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Stochastically Optimal Groundwater Management
Considering Land Subsidence

Yin-Lung Chang'; Tung-Lin Tsai?; Jinn-Chuang Yang, M.ASCE?; and Yeou-Koung Tung*

Abstract: This paper presents a stochastic groundwater management model explicitly considering land subsidence. Through the use of
response matrix technique and one-dimensional consolidation equation, a deterministic management model is first developed. By Latin
hypercube sampling technique, along with numerical subsurface flow simulation, statistical features of unit response coefficients due to
random hydrogeologic parameters, including hydraulic conductivity (K) and Lame constants (u and \), are quantified. The first-order-
variance-estimation method is adopted to analyze the uncertainties of drawdown and land subsidence based on which the concept of
chance-constrained programming is applied to transfer the original deterministic management model into its stochastic form. The
stochastic management model enables the determination of optimal total pumpage subject to the constraints that drawdown and land
subsidence do not exceed the allowable values with a specified reliability. A hypothetical example is utilized to demonstrate the applica-
bility of the stochastic model to five cases in which various levels of parameter uncertainty are considered. The results indicate that joint
consideration of drawdown and land subsidence is essential, and the proposed stochastic management model can be generally applied for

regional groundwater resources management in conjunction with controlling land subsidence.
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Introduction

Groundwater is an important water resource, especially for arid or
semiarid regions where surface water is highly variable. Due to
rapid growth in population and lack of proper management, many
groundwater aquifer systems are overdeveloped resulting in seri-
ous hazards of land subsidence. The occurrence of land subsid-
ence could have several undesirable consequences including,
but not limited to: (1) groundwater quality deterioration and salt-
water encroachment; (2) reduction in storage capacity of ground-
water systems; and (3) localized flooding due to change in surface
drainage features. Therefore, establishment of a proper policy for
controlling land subsidence is an important aspect of groundwater
management.

Groundwater management has been studied extensively in the
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past. Only a few studies considered the land subsidence effect.
Onta and Gupta (1995) coupled a three-dimensional groundwater
flow model and a one-dimensional consolidation model to simu-
late the piezometric levels and land subsidence in a complex
multiaquifer system of lower Central Plain of Thailand. Several
different pumping strategies were simulated by the model from
which suitable groundwater management policies considering
land subsidence control were established.

Unlike simulation approaches, which require trial-and-error in
finding the optimal management strategy, the simulation-
optimization approaches are widely used in groundwater manage-
ment, which couple optimization algorithm with groundwater
flow simulation to determine the optimal management strategies
of aquifer systems. A review of groundwater management models
can be found elsewhere (Gorelick 1983; Yeh 1992; Ahlfeld and
Heidari 1994; Wagner 1995; Ahlfeld and Mulligan 2000). Re-
cently, Larson et al. (2001) incorporated the effects of land sub-
sidence in an optimal groundwater management model. A linear
programming model was developed using the response matrix
technique to find the maximum rate of groundwater withdrawal
without causing any inelastic compaction in Los Banos-
Kettleman City area of San Joaquin Valley, Calif. This is accom-
plished by setting the preconsolidation head as the lower bound
for groundwater levels in the confined aquifer (i.e., drawdown is
not allowed to exceed the difference between the initial water
level and the preconsolidation head level). Phillips et al. (2003)
also considered the land subsidence in a groundwater manage-
ment model applied in Lancaster, Antelope Valley, Calif. The ob-
jective was to maximize the lowest value of head subject to the
constraints that the head did not exceed the lower bound and the
water demand was satisfied. To prevent the land subsidence
caused by delayed drainge from the aquitards, the spring condi-
tions were specified as the lower bound of head initially and
decreased along with the management period in the subsidence
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area. Therefore, both models of Larson et al. (2001) and Phillips
et al. (2003) do not explicitly consider the magnitude of land
subsidence.

The models described earlier are deterministic in that the pa-
rameters governing groundwater flow and land subsidence are
assumed to be known. In reality, due to inherent heterogeneity
and lack of complete information about aquifer parameters,
uncertainties exist in specifying parameters values in the manage-
ment model rendering potential failure to obtain the optimal strat-
egy for the system under consideration. To incorporate these
uncertainties into the establishment of optimal groundwater man-
agement policy, the development of a stochastic model to account
for the presence of uncertainties is essential.

Tung (1986) considered aquifer parameter uncertainties to
develop a chance-constrained groundwater management model
for confined, homogenous aquifers. The statistical properties of
drawdown, calculated from the analytic impulse-response func-
tion, were estimated by the first-order variance estimation
(FOVE) method. The drawdown was assumed to be normally
distributed through the loose use of central limit theorem. The
model explicitly considered the uncertainty of transmissivity and
storage coefficient in maximizing water supply capability of a
groundwater basin. The study showed that the model solution is
insensitive to the uncertainty of storage coefficient. Besides, the
actual reliability obtained from postoptimality simulation was
adopted to estimate the accuracy of normality assumption. The
relative differences between stipulated and actual reliability were
approximately 11 and 13% when the coefficients of variance for
transmissivity were 0.6 and 0.8, respectively.

