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In the project, we have proposed a new
Intelligent Multiple Access Control System
(IMACS) for wirdess ATM  networks,
supporting ABR and Signaling Control (SCR)
traffic other than CBR and VBR traffic. It ams
to efficiently satisfy their diverse Quality-of-
Service (QoS) requirements while retaining
IMACS is
Multiple

maximal network throughput.
composed of three components:
Access (MACER), Traffic
Estimator/Predictor (TEP), and Intelligent
Bandwidth Allocator (IBA). The focus of the
project is traffic estimation and prediction of
ABR traffic, namely the TEP component of
IMACS. Simulation results demonstrate that
facilitated with TEP, IMACS offers various

QoS guarantees and maximizes network

Controller

throughput irrelevant to traffic variation.

Keywords. Wireless Asynchronous Transfer
Mode Networks (WATM), Multiple Access
Control (MAC), Bandwidth allocation, Quality-
of-Service  (Qo0S),
algorithm, Neural-fuzzy technique, Self-similar
traffic.
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2. Approaches and Results

IMACS is composed of three maor
components (see Figure 1): Multiple Access
Controller (MACER), Traffic Estimator/
Predictor (TEP), and Intelligent Bandwidth
Allocator (IBA). It supports four types of
traffic- CBR, VBR, ABR, and SCR. IMACS
has been designed to satisfy delay guarantees
for CBR/VBR traffic while offering minimal
access delay for ABR and SCR traffic.
Accordingly, MACER employs a reservation-
based access protocol for CBR and VBR traffic
making use of a fixed amount of R.-type and
R,-type bandwidth (R.+R,= R) (in dots),
respectively. By contrast, for SCR and ABR
trafficc, MACER adopts a contention-based
access protocol using Cgtype and C,-type
bandwidth (Cs+C,= C) (in dots), respectively.
In particular, due to the access-delay-sensitive

nature, SCR traffic is particularly governed by
contention access using the DTS collision
resolution algorithm parameterized by the
optimal SD, denoted as DTS-d, if SD=d. The
focus of the report is the TEP component of the
system.

TEP is responsible for the periodic
estimation of the Hurst parameter (denoted as
H), and the prediction of the short-term mean
and variance of ABR traffic. Specifically, H is
periodically estimated based on wavelet
anadysis [1,2].
variance for the subsequent frame are predicted

The short-term mean and

by means of an on-line neural-fuzzy approach
[3]. Since the prediction of the variance can be
similarly applied, in the sequel we describe the
estimation of H and prediction of the short-term
mean number of active MT's.
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Figure 1. IMACS architecture.



NFTP performs on-line traffic prediction
based on a self-constructing neura-fuzzy
inference network [3]. It is involved in two
phases of learning: structure and parameter
learning. The  structure-learning  phase
determines the structure of fuzzy if-then rules,
and the parameter-learning phase tunes the
coefficients of the rules adapting to the input
traffic dynamics. Unlike existing neural-fuzzy
NFTP

performs the structure and parameter learning

models using sequential learning,
in parallel. This makes NFTP advantageous for
fast on-line prediction.

NFTP is a six-layer network taking on a
number of input nodes and one output node, as
shown in Figure 2. Initidly, there are no rules
in the network other than input nodes (layer 1)
and an output node (layer 6). Upon receiving
on-line training data, the structure-learning
by dynamically self-
constructing fuzzy if-then rules (layer 3)

process proceeds

according to an input-output clustering-based
space-partitioning algorithm [3]. Once a new
rule is generated, the centers and widths of the
corresponding set of Gaussian membership
functions (layer 2 and layer 5) are assigned.
The output of alayer 3 node corresponds to the
firing strength of the corresponding fuzzy rule,
which is in turn normaized in layer 4.
Consequently, the predicted output value, y; is
given as.

y=a V. i=fuzzyruleindex, and
i

Fuzzyrulei: If x is Apand...and

Then y; = fimy

where y; is the contribution of fuzzy rule j to
the predicted output vaue, X is the j, input
vaue, A; is the j,, membership function of
fuzzy rule J, £ is the normalized firing strength
of fuzzy rule /, and m is the center of the
membership function in layer 5 connected to
fuzzy rule /. Meanwhile, in the parameter-
learning process, the centers and widths of
input membership functions (layer 2) are
dynamically adjusted based on the Least Mean
Squares (LMS) algorithm [3], whereas those of
output membership functions (layer 5) are
tuned using the Back Propagation agorithm

[6].

