intuitive experience. However, with
the support of the credit classification model, the manager can accurately evaluate the applicant’s credit score. Support Vector Machine
(SVM) classification is currently an active research area and successfully solves classification problems in many domains. This study used
three strategies to construct the hybrid SVM-based credit scoring models to evaluate the applicant’s credit score from the applicant’s
input features. Two credit datasets in UCI database are selected as the experimental data to demonstrate the accuracy of the SVM clas-
sifier. Compared with neural networks, genetic programming, and decision tree classifiers, the SVM classifier achieved an identical clas-
sificatory accuracy with relatively few input features. Additionally, combining genetic algorithms with SVM classifier, the proposed
hybrid GA-SVM strategy can simultaneously perform feature selection task and model parameters optimization. Experimental results
show that SVM is a promising addition to the existing data mining methods.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, competition in the consumer credit market has
become severe. With the rapid growth in the credit indus-
try, credit scoring models have been extensively used for
the credit admission evaluation (Thomas, 2000). In the last
two decades, several quantitative methods have been devel-
oped for the credit admission decision. The credit scoring
models are developed to categorize applicants as either
accepted or rejected with respect to the applicants’ charac-
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teristics such as age, income, and marital condition. Credit
officers are faced with the problem of trying to increase
credit volume without excessively increasing their exposure
to default. Therefore, to screen credit applications, new
techniques should be developed to help predict credits
more accurately. The benefits of credit scoring involve
reducing the credit analysis cost, enabling faster credit deci-
sions, closer monitoring of existing accounts and prioritiz-
ing credit collections (Brill, 1998).

In the credit and banking area, a number of articles have
been published, which herald the role of automatic
approaches in helping creditors and bankers make loans,
develop markets, assess creditworthiness and detect fraud.
Creditors accept the credit application provided that the
applicant is expected to repay the financial obligation.
Creditors construct the credit classification rules (credit
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scoring models) based on the data of the previous accepted
and rejected applicants. With sizeable loan portfolios, even
a slight improvement in credit scoring accuracy can reduce
the creditors’ risk and translate considerably into future
savings.

The modern data mining techniques, which have made a
significant contribution to the field of information science
(Chen & Liu, 2004), can be adopted to construct the credit
scoring models. Practitioners and researchers have devel-
oped a variety of traditional statistical models and data
mining tools for credit scoring, which involve linear dis-
criminant models (Reichert, Cho, & Wagner, 1983), logistic
regression models (Henley, 1995), k-nearest neighbor mod-
els (Henley & Hand, 1996), decision tree models (Davis,
Edelman, & Gammerman, 1992), neural network models
(Desai, Crook, & Overstreet, 1996; Malhotra & Malhotra,
2002; West, 2000), and genetic programming models (Ong,
Huang, & Tzeng, 2005). From the computational results
made by Tam and Kiang (1992), the neural network is
most accurate in bank failure prediction, followed by linear
discriminant analysis, logistic regression, decision trees,
and k-nearest neighbor. In comparison with other tech-
niques, they concluded that neural network models are
more accurate, adaptive and robust.

Desai et al. (1996) investigated neural networks, linear
discriminant analysis and logistic regression for scoring
credit decision. They concluded that neural networks out-
perform linear discriminant analysis in classifying loan
applicants into good and bad credits, and logistic regression
is comparable to neural networks. West (2000) investigated
the credit scoring accuracy of several neural networks.
Results were benchmarked against traditional statistical
methods such as linear discriminant analysis, logistic regres-
sion, k-nearest neighbor and decision trees. Malhotra and
Malhotra (2002) applied neuro-fuzzy models to analyze
consumer loan applications and compared the advantages
of neuro-fuzzy systems over traditional statistical tech-
niques in credit-risk evaluation. Hoffmann, Baesens, Mar-
tens, Put, and Vanthienen (2002) applied a genetic fuzzy
and a neuro-fuzzy classifier for credit scoring. Baesens
et al. (2003) benchmarked state-of-the-art classification
algorithms for credit scoring.