For stochastic groundwater quality management, Wagner and
Gorelick (1987) also used the chance-constrained programming
(CCP) to determine minimum pumping rate subject to constraints
requiring the compliance reliability of solute concentrations to not
exceed the specified standard. The weighted, nonlinear least
squares regression analysis was applied to estimate the param-
eters and their associated uncertainties. The pollutant concentra-
tions, which are function of uncertain parameters, were assumed
to be normally distributed. The model was applied to a hypotheti-
cal system, and the Monte Carlo simulation (MCS) approach
was used to check the normality assumption of concentrations.
Morgan et al. (1993) applied the MCS to generate several real-
izations of the hydraulic conductivity random field, and each
realization of hydraulic conductivity was used to calculate the
unit response coefficients. The multiple realization method and
CCP were combined to develop a management model in the form
of mixed-integer CCP. The model considered uncertainty in all
constraint coefficients and did not require a priori knowledge of
the distribution of drawdown. By using a heuristic algorithm that
successively drops realizations when some of the constraints are
violated, a trade-off curve for maximum reliability versus mini-
mum pumpage was established.Datta and Dhiman (1996) devel-
oped a CCP model to determine optimal groundwater monitoring
network that explicitly considered uncertainties associated with
transport simulation. Given the upper limit on the number of
monitoring wells to be installed, the model determines monitoring
locations where the concentrations of the contaminant were ex-
pected to be very high. Sawyer and Lin (1998) developed a
mixed-integer CCP model for groundwater aquifer remediation in
which the uncertainties of management model coefficients due to
random hydrogeologic parameters were assumed to be normal
and the spatial correlation of hydraulic conductivity was not con-
sidered. In addition, the model also considered the uncertainty in
unit pumping cost due to variation in energy production cost.

In addition to the CCP formulation, the multiple realization
method is an alternative for stochastic groundwater managements.
Wagner and Gorelick (1989) consider a similar problem to their
earlier work (Wagner and Gorelick 1987) in that the multiple
realization method was combined with a stochastic inverse model
that incorporates the uncertainty in hydraulic conductivity.
Wagner et al. (1992) used the embedding technique along with
the multiple realization method to incorporate hydraulic con-
ductivity uncertainty in a stochastic optimization model for
groundwater remediation. In addition, a recourse model was in-
corporated to find the minimum excepted total cost of operating
the pumping wells plus the recourse cost incurred when contain-
ment of the contaminant plume is not achieved. Chan (1993) used
response matrix and multiple realization methods to develop a
stochastic management model for groundwater remediation. After
the model was developed, many realizations were generated to
examine the robustness of multiple realization method. The
numerical experiments indicated that the system reliability was
insensitive to change in system parameters and structure. This is
consistent with the results from the theoretical approach, such as
Bayesian analysis or one-dimensional order statistics, which were
used to obtain the relationship between reliability and realization
size without considering system information. Recently, Feyen and
Gorelick (2004) presented a comprehensive analysis for the ro-
bustness of the multiple realization method, utilizing approxi-
mately 36,000 stochastic-optimization solutions. The results
showed that the optimal pumpage decreases with increase in the
variance of hydraulic conductivity with the same number of real-
izations. Chan (1994) further extended the previous stochastic
management model (Chan 1993) by using a partial infeasibility
method to solve the optimization problem with prespecified sys-
tem reliability. This overcomes the inability of traditional multiple
realization methods to specify system reliability in advance
before a postoptimality analysis is performed. The solution tech-
nique was accomplished through a heuristic search, and the re-
sults showed that the actual system compliance reliability is much
closer to the specified value as the numbers of realizations in-
crease. Mylopoulos et al. (1999) also used the multiple realization
method for stochastic groundwater remediation in the Kalamaria
aquifer, Greece. For a more complete review of stochastic opti-
mization for aquifer remediation, readers are referred to Freeze
and Gorelick (1999) which summarizes most research contribu-
tion in optimization and decision analysis for aquifer remediation.

Most of the previous studies on groundwater management, de-
terministic or stochastic, did not consider land subsidence effect.
Although Onta and Gupta (1995) and Larson et al. (2001) had
considered land subsidence in the optimal groundwater manage-
ment, the former is by simulation involving trial-and-error, and
the latter did not explicitly incorporate land subsidence in model
constraints. Both works were deterministic, which do not account
for the uncertainty in land subsidence due to random hydrogeo-
logic parameters.

In this paper, an optimal stochastic groundwater management
model explicitly considering land subsidence is developed. By
incorporating a one-dimensional consolidation equation model
(Tsai 2001) with the response matrix technique, a deterministic
management model is developed to maximize total pumpage sub-
ject to drawdown and land subsidence constraints. To further ac-
count for the uncertainty of land subsidence due to the random
hydrogeologic parameters (i.e., hydraulic conductivity and Lame
constants), CCP is applied to transfer the deterministic manage-
ment model into the stochastic form. The resulting stochastic
management model enables the determination of optimal total
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pumpage subject to the constraints that drawdown and land sub-
sidence do not exceed the maximum allowable values under
specified reliabilities.

Methodology

The development of proposed stochastic groundwater manage-
ment model consists of following four major steps: (1) using the
response matrix technique in conjunction with one-dimensional
consolidation equation to formulate a deterministic groundwater
management model with land subsidence constraints; (2) analyz-
ing statistical features of unit response coefficients; (3) assessing
statistical features of drawdown and land subsidence by the
FOVE method; and (4) converting deterministic constraints into
CCP format using the results from Step (3). The theoretical basis
for each step is described in detail in the following.

Simulation Model for Land Subsidence

Land subsidence is a very complex phenomenon which could
occur in many ways (Whittaker and Reddish 1989). In this study,
groundwater overpumping is considered as the only factor caus-
ing land subsidence. As the total stress of soil is a constant,
dewatering of aquifers due to pumpage results in decreased pore
water pressure and increased effective stress, which causes
consolidation and subsequently land subsidence. The general
three-dimensional governing equation of groundwater flow for a
saturated aquifer can be stated as

17 JdAh 17 LAY 17 JdAh JdAh
—N\K— |+ |\ K,— |+ —\K.—|=-S,— -5 (1)
ox ox dy\ -~ dy oz oz ot

where K,, K,, and K ,=components of hydraulic conductivity
[LT '] in x, v, and z directions of Cartesian coordinate system;
Ah=drawdown with positive value denoting a decrease in
hydraulic head [L]; r=time [T]; Sy=specific storage [L~']; and
S=sink or source term.