Figure 2 illustrates an NFTP network with
three inputs. This network predicts the future

CNF vaue (N4), which corresponds to the

mean number of active MT's in the subsequent
frame, based on three input values taken from
three most-recent CNF values (denoted as N,
i=1to 3). At the end of each frame, in addition
to predicting the CNF value of the next frame,
NFTP aso performs the learning operation
described above. This is indicated in Figure 6
by the arrowed link pointing from the CNF of
Frame 4 to the NFTP output node.

We experimented on two different NFTP
structures using different types of inputs,
respectively, via simulation. In the first
structure, caled CNF-based NFTP, the inputs
are taken directly from a set of different



numbers of past CNF values (N), ranging from
4 to 24. In the second structure, referred to as
CNF-correlation-based NFTP, we adopted
exponential-averaging k-lag corréelation of
CNF values as inputs. Specifically, taking an
example of NFTP with four inputs x,, k<=1 to 4,
at the end of the 7, frame, x, will be set asthe &
correlation f:, defined

lag as.

Ci=1C+(-1)C.q, where

Ci=N;” Ni_yg, and | is the smoothing
constant (0</ <1). With this structure, we
also carried out 4 to 24 different numbers of
inputs. In this simulation, we on-line predicted
a set of 200 frames, using both structures of
NFTP. All parameters used in the simulation
are summarized in Table 1. In addition, the
performance of NFTP is evaluated in terms of
rate),
complexity, and space complexity. The error

its prediction precision (error time
rate was computed as the normalized average

Framel ! Frame2 | Frame3

deviation between the actual and predicated
CNF values. The space complexity was given
in terms of the total number of fuzzy rules
generated at the end of 200-frame prediction.
Notice that, since such inference network can
be
disregarded its time complexity. Simulation

implemented in hardware, we thus

results are displayed in Table 2.

We observed during the experiment that
the prediction error rate using either structure is
irrelevant to the Hurst parameter (H), but
highly sensitive to the variance. This can be
perceived by the fact that by and large, H
manifests only long-term behavior, whereas
variance greatly reflects short-term fluctuation.
In essence, as shown in Table 2 under traffic
H=0.8, the error rate greatly increases with the
variance. Furthermore, compared to CNF-based
NFTP, CNF-correlation-based NFTP achieves
greater precision (lower error rate) and lower
space complexity (less number of fuzzy rules).

Frame4 | Frame5 |

i |CNF]| |CNF]

|CNF

» Time
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Legend: CNF= Common Notification Field;
t.= Current time;

Figure 2. NFTP architecture.



We finally discovered in the table that NFTP
(either structure) with 12 inputs invariably
exhibits better performance under both
variances. Namely, small or large numbers of

inputs yield inferior performance for on-line
prediction.

Table 1. NFTP parameters used in simulation

Variable Definition Vaue
F Input clustering threshold 0.1
Table 2. Fout Output clustering threshold 0.99 Performance of
_ r (1) Membership function threshold 0.7 _
NFTPusing b | Initia width of Gaussion function | 025 two different
structures h Back-propagation learning constant | 0.08
/ Smoothing constant 0.5
CNF-correlation-based
CNF-based NFTP NETP
H=08 | Number | NUMBE T 2o | Number | NUMPET | gy
of inputs of fuzzy rate |of inputs of fuzzy rate
rules rules
4 27 6.1 4 6 55
8 33 6.0 8 12 5.6
Mean = 50 12 42 5.9 12 23 5.4
Variance=20( 16 47 6.6 16 20 55
20 54 6.7 20 28 5.3
24 55 7.3 24 23 5.6
4 27 10.9 4 11 9.7
8 33 10.7 8 20 9.5
Mean=50 12 42 10.6 12 17 9.3
Variance=60| 16 47 11.8 16 20 9.8
20 54 12.1 20 20 9.7
24 55 13.1 24 23 9.9
presented in various conferences (IEEE
3. Merit Review of the Project 1CC'00)

The design and experimental results have
been published in IEEE Journal of Selected
Area on Communications. Moreover, we have
designed several networking control systems
making use of the mechanism, which has been
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