Recently, researchers have proposed the hybrid data
mining approach in the design of an effective credit scoring
model. Hsieh (2005) proposed a hybrid system based on
clustering and neural network techniques; Lee and Chen
(2005) proposed a two-stage hybrid modeling procedure
with artificial neural networks and multivariate adaptive
regression splines; Lee, Chiu, Lu, and Chen (2002) inte-
grated the backpropagation neural networks with tradi-
tional discriminant analysis approach; Chen and Huang
(2003) presents a work involving two interesting credit
analysis problems and resolves them by applying neural
networks and genetic algorithms techniques.

Since even a fraction of improvement in credit scoring
accuracy may translate into noteworthy future savings,
the major issue of previous studies focused on increasing
the accuracy of credit decisions. For conventional statisti-
cal classification techniques, an underlying probability
model must be assumed in order to calculate the posterior
probability upon which the classification decision is made.
The more recently developed data mining techniques such
as neural networks, genetic programming (GP) and sup-
port vector machines (SVM) can perform the classification
task without this limitation. Additionally, these artificial
intelligence methods also achieved better performance than
traditional statistical methods.

Support vector machines (SVM) were first suggested by
Vapnik (1995) and have recently been used in a range of
problems including pattern recognition (Pontil & Verri,
1998), bioinformatics (Yu, Ostrouchov, Geist, & Samat-
ova, 2003), and text categorization (Joachims, 1998).
Huang, Chen, Hsu, Chen, and Wu (2004) obtained predic-
tion accuracy around 80% for both backpropagation neu-
ral networks and SVM methods for the United States
and Taiwan markets. When using SVM, two problems
are confronted: how to choose the optimal input feature
subset for SVM and how to set the best kernel parameters.
These two problems are crucial because the feature subset
choice influences the appropriate kernel parameters and
vice versa (Fröhlich & Chapelle, 2003). Therefore, this
study proposed hybrid SVM-based approaches to optimize
the input feature subset and model parameters.

Feature selection is an important issue in building clas-
sification systems. It is advantageous to limit the number of
input features in a classifier in order to have a good predic-
tive and less computationally intensive model (Zhang,
2000). With a small feature set, the explanation of rationale
for the classification decision can be easier realized. In
addition to the feature selection, proper model parameters
setting can improve the SVM classification accuracy. The
parameters that should be optimized include penalty
parameter C and the kernel function parameters such as
the gamma (c) for the radial basis function (RBF) kernel.
To design a SVM, one must choose a kernel function, set
the kernel parameters and determine a soft margin con-
stant C. The grid algorithm is an alternative to finding
the best C and gamma when using the RBF kernel function
(Hsu & Lin, 2002). Besides the grid algorithm, other opti-
mization tools such as genetic algorithm, which is adopted
in this study, can also be applied to optimize the feature
subset and model parameter. To successfully build credit
scoring models, this study tried three SVM-based strate-
gies: (1) using grid search to optimize model parameters,
(2) using grid search to optimize model parameters and
using F-score calculation to select input features, and (3)
using genetic algorithm to simultaneously optimize model
parameters and input features.

This paper is organized as follows. Section 2 describes
basic SVM concepts. Section 3 describes three SVM-based
strategies used in this research. Section 4 presents the
experimental results from using the proposed method to
classify two real world datasets. Section 5 gives remarks
and provides a conclusion.
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2. Basic concepts of SVM classifier

In this section we will briefly describe the basic SVM
concepts for typical two-class classification problems.
These concepts can also be found in Kecman (2001),
Scho}lkopf and Smola (2000), and Cristianini and Shawe-
Taylor (2000).

Given a training set of instance-label pairs (xi,yi),
i = 1,2, . . . ,m where xi 2 Rn and yi 2 {+1,�1}, SVM finds
an optimal separating hyperplane with the maximum mar-
gin by solving the following optimization problem:

Min
w;b

1

2
wTw

subject to : yiðhw � xii þ bÞ � 1 P 0

ð1Þ

It is known that to solve this quadratic optimization
problem one must find the saddle point of the Lagrange
function:

Lpðw; b; aÞ ¼
1

2
wT � w�

Xm

i¼1

ðaiyiðhw � xii þ bÞ � 1Þ ð2Þ

where the ai denotes Lagrange multipliers, hence ai P 0.
The search for an optimal saddle point is necessary because
the Lp must be minimized with respect to the primal vari-
ables w and b and maximized with respect to the non-neg-
ative dual variable ai. By differentiating with respect to w
and b, and introducing the Karush Kuhn–Tucker (KKT)
condition for the optimum constrained function, then Lp

is transformed to the dual Lagrangian LD(a):