In this study, an uncoupled numerical model (Tsai 2001)
consisting of depth-averaged two-dimensional groundwater simu-
lation and one-dimensional consolidation equation is used to
simulate land subsidence due to groundwater extraction. Integrat-
ing Eq. (1) vertically over the thickness of one layer, one obtains

f[a( aAh) a( aAh) a( aAh)]
—\ k= |+ =\k,— |+ —|K.—] |dz
pLox ox dy\ - dy oz\ " oz

=f [—SS@—S]dz @)
, or

where b=boundary for the layer considered.

From Leibnitz rule and chain rule, assuming that the soil pa-
rameters are constant along vertical direction, Eq. (2) can further
be written as

#Ah FAh [ P ]aﬂ [ P ]aﬂ
KB +KB ~(KB) |— + | —(KB) |—
a ax dy

+
x> ay? ox dy
dAh AR AR _
—-sB—+k| &= - &= |-§ 3)
ot 92 Iy 02 p

where Ak and S=vertical averaged drawdown and sink/source
term, respectively. Eq. (3) is a depth-averaged two-dimensional

governing equation adopted in this study for ground water flow
simulation.

According to Bear and Verruijt (1987), by assuming that (1)
soil matrix is isotropic; (2) soil stress—strain relationship relating
average effective stress and the average displacement follows
Hooke’s law of linear elasticity; and (3) displacements occur only
in the vertical direction, the relationship between pore water pres-
sure change and soil vertical strain can be stated as

w.  p°

0z 2mHN

(4)

where w_=vertical displacement of soil [L]; p°=incremental pore
water pressure [M L' T7%]; w and A=Lame constant at a point
[ML™'T72]. The two Lame constants . and X\ are statistically
independent and they represent the elastic coefficients, which
are determined experimentally for a given porous matrix. More
detail descriptions about Lame constants can be found elsewhere
(Reismann and Pawlik 1980; Bear and Verruijt 1987). Integrating
Eq. (4) along the z axis, and neglecting the soil swell due to the
increase of pore water pressure, one can obtain the one-
dimensional consolidation equation as

puwgBlAR(k,1) — Ah(k,t = 1)]
2+ Ny
0 if Ah(k,t) < Ah(k,t—1)
(5)

where As(k,f)=land subsidence at point k during the tth time
period [L]; Ah(k,1), Ah(k,t—1)=drawdowns of point k at the end
of the rth and (z—1)th time periods, respectively; p, =density of
water [ML™]; g=gravitational acceleration [LT7?]; and
B,=layer thickness at point k[L].

Tsai (2001) performed an order-of-magnitude analysis on the
general three-dimensional governing equations involving ground-
water flow and soil displacement. Assume that the displacement
of soil in vertical direction is much larger than that in horizontal,
the order-of-magnitude analysis indicates that one-dimensional
simplification is adequate when groundwater flow pattern is
approximately horizontal or vertical. This approximation is plau-
sible for large-scale regional multilayer aquifer systems as
groundwater flow is commonly assumed to be horizontal in aqui-
fer and vertical in aquitard (Anderson and Woessner 1991).

Notice that the consolidation equation is derived through elas-
tic body theorem, thus it cannot simulate the time delay effect of
soil compaction. According to Biot (1941), Helm (1987), and
Gutierrez and Lewis (2002), the one-dimensional approximation
of consolidation can provide satisfactory estimation for general
application. However, one should realize that the time delay effect
will be more significant when the soil is very soft or the layer is
thick.

Numerically, finite analytic method is applied to solve the
depth-averaged two-dimensional groundwater flow governing
equation, Eq. (3), and then Eq. (5) to compute land subsidence for
each time period and layer. Detailed descriptions of this model
can be found in Tsai (2001).

if Ah(k,7) > Ah(k,t— 1
As(hr) = if Ah(k,1) ( )

Deterministic Management Model

For a groundwater hydraulic management problem involving
pumpage maximization subject to drawdown and land subsidence
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constraints, the deterministic management model can be formu-
lated as:
Maximize

NP NT

> > 00.1) (6)

Jj=1 t=1
Subject to
Ah(k,)) < AR (k,t), t=1,...NT; k=1,....NC (7)

As(k,)) < As™(k,r) t=1,...,NT; k=1,....NC (8)

0=<0(,n=<0'G,r), t=1,....NT; j=1,....NP (9)

where NP=number of pumping wells; NT=number of time peri-
ods; NC=number of control points; Q(j,7)=pumpage at the
jth pumping well during the rth time period [L3T'];
Q"(j,t)=allowable pumpage at the jth pumping well during the
tth time period [L3T™']; Ah"(k,t)=allowable drawdown of
the kth control point at the end of the rth time period [L];
As™(k,t)=allowable land subsidence at the kth control point dur-
ing the rth time period [L]. Without considering constraints (8),
there is a potential to overestimate total pumpage and, subse-
quently, undesirable land subsidence would occur.

To calculate the drawdown by the response matrix technique
Eq. (7) can be rewritten as

NP ¢

Ak, =D D Blk.j.t—i+ 1)Q,i) < Ah" (k)

j=1 =1
t=1,...,NT; k=1,...,NC (10)

where 3=unit response coefficient representing the drawdown at
the kth control point at the end of the rth time period due to unit
pumpage at the jth pumping well during the ith time period.

