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1. 中文摘要

  在這個計畫內，我們針對無線ATM網路提

出了一個新的智慧型多重存取控制系統

(IMACS)，以支援不同於CBR和VBR訊務之

ABR和Signaling Control (SCR) 訊務。其最大

的目地是有效地滿足多種的服務品質 (QoS)

需求並能保持最大的網路產能。IMACS由三

部 份 組 成 : Multiple Access Controller

(MACER) 、 Traffic Estimator/Predictor

(TEP)、和 Intelligent Bandwidth Allocator

(IBA)。計畫的重心是放在訊務源之評估與

ABR訊務之預測，亦即IMACS之TEP部份。

實驗結果證實採用TEP之設計，IMACS提供

不同之QoS保證，且隨訊務源之變化得到最

大之網路產能。

關鍵字:無線ATM網路、多重存取控制、頻寬

分配、品質服務、衝撞解決演算法、類神經

模糊技術、自我相似訊務源。

Abstract

In the project, we have proposed a new

Intelligent Multiple Access Control System

(IMACS) for wireless ATM networks,

supporting ABR and Signaling Control (SCR)

traffic other than CBR and VBR traffic. It aims

to efficiently satisfy their diverse Quality-of-

Service (QoS) requirements while retaining

maximal network throughput. IMACS is

composed of three components: Multiple

Access Controller (MACER), Traffic

Estimator/Predictor (TEP), and Intelligent

Bandwidth Allocator (IBA). The focus of the

project is traffic estimation and prediction of

ABR traffic, namely the TEP component of

IMACS. Simulation results demonstrate that

facilitated with TEP, IMACS offers various

QoS guarantees and maximizes network

throughput irrelevant to traffic variation.

Keywords: Wireless Asynchronous Transfer

Mode Networks (WATM), Multiple Access

Control (MAC), Bandwidth allocation, Quality-

of-Service (QoS), Collision resolution

algorithm, Neural-fuzzy technique, Self-similar

traffic.
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2. Approaches and Results

IMACS is composed of three major

components (see Figure 1): Multiple Access

Controller (MACER), Traffic Estimator/

Predictor (TEP), and Intelligent Bandwidth

Allocator (IBA). It supports four types of

traffic- CBR, VBR, ABR, and SCR. IMACS

has been designed to satisfy delay guarantees

for CBR/VBR traffic while offering minimal

access delay for ABR and SCR traffic.

Accordingly, MACER employs a reservation-

based access protocol for CBR and VBR traffic

making use of a fixed amount of RC-type and

RV-type bandwidth (RC+RV= R) (in slots),

respectively. By contrast, for SCR and ABR

traffic, MACER adopts a contention-based

access protocol using CS-type and CA-type

bandwidth (CS+CA= C) (in slots), respectively.

In particular, due to the access-delay-sensitive

nature, SCR traffic is particularly governed by

contention access using the DTS collision

resolution algorithm parameterized by the

optimal SD, denoted as DTS-d, if SD=d. The

focus of the report is the TEP component of the

system.

TEP is responsible for the periodic

estimation of the Hurst parameter (denoted as

H), and the prediction of the short-term mean

and variance of ABR traffic. Specifically, H is

periodically estimated based on wavelet

analysis [1,2]. The short-term mean and

variance for the subsequent frame are predicted

by means of an on-line neural-fuzzy approach

[3]. Since the prediction of the variance can be

similarly applied, in the sequel we describe the

estimation of H and prediction of the short-term

mean number of active MT's.

Contention
Access without

Collision
Resolution

CBR/VBR Traffic

Call-based Frame-based Frame-based

Intelligent Bandwidth Allocator ( IBA ) Traffic Estimator/
Predictor (TEP)

Reservation
 Access

 Contentio
n Access

DTS
Algorithm
(DTS-d)

Multiple Access Controller (MACER)

SD
(=d)

R-type
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Bandwidth
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Bandwidth

CA-type
Bandwidth
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Figure 1. IMACS architecture.
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NFTP performs on-line traffic prediction

based on a self-constructing neural-fuzzy

inference network [3]. It is involved in two

phases of learning: structure and parameter

learning. The structure-learning phase

determines the structure of fuzzy if-then rules,

and the parameter-learning phase tunes the

coefficients of the rules adapting to the input

traffic dynamics. Unlike existing neural-fuzzy

models using sequential learning, NFTP

performs the structure and parameter learning

in parallel. This makes NFTP advantageous for

fast on-line prediction.

NFTP is a six-layer network taking on a

number of input nodes and one output node, as

shown in Figure 2. Initially, there are no rules

in the network other than input nodes (layer 1)

and an output node (layer 6). Upon receiving

on-line training data, the structure-learning

process proceeds by dynamically self-

constructing fuzzy if-then rules (layer 3)

according to an input-output clustering-based

space-partitioning algorithm [3]. Once a new

rule is generated, the centers and widths of the

corresponding set of Gaussian membership

functions (layer 2 and layer 5) are assigned.