Max
a

LDðaÞ ¼
Xm

i¼1

ai �
1

2

Xm

i;j¼1

aiajyiyjhxi � xji

subject to : ai P 0 i ¼ 1; . . . ;m and
Xm

i¼1

aiyi ¼ 0

ð3Þ

To find the optimal hyperplane, a dual Lagrangian
LD(a) must be maximized with respect to non-negative ai.
The solution ai for the dual optimization problem deter-
mines the parameters w* and b* of the optimal hyperplane.
Thus, the optimal hyperplane decision function f(x) =
sgn(hw* Æ xi + b*) can be written as

f ðxÞ ¼ sgn
Xm

i¼1

yia
�
i hxi; xi þ b�

 !
ð4Þ

In a typical classification task, only a small subset of the
Lagrange multipliers ai usually tends to be greater than
zero. Geometrically, these vectors are the closest to the
optimal hyperplane. The respective training vectors having
nonzero ai are called support vectors, as the optimal deci-
sion hyperplane f(x,a*,b*) depends on them exclusively.

The above concepts can also be extended to the non-
separable case (linear generalized SVM). In terms of these
introduced slack variables, the problem of finding the
hyperplane that provides the minimum number of training
errors (i.e., to keep the constraint violation as small as pos-
sible) has the formal expression as follows:
Min
w;b;n

1

2
wTwþ C

Xm

i¼1

ni

subject to :
yiðhw � xii þ bÞ þ ni � 1 P 0

ni P 0

ð5Þ
where C is a penalty parameter on the training error, and ni

is the non-negative slack variable. SVM finds the hyper-
plane that provides the minimum number of training errors
(i.e., to keep the constraint violation as small as possible).

This optimization model can be solved using the
Lagrangian method, which is almost equivalent to the
method for solving the optimization problem in the separa-
ble case. One must maximize the dual variables Lag-
rangian:

Max
a

LDðaÞ ¼
Xm

i¼1

ai �
1

2

Xm

i;j¼1

aiajyiyjhxi � xji

subject to : 0 6 ai 6 C i ¼ 1; . . . ;m and
Xm

i¼1

aiyi ¼ 0

ð6Þ
To find the optimal hyperplane, a dual Lagrangian
LD(a) must be maximized with respect to non-negative ai

under the constrains
Pm

i¼1aiyi ¼ 0 and 0 6 ai 6 C. The pen-
alty parameter C, which is now the upper bound on ai, is
determined by the user. Finally, the form of optimal hyper-
plane decision function is the same as (4).

The nonlinear SVM maps the training samples from the
input space into a higher-dimensional feature space via a
mapping function U. In the dual Lagrange (6), the inner
products are replaced by the kernel function (7), and the
nonlinear SVM dual Lagrangian LD(a) (8) is similar with
that in the linear generalized case

ðUðxiÞ � UðxjÞÞ :¼ kðxi; xjÞ ð7Þ

LDðaÞ ¼
Xm

i¼1

ai �
1

2

Xm

i;j¼1

aiajyiyjkðxi � xjÞ ð8Þ
Subject to: 0 6 ai 6 C, i = 1, . . . ,m and
Pm

i¼1aiyi ¼ 0.
Followed by the steps described in the linear generalized

case, we obtain decision function of the following form:

f ðxÞ ¼ sgn
Xm

i¼1

yia
�
i hUðxÞ;UðxiÞi þ b�

 !

¼ sgn
Xm

i¼1

yia
�
i hkðx; xiÞi þ b�

 !
ð9Þ
Radial basis function (RBF) is a common kernel func-
tion as follows:

kðxi; xjÞ ¼ exp �ckxi � xjk2
� �

ð10Þ
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3. Strategies for building SVM classifier

3.1. Setting model parameters using grid search

Proper parameters setting can improve the SVM classi-
fication accuracy. With the RBF kernel, there are two
parameters to be determined in the SVM model: C and
gamma (c). The grid search approach (Hsu, Chang, &
Lin, 2003) is an alternative to finding the best C and
gamma when using the RBF kernel function.