Note that in the aquitard, the response matrix method would
not be appropriate due to the storage effect results in the nonlinear
relation between head and pumpage. However, according to
Bredehoeft and Pinder (1970), if the nondimensional time factor
t*=Kt/S B is larger than 0.5, the storage effect can be neglected.
For general aquitards, the values of K and S; are in the order of
10 m/s and 107> m™!, respectively (Bear and Verruijt 1987).
Assume that the aquitard thickness (B) is in the order of 10! m, as
long as the management time period () is longer than 107 s (i.e.,
approximately 4 months), the value of f*, through an order-of-
magnitude analysis, would be larger than 0.5 which justifies the
applicability of the response matrix method.

Using Eq. (5), constraint Eq. (8) can be rewritten as

pwgBkG(k’t)
2+ Ny
t=1,...,NT; k=1,...,NC (11)

where G(k,t)=max(0,Ah(k,t)—Ah(k,t—1)), indicating that the
land subsidence occurs only if the drawdown is increased during
the rth time period.

The deterministic management model is composed of objec-
tive function (6) and constraints (9)—(11). Because G is a nondif-
ferentiable function at the origin, the management model is a
nonsmooth optimization problem which can be solved by several
algorithms. However, the convergence and global optimality of
the solution could not be guaranteed, especially when the problem
size (in terms of the number of constraints and decision variables)
is large (Uryas’ev and Dong 1991; Yang, 2001). To circumvent

As(k,f) = < As"(k,1),

such a situation, the nonsmooth optimization problem is trans-
formed into mixed integer linear programming (MILP) by intro-
ducing additional binary variables, m(k,7), and new constraints as

Ah(k,t) = Ah(k,t— 1) +LO X m(k,)) =LO VYV 1: Yk (12)

Ah(k,t) — Ah(k,t = 1) = UP X m(k,t) <0 Vt;Vk (13)

Ah(k,t) = Ah(k,t=1) -Gk, <0 Ve VEk  (14)

Ah(k,t) — Ah(k,t = 1) — G(k,1) = UP X m(k,t) =-UP V&t;Vk

(15)
Glk,t)—UP X m(k,t) <0 V&, Vk (16)
Glk,t)=0 Vi, Vk (17)

where LO, UP=negative and positive coefficients with large
value, respectively, and m(k,t)=0 or 1 only. If m(k,1)=0, the
drawdown is decreasing at control point k& during the tth time
period [i.e., Eq. (13)], and the land subsidence would not occur.
On the other hand, if m(k,t)=1, the drawdown is increasing at
control point k during the tth time period [i.e., Eq. (12)] and
constraint Egs. (14) and (15) impose that the value of G equals
the drawdown during the 7th time period.

In this paper, the previous MILP is solved by the branch-and-
bound (B&B) method (Floudas 1995).

Analysis of Statistical Features of Unit Response
Coefficients

By the response matrix technique the assessment of statistical
features of unit response coefficient is essential for quantifying
the uncertainty associated with the resulting drawdown. A unit
response coefficient represents the drawdown at one control point
due to a unit pumpage at a production well which is a function of
random hydrogeologic parameters and boundary conditions, etc.
As the consequence of geologic process through which ground-
water systems evolve, hydrogeologic parameters of an aquifer
vary through space. In practical groundwater system modeling,
one normally would not have sufficient data to completely de-
scribe the heterogeneity of an aquifer. Therefore, unit response
coefficients are subject to uncertainty. In a transient groundwater
flow model, hydraulic conductivity and specific storage are the
two major parameters with random spatial variability. According
to Tung (1986), the variation of specific storage does not signifi-
cantly affect groundwater flow prediction; hence only the un-
certainty of hydraulic conductivity is considered to assess the
uncertainty of unit response coefficients. A typical assumption
made for most hydraulic conductivity random field is that it is
second-order stationary (Wagner and Gorelick 1989; Mylopoulos
et al. 1999).

Assume that distribution of hydraulic conductivity is lognor-
mal (Gelhar 1993) and the log-hydraulic conductivity random
field, Y=In(K), is isotropic with exponential covariance structure,
the mean and covariance function for the random log-hydraulic
conductivity field are

E[Y,]=py (18)
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A
COV[YI,Y2]=O'%/CXP{—M} (19)

ay

where E[ ] denotes expectation; Cov[ | denotes covariance;
Y,=In(K)=natural, logarithm of hydraulic conductivity at point
X;; my=mean of log-hydraulic conductivity; oy=standard devia-
tion (S.D.) of log-hydraulic conductivity; |Ax;,|=distance
separating the two points in space; and ay=correlation scale of
log-hydraulic conductivity. Thus, the random log-hydraulic con-
ductivity field considered herein is statistically characterized by
Wy, Oy, and ay.

Once the three statistical parameters of the second-order sta-
tionary and correlated two-dimensional random field, Y, are
known, the covariance matrix C(Y) and correlation matrix R(Y)
can be determined from which stastically plausible realizations of
Y can be generated by

Y =y + D2VA 2w (20)

where D!?=diagonal matrix of standard deviations, oy;
V=eigenvector matrix consisting of normalized eigenvectors of
the correlation matrix, R(Y); A=diagonal matrix of eigenvalues
of R(Y); and w=vector of independent standard normal random
variables. A large number of realizations of In(K) can be gener-
ated and used in the groundwater simulation model to produce
samples of unit response coefficients for assessing their statistical
properties.

In this study, the Latin hypercube sampling (LHS), (McKay
1988) is adopted for data generation. McKay et al. (2000) showed
that the LHS is a good method for generating model inputs and
had been applied to various problems in groundwater (Gwo et al.
1996; Christiaens and Feyen 2001). It is a variance-reduction
technique and requires fewer computer runs to achieve the degree
of precision comparable to that obtained from a simple random
sampling scheme.