The output of a layer 3 node corresponds to the

firing strength of the corresponding fuzzy rule,

which is in turn normalized in layer 4.

Consequently, the predicted output value, y, is

given as:

i
i

yy ∑= ,  i= fuzzy rule index, and

iii

ni
mfy

xAxi
=  Then                    

isand...andisIf  :ruleFuzzy 11

where yi is the contribution of fuzzy rule i to

the predicted output value, xj is the jth input

value, Aij is the jth membership function of

fuzzy rule i, fi is the normalized firing strength

of fuzzy rule i, and mi is the center of the

membership function in layer 5 connected to

fuzzy rule i. Meanwhile, in the parameter-

learning process, the centers and widths of

input membership functions (layer 2) are

dynamically adjusted based on the Least Mean

Squares (LMS) algorithm [3], whereas those of

output membership functions (layer 5) are

tuned using the Back Propagation algorithm

[6].

Figure 2 illustrates an NFTP network with

three inputs. This network predicts the future

CNF value ( 4N̂ ), which corresponds to the

mean number of active MT's in the subsequent
frame, based on three input values taken from

three most-recent CNF values (denoted as Ni,
i=1 to 3). At the end of each frame, in addition

to predicting the CNF value of the next frame,

NFTP also performs the learning operation

described above. This is indicated in Figure 6

by the arrowed link pointing from the CNF of

Frame 4 to the NFTP output node.

We experimented on two different NFTP

structures using different types of inputs,

respectively, via simulation. In the first

structure, called CNF-based NFTP, the inputs

are taken directly from a set of different
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numbers of past CNF values (Ni), ranging from

4 to 24. In the second structure, referred to as

CNF-correlation-based NFTP, we adopted

exponential-averaging k-lag correlation of

CNF values as inputs. Specifically, taking an

example of NFTP with four inputs xk, k=1 to 4,

at the end of the ith frame, xk will be set as the k-

lag correlation iĈ  defined as:

11 −−+= iii CCC ˆ)(ˆ λλ , where

kiii NNC −×= , and λ is the smoothing

constant ( 10 << λ ). With this structure, we

also carried out 4 to 24 different numbers of

inputs. In this simulation, we on-line predicted

a set of 200 frames, using both structures of

NFTP. All parameters used in the simulation

are summarized in Table 1. In addition, the

performance of NFTP is evaluated in terms of

its prediction precision (error rate), time

complexity, and space complexity. The error

rate was computed as the normalized average

deviation between the actual and predicated

CNF values. The space complexity was given

in terms of the total number of fuzzy rules

generated at the end of 200-frame prediction.

Notice that, since such inference network can

be implemented in hardware, we thus

disregarded its time complexity. Simulation

results are displayed in Table 2.

We observed during the experiment that

the prediction error rate using either structure is

irrelevant to the Hurst parameter (H), but

highly sensitive to the variance. This can be

perceived by the fact that by and large, H

manifests only long-term behavior, whereas

variance greatly reflects short-term fluctuation.

In essence, as shown in Table 2 under traffic

H=0.8, the error rate greatly increases with the

variance. Furthermore, compared to CNF-based

NFTP, CNF-correlation-based NFTP achieves

greater precision (lower error rate) and lower

space complexity (less number of fuzzy rules).

Figure 2. NFTP architecture.
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We finally discovered in the table that NFTP

(either structure) with 12 inputs invariably

exhibits better performance under both

variances. Namely, small or large numbers of

inputs yield inferior performance for on-line

prediction.

Table 1. NFTP parameters used in simulation

Table 2. Performance of

NFTP using two different

structures

CNF-based NFTP CNF-correlation-based
NFTP

H = 0.8 Number
of inputs

Number
of fuzzy

rules

Error
rate

Number
of inputs

Number
of fuzzy

rules

Error
rate

4 27 6.1 4 6 5.5
8 33 6.0 8 12 5.6
12 42 5.9 12 23 5.4
16 47 6.6 16 20 5.5
20 54 6.7 20 28 5.3

Mean = 50
Variance = 20

24 55 7.3 24 23 5.6
4 27 10.9 4 11 9.7
8 33 10.7 8 20 9.5
12 42 10.6 12 17 9.3
16 47 11.8 16 20 9.8
20 54 12.1 20 20 9.7

Mean = 50
Variance = 60

24 55 13.1 24 23 9.9

3. Merit Review of the Project

The design and experimental results have

been published in IEEE Journal of Selected

Area on Communications. Moreover, we have

designed several networking control systems

making use of the mechanism, which has been

presented in various conferences (IEEE

ICC’00).
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