To guarantee that the present results are valid and can
be generalized for making predictions regarding new data,
the data set is further randomly partitioned into training
and independent testing sets via a k-fold cross validation.
Each of the k subsets acts as an independent holdout test
set for the model trained with the rest of k � 1 subsets.
The advantages of cross validation are that the impact of
data dependency is minimized and the reliability of the
results can be improved (Salzberg, 1997).

In the grid search approach, pairs of (C,c) are tried and
the one with the best cross-validation accuracy is chosen.
After identifying a ‘‘better’’ region on the grid, a finer grid
search on that region can be conducted. To get good gen-
eralization ability, grid search approach uses a validation
process to decide parameters. That is, for each of the k sub-
sets of the data set D, create a training set T = D � k, then
run a cross-validation process as follows (Chen & Lin,
2005; Hsu et al., 2003):

Step 1. Consider a grid space of (C,c) with log2C 2 {�5,
�4, . . . , 12} and log2c 2 {�12,�13, . . . , 5}.

Step 2. For each hyperparameter pair (C,c) in the search
space, conduct 5-fold cross validation on the train-
ing set.

Step 3. Choose the parameter (C,c) that leads to the lowest
CV error classification rate.

Step 4. Use the best parameter to create a model as the
predictor.

Overall accuracy is averaged across all k partitions.
These k accuracy values also give an estimate of the accu-
racy variance of the algorithms.

3.2. Setting model parameters using grid search and

selecting input features using F-score

In addition to the proper parameters setting, feature
subset selection can improve the SVM classification accu-
racy. F-score (Chen & Lin, 2005) is a simple technique
which measures the discrimination of two sets of real num-
bers. Given training vectors xk, k = 1,2, . . . ,m, if the num-
ber of positive and negative instances are n+ and n�,
respectively, then the F-score of the ith feature is defined
as follows (Chen & Lin, 2005):

F ðiÞ� ð�xðþÞi ��xiÞ2þð�xð�Þi ��xiÞ2
1

nþ�1

Pnþ
k¼1ðx

ðþÞ
k;i ��xðþÞi Þ

2þ 1
n��1

Pn�
k¼1ðx

ð�Þ
k;i ��xð�Þi Þ

2
ð11Þ
where �xi, �xðþÞi , and �xð�Þi are the averages of the ith feature of
the whole, positive, and negative data sets, respectively; xðþÞk;i

is the ith feature of the kth positive instance, and xð�Þk;i is the
ith feature of the kth negative instance. The numerator
indicates the discrimination between the positive and nega-
tive sets, and the denominator indicates the one within each
of the two sets. The larger the F-score is, the more likely
this feature is more discriminative (Chen & Lin, 2005).
One can select the features manually; however, this study
follows the following procedure. For each of the k subsets
of the data set D, create a training set T = D � k, then run
a cross-validation process, and the overall accuracy is aver-
aged across all k partitions. The procedure is as follows
(Chen & Lin, 2005):

Step 1. Calculate F-score for every feature.
Step 2. Sort F-score, and set possible number of features by

f = [n/2i], i 2 {0,1, 2, . . . ,m}, where m is an integer
with n/2m P 1.

Step 3. For each f (threshold), do the following:
(a) Keep the first f features according to the

F-score.
(b) Randomly split the training data into Dtraining

and Dvalidation using 5-fold cross validation.
Do the following step for each fold:

(c) Let Dtraining be the new training data. Use the
SVM procedure in Section 3.1 to obtain a pre-
dictor; use the predictor to predict Dvalidation.

(d) Calculate the average validation error of the
5-fold cross validation.
Step 4. Choose the f (threshold) with the lowest average
validation error.

Step 5. Drop features with F-score below the selected
threshold. Rerun SVM training in Section 3.1 on
the larger set T. And measure classification accu-
racy on test set k.

3.3. Optimizing model parameter and feature subset using
GA-based approach

When using SVM, obtaining the optimal feature subset
and SVM parameters must occur simultaneously. In the
literature, only a few algorithms have been proposed for
SVM feature selection (Fröhlich & Chapelle, 2003; Guyon,
Weston, Barnhill, & Bapnik, 2002; Mao, 2004; Weston
et al., 2001). Somol, Baesens, Pudil, and Vanthienen
(2005) studied filter and wrapper-based feature selection
for credit scoring. Fröhlich and Chapelle (2003) proposed
a GA-based feature selection approach that used the the-
oretical bounds on the generalization error for SVMs.
However, previous research neither deals with parameters
optimization for the SVM classifier nor focuses on build-
ing a credit scoring model based on SVM model.