Statistical Properties of Drawdown and Land
Subsidence

From Egs. (10) and (11), the drawdown and land subsidence are
functions of uncertain parameters including unit response coeffi-
cients and Lame constants. Hence, the estimated drawdown and
land subsidence by the model are subject to uncertainty. As the
drawdown is a linear combination of random unit response coef-
ficients, its distribution can be approximated by a normal distri-
bution based on the central limit theorem. For simplicity, the
distribution of land subsidence also is assumed to be normal. The
validity of normality assumption will be discussed later through
an example application. With the distributions of drawdown and
land subsidence assumed normal, their statistical information can
be defined by the respective expected values and variances. Sev-
eral methods can be applied to estimate the expected value and
variance of a function involving multiple stochastic parameters.
In this study, the FOVE method is applied to estimate the first two
moments of unit response coefficients and its applications to
groundwater problems can be found elsewhere (Nguyen and
Chowdhury 1985; Ricardo et al. 1999; Ricardo and Keith 2000).
In theory, random unit response coefficients are correlated due to
spatial correlation of hydraulic conductivity. Although the cova-
riance among unit response coefficients can be estimated by the
LHS technique, in conjunction with numerical groundwater flow
simulation, the independence assumption of unit response coeffi-

cients is adopted herein for the sake of ignoring nonlinear terms
in the CCP. From Eq. (10), the expected value and variance of
drawdown can be obtained as

NP ¢
E[Ah(k,)]= D D E[B(k.j.t—i+ 1)]0G.) Y&, Vk
j=1 i=1

21

NP ¢
Var[Ah(k,0)]= D, D Var[B(k,j,t—i+1)]0*(.i) V1, Vk
j=1 i=1

(22)

where Var[ ] denotes the variance operator.

Referring to Eq. (5), By is assumed to be constant as land
subsidence is typically several orders of magnitude smaller than
the thickness of an aquifer. Thus from the FOVE method, the
expectation and variance of land subsidence can be estimated as

pwgka(_k,t)

E[As(k,t)] = DRy Vt,Vk (23)
[ pugBi )’
Var[As(k,1)]= Tan Var[G(k,t)] + {4 Var[ ] + Var[\]}
Mg+ Ay
PugBGk0] |*
x[ EWEWE ] Vi, Vk (24)

In Eq. (24), random variables ., A, and G are assumed to be
independent of each other.

In Egs. (21)—(24), the Q(i,j)’s are the decision variables. The
expectation and variance of 3 can be found by the LHS technique
along with model simulation described in the previous section
whereas the expectation and variance of parameters w and A
can be determined from field investigation. The remaining
problem is how to quantify the statistical properties of G. As
G(k,1)=max[0,Ah(k,t)—Ah(k,t=1)], G is a mixed variable hav-
ing a continuous probability density function for G>0 and a
probability mass function at G=0. The actual expected value and
variance of G are

0
E[G(k,t)]=E[Q] - f of(w)do Vi, Vk (25)

Var[G(k,0)]= E[G*(k,t)] - E[G(k,t)>? VY&, ¥Vk (26)

where Q=Ah(k,1)-Ah(k,t—1);f(w) denotes the probability den-
sity function of random ) which can be assumed normal because
it is the linear combination of two normally distributed random
drawdowns. The graphical representation of Eq. (25) is shown in
Fig. 1.

The explicit form of Eq. (25) can be obtained, but it would
greatly increase the computing complexity due to the presence of
complementary error function arising from the integration opera-
tion. As the objective function is to maximize pumping rate, the
probability density function of ) moves to the right of x axis
which makes the integration part of Eq. (25) smaller. Thus, the
expected value and variance of G can be approximated as

G(k,t) = max[0,E[Ah(k,t) = Ah(k,t=1)]] V&, Vk (27)
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Var[G(k,1)] = {0

where

E[Ah(k,t) — Ah(k,t—1)]
NP ¢t

= 2 EB(k,j.r =i+ 1)]0G.i)

j=1 i=1
NP i—1

— > > E[Bk,jt— )10, i)

j=1 i=1

Vi Yk o (29)

Stochastic Management Model

The CCP model specifies a required reliability for the operational
constraints that the optimal pumping pattern would not fail due to
parameter uncertainty. The deterministic constraints (7) and (8)
can be transformed to probabilistic statements in the form of
chance constraints as

PdAh(k,1) < AW (k1)) = ay(k,t), t=1,...,NT; k=1,...,NC

(30)
PlAs(k,) < As"(k,0)| = a(k,t), t=1,...,.NT; k=1,... NC
(31

where Pr| ] is the probability operator; and «(k,?) and oy(k,?)
are, respectively, required reliabilities that the actual drawdown
and land subsidence would not exceed the specified maximum
allowable values at the kth control point at the end of the ¢th time
period. The value of required reliability is stipulated by the
decision-maker which could vary with locations and times.

fla) |

E[Q]

A
T

‘O[wf (w)dew Aot 1)

Y

Fig. 1. Schematic diagram of Eq. (24)

Var[Ah(k,1) - Ah(k,t = 1)) if E[AR(k,1) — Ah(k,t—1)]=0

if E[ARG) - Ah(ki— D] <0 VK (28)

To solve chance-constrained equations (30) and (31), conver-
sion to their respective deterministic equivalents is required. As
the distribution function of total drawdown is assumed to be nor-
mal, Eq. (30) can be expressed as

Pr{z _ AR ()~ E[AK(KD)]

WarlAh(k,1)] }2%%ﬁ ey G

where Z=standard normal random variable. The deterministic
equivalent of Eq. (32) can be written as

VWar[Ah(k,1)] X ® o, (k,1)] + E[AR(k, )] < Ah"(k,t) Y1, Vk

(33)
where ®~'[«,(k,f)]=standard normal quantile corresponding to
the compliance probability of «;,(k,7). Similarly, the deterministic
equivalent of Eq. (31) can be expressed as

VWVar[As(k,1)] X & '[a,(k, )]+ E[As(k,)] < As*(k,)) YV 1;Vk
(34)
In Egs. (33) and (34), the expectation and variance of draw-
down and land subsidence can be determined by Egs. (21)—(24).
Again, to avoid solving nonsmooth constraints [i.e., Egs. (27) and
(28)], binary variables are introduced. Thus, in addition to con-
straints (9), (33), and (34), the following new constraints are
involved:
E[Ah(k,t) — Ah(k,t—1)]+LO X m(k,t) =LO V&, Vk

(35)

E[Ah(k,t) — Ah(k,t—1)]-UP X m(k,t) <0 V&, Vk
(36)

E[An(k,t) = Ah(k,t = 1)] - E[G(k,))]<0 V&, Vk (37)

E[Ah(k,t) — Ah(k,t = 1)] = E[G(k,t)] - UP X m(k,t) = - UP

Vi1, Vk (38)
E[Gk,t)]-UP X m(k,t) <0 V¢, Vk (39)
E[Gk]=0 V& Vk (40)

Var[G(k,t)] - m(k,f)Var[Ah(k,t) — Ah(k,t—=1)]=0 V&, Vk
(41)

Except for Eq. (41), the newly introduced constraints [Egs.
(35)—(40)] are similar to those in the deterministic MILP manage-
ment model. As the value of m(k, ) indicates whether the hydrau-
lic head at control point k during the time period 7 is increasing or
decreasing, Eq. (41) can be easily explained by Eq. (28). The
resulting stochastic management model becomes a mixed integer
nonlinear programming (MINLP). In this study, the B&B method
is applied to solve the stochastic management model.
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Fig. 2. Hypothetical groundwater system used in example

Application

Consider a hypothetical confined aquifer basin with three pump-
ing wells (A, B, and C) and five control points (a, b, ¢, d, and e)
as shown in Fig. 2. The control points (a, b, and ¢) coincide with
the Production Wells A, B, and C, respectively. The aquifer basin
is divided into three zones (I, II, and III) based on their different,
but isotropic, hydrogeologic parameters in each zone. The aquifer
domain is discretized into 99 (11 X 9) nodes with equal grid space
of 500 m X 500 m. The boundary conditions are no flux at the top
and bottom while a constant head on the sides. Initially, the pi-
ezometric heads are uniformly distributed and no groundwater
flow occurred. For alluvial sand aquifer, the standard deviation of

Table 1. Statistical Properties of Aquifer Parameters of Each Zone and Case

log-hydraulic conductivity (In K) varies from 0.4 to 1.2 (Gelhar
1993) and the Lame constant varies up to five times of the typical
range (Das 1983). Both hydraulic conductivity and Lame con-
stants are assumed to follow log-normal distribution. Five cases
involving different uncertainty levels of parameters are consid-
ered (see Table 1) in that parameters uncertainties increase from
Case 1 to Case 5, whereas the mean values of the parameters are
maintained constant. The layer thickness is 80 m and the correla-
tion scale of log-hydraulic conductivity is assumed to be 1,000 m
for all three zones. The specific storage values are 5.3 X 1076,
7.0x107° and 1.4X 107 m™!, respectively, in Zones I, II,
and IIL.

The problem is to determine the maximum total amount of

Zone-1 Zone-11 Zone-III
Parameter Case Mean S.D. Mean S.D. Mean S.D.
K (m/s) 1 5.0%x107° 2.0%x107° 2.0x 107 8.3%x107° 5.0x10™* 2.0x 107
(InK) (-9.98) (0.39) (-8.60) (0.40) (=7.68) (0.39)
2 5.0%x107° 33%x107° 2.0x 107 1.3x10™ 5.0x10™ 3.3%x107*
(~10.08) (0.60) (-8.70) (0.59) (=7.78) (0.60)
3 5.0%x107 4.8%107° 2.0x107* 1.9x 1074 5.0x10™ 47X 107
(~10.22) (0.81) (-8.84) (0.80) (=7.92) (0.80)
4 5.0%x107° 6.6X 107 2.0x 107 2.6X107* 5.0x10™* 6.6X 107
(~10.40) (1.00) (-9.02) (1.00) (-8.10) (1.00)
5 5.0%x107° 9.0x 107 2.0% 107 3.5%10™ 5.0x10™* 9.0x10™*
(-10.62) (1.20) (-9.24) (1.18) (-8.32) (1.20)
" 1 5% 108 5% 107 5% 108 5% 107 1Xx108 5% 107
(Nt/m?) 2 1% 108 1% 108 1% 108
3 2108 2% 108 2% 108
4 3% 108 3% 108 3% 108
5 5% 108 5% 108 5% 108
\ 1 1% 10° 5% 107 5% 108 5107 5% 108 5% 107
(Nt/m?) 2 1% 108 1% 108 1% 108
3 2% 108 2% 108 2% 108
4 3x108 3x108 3x108
5 5% 108 5% 108 5% 108
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Table 2. Pumping Rate, Drawdown, and Land Subsidence under Optimality for Deterministic Application

Pumping rate at
pumping well

Subsidence at
control point

Drawdown at
control point

(m?/s) (m) (cm)
Time period A B C a b c a b c
0.00 0.28 0.95 3.52 15.00 15.00 0.14 0.79 1.68
0.00 0.57 1.77 3.41 15.00 13.38 0.13 0.79 1.50
3 0.00 0.89 2.23 3.07 15.00 8.92 0.12 0.78 1.00

pumpage from the three production wells over three time periods
of one year each, such that the resulting drawdown and land sub-
sidence at all control points will not exceed specified allowable
values. The allowable drawdown values at each control points
over each time period are 15 m. To control land subsidence, the
allowable subsidence at each control points are 3, 1.5, and 1.0 cm
for Time Periods 1, 2, and 3, respectively. The decision variables,
i.e., pumping rate at each production well over the three time
periods, are non-negative and a uniform reliability is specified for
all constraints.