Genetic algorithms (Goldberg, 1989; Holland, 1975)
have the potential to generate both the optimal feature sub-
set and SVM parameters at the same time. This paper used
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GA-based approach to optimize the parameters and fea-
ture subset simultaneously, without degrading the SVM
classification accuracy. The proposed method performs
feature selection and parameters setting in an evolutionary
way.

When the RBF kernel is selected, the parameters (C
and c) and features used as input attributes must be opti-
mized using our proposed GA-based system. Therefore,
the chromosome is comprised of three parts, C, c, and
the feature mask. The binary coding system was used to
represent the chromosome. Note that we can choose the
length of bit strings representing C and c according to
the calculation precision required; meanwhile, the number
of features varies from the different datasets. The bit
strings representing the genotype of parameter C and c
should be transformed into phenotype by converting bin-
ary into decimal representation. For the chromosome rep-
resenting the feature mask, the bit with value ‘‘1’’ means
the feature is selected, and ‘‘0’’ indicates the feature is not
selected.

We used the same 10-cross validation procedure used in
the previous section. During the evolutionary process of
GA, we conduct 5-fold cross validation on the training
set for each pair of (C,c) with the selected features. The fit-
ness is defined as the average accuracy of five folds cross
validation, and GA finds the evolutionary direction based
on the fitness.

Since the training of GA is a stochastic evolutionary
process, the accuracy rates for each data set partitions
are themselves averages of five repetitions. That is, five rep-
etitions are conducted for each of the 10 partitions to
reduce the stochastic variability of model training process
in GA-based SVM.

For each of the k subsets of the data set D, create a
training set T = D � k, then run a cross-validation process
as follows:

Step 1. For each of the k folds, run the following steps:
Step 1.1. Initialization: Generate initial population

which individually is comprised of C, c,
and selected features.

Step 1.2. Fitness Evaluation: For each individual
population, do the following:
Fig. 1. A filter model of feature selection m
(a) Select the features that represent the
chromosome bit string, and use C

and gamma to represent the bit string.
(b) For the (C,c) with selected features,

randomly split the training data into
Dtraining and Dvalidation using 5-fold
cross validation, conduct 5-fold cross
validation on the training set. Then
calculate the average validation accu-
racy of the 5-fold cross validation.

(c) Set the fitness to the average validation
accuracy obtained in the above step.
Step 1.3. Genetic operations: Perform genetic
operation: selection, recombination,
mutation, and replacement, and form a
new population.

Step 1.4. Stop condition: Go to step 1.2 unless
stopping criteria are met.

Step 1.5. Once the parameters are optimized via
the above GA process, rerun SVM train-
ing on the larger set T to obtain a trained
SVM classifier. Based on the trained
SVM model, measure classification accu-
racy on the test set k.
Step 2. Overall accuracy is averaged across all k partitions.
These k values also give an estimate of the variance
of the algorithms.

Based on whether feature selection is performed inde-
pendently of the learning algorithm that constructs the
classifier, feature subset selection algorithms can be classi-
fied into two categories: the filter approach and the wrap-
per approach (John, Kohavi, & Peger, 1994; Kohavi &
John, 1997; Liu & Motoda, 1998). The filter approach
selects important features first and then SVM is applied
for classification. On the other hand, the wrapper approach
either modifies SVM to choose important features as well
as conducts training/testing or combines SVM with other
optimization tools to perform feature selection. By the def-
inition of Liu and Motoda (1998), the F-score + SVM
approach in Section 3.2 is a filter approach as shown in
Fig. 1, while GA + SVM proposed in this section is a wrap-
per approach as shown in Fig. 2.
odified from Liu and Motoda (1998).



Fig. 2. A wrapper model of feature selection modified from Liu and Motoda (1998).