Deterministic Application

Mean values of the parameters are used in the deterministic man-
agement model. The optimal pumping rate for each production
well is summarized in Table 2 from which one can find that Well
A does not produce groundwater, whereas Well C is the most
productive for groundwater extraction. This is because Zone I has
the smallest hydraulic conductivity (5X 107 m/s). For draw-
down, the active constraints (i.e., constraints with equality sign
under optimality) occur at Control Point b in all three time peri-
ods and c in the first time period. For land subsidence, the active
constraints occur at Control Point ¢ in the last two time periods.
This consequence implies that, without land subsidence con-
straints, the optimal total pumpage will be higher. To further in-
crease pumpage will result in subsidence exceeding the maximum
allowable values of 1.5 and 1.0 cm at Point ¢ in the second
and third time periods, respectively. Thus, the optimal total pump-
age may be overestimated if one only considers drawdown
constraints.

Stochastic Application

Based on 5,000 realizations of random hydraulic conductivity
field and Lame constants generated by the LHS, statistical mean
and variance of unit response coefficients are assessed. Fig. 3
shows the trade-off curves between reliability and optimal total
pumpage for the five cases listed in Table 1. Table 1 shows that
the optimal total pumpage decreases with increase in both re-
quired compliance reliability and the degree of uncertainty of
hydrogeological parameters. Referring to Egs. (33) and (34), a
50% compliance reliability corresponds to risk-neutral manage-
ment in which the variances of drawdown and land subsidence
have no effect on the stochastic constraints as the corresponding
value of standard normal quantile is zero. Thus, the optimal
pumping scheme obtained from the deterministic model and sto-
chastic model with 50% compliance reliability should be identi-
cal. However, Fig. 3 shows that the optimal pumpage decreases
with increase in parameter uncertainty under the condition of 50%
compliance reliability. This phenomenon can be explained due to
the fact that the unit impulse response coefficients for drawdown
are not linearly related to the hydrogeological parameter, K.

Under the condition of constant mean values for the hydrogeo-
logical parameter, an increase in its corresponding uncertainty
would enhance the likelihood of realizing both smaller and larger
values of hydrogeologic parameter. In addition, the sensitivity of
unit impulse response coefficients with respect to hydrogeological
parameter is higher when the parameter values are smaller. The
combined effects of nonlinearity and uneven sensitivity result in
an increase in the mean value of the unit impulse response coef-
ficients as the uncertainty of hydrogeological parameter increases.
Fig. 4 shows the histograms of the unit response coefficient for
Cases 1, 3, and 5. Hence, even the effect of variances can be
ignored under the 50% compliance reliability, the mean values of
unit impulse response coefficients on the left-hand side of Egs.
(33) and (34) increase with hydrogeological parameter uncer-
tainty. As a result, to meet the drawdown constraints the optimal
total pumpage would have to decrease with increase in hydrogeo-
logical parameter uncertainty.

Fig. 3 also shows that, for Cases 1-3 with relatively small
uncertainty, the rate of decrease in optimal total pumpage in-
creases as the required compliance reliability reaches 90% or
higher. This is because the value of standard normal quantile,
®~!'(«) in Eqgs. (33) and (34), increases in a faster rate than the
reliability value, o. The implication is that when the aquifer sys-
tem is to be operated at very high reliability level, the optimal
total pumpage will becomes increasingly sensitive to the stipu-
lated compliance reliability and the decision-maker would have to
pay more attention to the trade-off between the total pumpage and
desired target reliability.

Verification of Stochastic Management Model

To verify the developed stochastic groundwater management
model, a postoptimality analysis involving the LHS technique is

6.00

571 —e—Casel —&—Case2 —&—Case3
—8—Caseb
5.00 |
4.69 438
8 4.00
]
[=3
£
&
32300}
el
=
£
& 200p
1,00 |
0.00 + . .
40 50 60 70 80 90 100

Stipulated Reliability (%)

Fig. 3. Trade-off curves between stipulated reliability and optimal
total pumpage
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Fig. 4. Histogram of 5,000 unit response coefficient data at control
point a for the first time period due to the unit pumpage of Well A

performed (see Fig. 5). In the analysis, the LHS technique gener-
ates 5,000 realizations of random hydrogeological parameter (i.e.,
K, ., and \) field following Egs. (18)—(20). The generated real-
izations of parameter field, along with the optimal pumping rates
under various compliance reliabilities of 50, 60, 70, 80, 90, and
99%, are used to compute the corresponding drawdown and land
subsidence from the groundwater flow simulation model at each
control point. To assess the accuracy of the developed stochastic
management model, following analyses are performed: (1) com-
pare the means and standard deviations of drawdown and land
subsidence between the FOVE method and LHS simulation; (2)
compare the actual and specified reliabilities at the control points
where the corresponding constraint are active; and (3) check the
normality assumption of land subsidence and drawdown. The de-
tails of the analyses are described in the following.