Table 1
Datasets from the UCI repository

No. Names #
classes

#
instances

Nominal
features

Numeric
features

Total
features

1 German 2 1000 0 24 24
2 Australian 2 690 6 8 14

Table 3
Results summary with 10-fold cross validation for German credit data set

Selected
features

Hit rate

Avg. Std. Avg. (%) Std. (%)

SVM + Grid search 24.0 – 76.00 3.86
SVM + Grid search + F-score 20.4 5.50 77.50 4.03

Table 2
Results summary with 10-fold cross validation for Australian credit data
set

Selected
features

Hit rate

Avg. Std. Avg. (%) Std. (%)

SVM + Grid search 14.0 – 85.51 3.78
SVM + Grid search + F-score 7.6 1.20 84.20 4.51
SVM + GA 7.3 1.65 86.90 4.22
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4. Empirical analysis

4.1. Real world credit data sets

The two real world data sets illustrated in Table 1, the
Australian and German credit data sets, are available from
the UCI Repository of Machine Learning Databases (Mur-
phy & Aha, 2001) and are adopted herein to evaluate the
predictive accuracy. The Australian credit data consists of
307 instances of creditworthy applicants and 383 instances
where credit is not creditworthy. Each instance contains
6 nominal, 8 numeric attributes, and 1 class attribute
(accepted or rejected). This dataset is interesting because
there is a good mixture of attributes: continuous, nominal
with small numbers of values, and nominal with larger
numbers of values. There are also a few missing values.
To protect the confidentiality of data, the attributes names
and values have been changed to meaningless symbolic
data. The German credit scoring data are more unbalanced,
and it consists of 700 instances of creditworthy applicants
and 300 instances where credit should not be extended.
For each applicant, 24 input variables describe the credit
history, account balances, loan purpose, loan amount,
employment status, personal information, age, housing,
and job title. This data set only consists of numeric
attributes.
SVM + GA 13.3 1.41 77.92 3.97
4.2. Experimental results

Three strategies as stated in Section 3 were used in this
study, namely ‘‘SVM + Grid,’’ ‘‘SVM + Grid + F-score,’’
and ‘‘SVM + GA.’’ The results for the two data sets were
obtained by using the three strategies and are summarized
in Tables 2 and 3, respectively.

For the Australian data set, the classificatory accuracy
(hit rate) of the three models achieved 85.51%, 84.20%,
and 86.90%. The experiments of the three strategies used
identical training and testing sets for each ‘‘treatment’’
(three strategies); thus the test set is clearly not independent
(Salzberg, 1997). To compare classification accuracy of the
test set; therefore, we performed a nonparametric Fried-
man test—a test for the k-related (dependent) samples.
We found no significant differences among these three
strategies (with p = 0.349). That means the three SVM
strategies achieved the same classificatory accuracy. In
Table 2, the average numbers of selected features are
14.0, 7.6, and 7.3. For the number of selected features,
we found no significant differences between ‘‘SVM +
Grid + F-score’’ and ‘‘SVM + GA’’ based on the nonpara-
metric Wilcoxon signed rank tests (p = 0.567).

For the German data set, as shown in Table 3, the clas-
sificatory accuracy of the three models achieved 76.00%,
77.50%, and 77.92%, and the average of the selected fea-
tures are 24.0, 20.4, and 13.3, respectively. There are no sig-
nificant differences among these three strategies based on
the Friedman test (with p = 0.32) for classificatory accu-
racy. However, ‘‘SVM + GA’’ has significantly lesser num-
ber of selected features than the ‘‘SVM + Grid + F-score’’
based on the nonparametric Wilcoxon signed rank tests
(p = 0.001).



Table 4
Predictive credit accuracy of GP, BPN, C4.5, and ‘‘SVM + GA’’ for the
Australian data

Selected features Hit rate

Avg. Std. Avg. (%) Std. (%)

BPN – – 86.83 3.86
GP 8.20 1.60 87.00 4.03
C4.5 12.20 0.80 85.90 3.47
SVM + GA 7.3 1.65 86.90 4.22

Table 5
Results summary with 10-fold cross validation for German credit data set

Selected features Hit rate

Avg. Std. Avg. (%) Std. (%)

BPN – – 77.83 3.21
GP 13.20 2.10 78.10 4.12
C4.5 20.30 1.90 73.60 3.41
SVM + GA 13.3 1.41 77.92 3.97
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According to the above Friedman test results, the
classificatory accuracies of the three strategies are identical
in the two data sets, although the ‘‘SVM + GA’’ accuracy
is slightly higher than the other two strategies. Although
achieving as high as the other two strategies, the
‘‘SVM + GA’’ strategy has lesser selected features in one
of the two data sets. The above results reveal that a GA-
based strategy is an acceptable alternative to optimize both
the feature subset and model parameters for credit scoring.

4.3. Comparison with other methods

In the previous studies, the artificial intelligence based
approaches such as neural network and GP have been suc-
cessfully applied to credit analysis, and they are usually
more accurate (Desai et al., 1996; Ong et al., 2005; West,
2000). Decision tree is a popular approach to build
classification model. The credit scoring results of SVM,
therefore, are benchmarked to those generated by the back-
propagation neural network (BPN), GP (Koza, 1992) and
decision tree (C4.5) (Quinlan, 1986, 1993).

In this paper of credit scoring, BPN as well as GP is used
for a two-class pattern classification. A simple thresholding
scheme is sufficient for the BPN and GP to divide the fea-
ture space into two categories in a two-class classification
problem. A threshold value of 0.5 is used to distinguish
between credit groups, good credit and bad credit. If the
output result of BPN or GP is greater than or equal to
0.5, the input sample is assigned to one class (good,
accepted); otherwise it is assigned to the other class (bad,
rejected). Hence,

If OmodelðX iÞP 0:5; Oi ¼ 1 and X i 2 Class of good credit;

If OmodelðX iÞ < 0:5; Oi ¼ 0 and X i 2 Class of bad credit:

�
ð12Þ

Omodel is the output value of BPN, Xi is the input feature
set of the ith sample, and Oi is the output credit decision
associated with Xi.

These two credit scoring data sets are partitioned into
training and independent test sets by the same 10-fold cross
validation procedure used in SVM-based approaches.
Therefore, the results are averages of the accuracy rates
determined for each of the 10 independent holdout data
set partitions (testing accuracy). Since the training of GP
and BPN is a stochastic process, the accuracy rate for each
data set partition is the average of five repetitions.

The GP specific parameters for these two credit data sets
are as follows: population size is 250, reproduction rate is
0.2, crossover rate is 0.7, mutation rate is 0.08, and maxi-
mum number of generations is 2000–3000. For the BPN
model, several options of the neural network configura-
tions are tested, in which 14-32-1 and 24-43-1 respectively
for the Australian data and German data are selected to
obtain better results. Additionally, the learning rate and
momentum are set to 0.8 and 0.2, respectively. For C4.5,
we choose its default settings.
4.3.1. Comparison of the accuracy

The results for the Australian credit data set and Ger-
man credit data set were obtained by using the three meth-
ods of GP, BPN and C4.5 and are summarized in Tables 4
and 5, respectively.

For the Australian data set, there are no significant dif-
ferences among the SVM (SVM + GA strategy), GP, BPN,
and C4.5 based on the Friedman test (p = 0.37). For the
German data set, however, we found SVM, GP and BPN
were identical (no significant differences among these
approaches), but C4.5 model was significantly inferior to
the other three approaches based on the nonparametric
Wilcoxon signed rank tests (p = 0.04). That is, for the cases
of the German data set, SVM, GP and BPN are more
appropriate than C4.5 given the criteria of maximizing pre-
diction accuracy.

Regarding the computation time, however, the CPU
time of C4.5 is very short compared to the ‘‘SVM + GA,’’
‘‘SVM + Grid + F-score,’’ GP and BPN approaches whose
average CPU times for running one fold of the Australian
data set are 19.3, 15.4, 9.5, and 6.3 min, respectively. The
CPU time is based on an IBM compatible PC with an Intel
Pentium IV CPU running at 1.6 GHz with 256 MB RAM.
The average running time is affected by the software envi-
ronment. The GP and BPN are developed by using the C
language, while the SVM was implemented by the C
language—libsvm (Chang & Lin, 2001). Grid search and
F-score feature selection developed by Chen and Lin
(2005) were performed under the Python environment,
and the GA evolutionary process was performed under
the Matlab environment. Generally, compared with other
systems, the running time is much longer when using the
Matlab. Basically, we do not intend to compare their run-
ning times in this study.
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4.3.2. Comparison of the selected features

A key deficiency of neural network models for credit
scoring applications is the difficulty in selecting the discrim-
inative features and explaining the rationale for the credit
decision (West, 2000). We apply Garson’s index (Garson,
1991) to estimate the relative contributions of input fea-
tures to the credit class.

After performing the 10-fold cross validation, for each
attribute, we calculated its average F-score (‘‘SVM +
Grid + F-score’’), average Garson’s index (BPN), and the
frequency of selected features (‘‘SVM + GA’’ and BP).
Figs. 3 and 4 illustrate the relative importance of each fea-
ture with the form of its relative percentage for the two
data sets respectively.
Fig. 3. Relative importance of features for Australian dataset.

Fig. 4. Relative importance of features for German dataset.
In this study, GP and ‘‘SVM + GA’’ credit scoring mod-
els have a smaller feature set. For the case of the Australian
data, only about 8 of the 14 input variables are finally pres-
ent in the credit scoring model; for the results of the Ger-
man data, only about 13 of the 24 input features appear
in the models.

From Fig. 3, in the Australian credit example, the 8th
input feature is the most important one to credit classifica-
tion. Some attributes (e.g., attributes 1, 11, and 12) do not
contribute to the ‘‘SVM + Grid + F-score’’ model. For
GP, BPN, and ‘‘SVM + GA’’ models, all input variables
seem to contribute to the output decision variable. For C
4.5, almost all input features evenly contribute to the credit
decision, but for simplicity, this result is not shown in Figs.
3 and 4.

In the case of the German data set, for F-score, some
attributes are not selected (e.g., attributes 8, 13, 18, 22,
23, and 24), but all input features contribute to the credit
decision for all other models.

5. Conclusions

Credit scoring is a widely used technique that
helps banks decide whether to grant credit to consumers
who submit an application. Constructing the credit scor-
ing models from a credit database can be taken as a task
of data mining. The statistical classification models per-
form favorably only when the essential assumptions are
satisfied. In contrast to traditional statistical techniques,
the artificial intelligence techniques (such as SVM, GP,
BPN or decision tree) do not require the knowledge of
the underlying relationships between input and output
variables.

This paper investigates the three strategies of the SVM
credit scoring models and benchmarks their performance
against neural network, genetic programming, and C4.5
models under concern for commercial applications. We
make the following conclusions:

(1) The SVM-based approach credit scoring model can
properly classify the applications as either accepted
or rejected, thereby minimizing the creditors’ risk
and translating considerably into future savings.

(2) It is evident that the SVM-based model is very com-
petitive to BPN and GP in terms of classification
accuracy. Compared with GP and BPN, SVM-based
credit scoring model can achieve identical classifica-
tory accuracy.

(3) The SVM-based models also have similar accuracies
reported in the literature. Ong et al. (2005) reported
that the accuracies of GP, BPN and C4.5 are
88.27%, 87.93%, and 87.06%, respectively, for the
Australian data set and are 77.34%, 75.51%, and
73.17%, respectively, for the German data set.

To adopt the SVM-based credit scoring model, this study
recommend combining SVM with a mechanism to search
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the optimal model parameters and feature subset. F-score is
a simple way to determine important features, but it does
not reveal mutual information among features (Chen &
Lin, 2005). According to our study, a hybrid SVM-GA sys-
tem is a good alternative for optimizing the parameters and
feature subset. With a small feature subset, a hybrid SVM-
GA system can obtain a good classification performance.
However, when using SVM-GA strategy (as well as GP
and BPN), one should avoid over-training. This study rec-
ommends using a separate validation set to tune the model
parameters and determine appropriate training iterations.

The drawback of the SVM-GA (as well as GP-based)
credit scoring model is its long training time. It is a well-
known fact that many applications of KDD require the
capability of efficient processing of large databases. In such
cases, algorithms that offer very good classification accu-
racy at the cost of high computational complexity cannot
be applied. Fortunately, GA-based systems are well suited
for parallel architecture. Another practical obstacle of the
SVM-based (as well as neural networks) credit scoring
model is its black-box nature. A possible solution for this
issue is the use of SVM rule extraction techniques or the
use of hybrid-SVM model combining with other more
interpretable models.
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