Although several compliance reliabilities have been consid-
ered in this study, all the verification results for the proposed
stochastic management model show a similar tendency. There-
fore, only the results under the condition of 90% compliance re-

liability are presented and discussed herein. Table 3 lists the mean
and standard deviation of drawdown and land subsidence, as well
as the actual compliance reliability at the control points corre-
sponding to active constraints and system reliability under the
optimal pumping pattern. The system reliability is defined as the
condition under which drawdown and land subsidence constraints
at all control points and time periods do not violate the allowable
limits. In Table 3, “LHS” denotes that the mean and standard
deviation are calculated on the basis of 5,000 realizations and
“FOVE” denotes that the mean and standard deviation are calcu-
lated by Egs. (21)-(24). The actual reliability (a”) is calculated
from LHS simulation.

From Table 3, one observes that even if the actual compliance
reliability of each individual constraint is close to 90%, the actual
system reliability ranges from 73 to 78%. Assuming that all con-
straints are statistically independent and the reliability associated
with an inactive constraint is 100%, the expected system reliabil-
ity is the multiple of reliabilities for each active constraint, which
would be much lower than actual system reliability. This implies
that the assumption of statistical independence among the con-
straints would not be reasonable; drawdown and subsidence con-
straints must be correlated.

From Table 3, the differences in drawdown statistics between
the FOVE and LHS methods are minimal, even when the param-
eter uncertainty is large. This is expected because Eq. (21) yields
exact mean drawdown as it is a linear function of random unit
response coefficients whose mean values are obtained by the LHS
technique. The standard deviation of drawdown between the
FOVE and LHS has slight differences primarily due to the as-
sumption of statistical independence between the unit response
coefficients by Eq. (22). The results imply that independence as-
sumption between the unit response coefficients in this example
application is reasonable.

On the other hand, the differences in statistics of land subsid-
ence between the FOVE and LHS methods get larger as param-
eter uncertainty increases. The largest relative difference,
occurring in Case 5, reaches 50% for the mean and 45% for
the standard deviation at control Point ¢ during the second time
period. The difference arises mainly from the nonlinearity of the
consolidation equation. With the parameter uncertainty getting
larger, the contribution of higher-order terms to the total variabil-
ity of land subsidence, ignored by the FOVE method, would
become significant. Although the accuracy of land subsidence
uncertainty obtained by the FOVE method decreases with an in-
crease in parameter uncertainty, the actual compliance reliabilities
are quite close to the stipulated values. In Table 3, the largest
discrepancy between the actual and stipulated compliance reli-
abilities of 90% is about 4% for Case 5, which has a rather large
discrepancy in mean and standard deviation between the LHS and
FOVE methods.

Based on the 5,000 realizations of land subsidence generated
in the postoptimality analysis, Fig. 6 shows the histograms of land
subsidence for Cases 1 and 5 at Control Point ¢ in the third time
period with 90% compliance reliability. From Fig. 6, it is ob-
served that the distribution of land subsidence at Control Point ¢
(same for other control points) becomes more positively skewed
as parameter uncertainty increases. This is mainly owing to the
combined effects of: (1) increased likelihood of realizing small
Lame constants; and (2) increased model sensitivity with rela-
tively small parameter values (K, p, and \), which results in a
higher likelihood of getting large value of, and increased variabil-
ity of, land subsidence.

From the previous discussions, the FOVE method tends to
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Fig. 5. Flow chart of postoptimality analysis

underestimate the mean and standard deviation of land subsidence
as parameter uncertainty increases. If the land subsidence was to
remain normally distributed when parameter uncertainty in-
creases, the underestimated mean and standard deviation would
result in the actual compliance reliability being much smaller than
90%. However, the land subsidence distribution becomes more
positively skewed with an increase in parameter uncertainty. This
results in a higher likelihood of occurring smaller and large land

subsidence values. This phenomenon compensates the effect of
underestimated mean and standard deviation, along with the nor-
mality assumption, resulting in relatively little difference between
actual and stipulated compliance reliabilities.

From the results of numerical application, it is shown that the
accuracy of proposed management model is dependent on the
uncertainty level of parameters. Among the five test cases consid-
ered, according to previous studies (Das 1983; Gelhar 1993), the

Table 3. Comparison of Actual Reliability and Statistical Properties of Drawdown and Land Subsidence between Different Methods under Desired

Compliance Reliability of 90%

Time Case 1 Case 2 Case 3 Case 4 Case 5
Control period
Response point (year) Method Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Ah b 1 FOVE 10.57 3.47 9.46 432 8.13 5.36 7.05 6.20 6.08 6.96
(m) LHS 1055 347 946 429 812 532 704 620  6.03 6.87
o 90.1% 90.2% 91.8% 92.4% 92.9%
2 FOVE 10.23 3.72 9.23 4.50 7.84 5.59 6.90 6.32 5.75 7.22
LHS 10.23 3.72 9.23 4.50 7.83 5.60 6.90 6.40 5.75 7.35
o 90.1% 90.2% 91.9% 92.5% 92.9%
3 FOVE 10.12 3.81 8.91 4.75 7.50 5.86 6.70 6.47 5.47 7.44
LHS 10.12 3.82 8.91 4.76 7.49 5.88 6.70 6.55 5.47 7.58
o 90.0% 90.4% 92.0% 92.6% 93.0%
c 1 FOVE 10.37 3.61 8.99 4.69 7.75 5.66 6.55 6.59 5.53 7.39
LHS 10.37 3.61 8.99 4.66 7.74 5.63 6.54 6.60 5.50 7.32
o 89.6% 90.6% 92.0% 93.1% 94.3%
As c 2 FOVE 1.00 0.39 0.85 0.51 0.68 0.64 0.56 0.74 0.42 0.84
(cm) LHS 1.03 0.40 0.92 0.54 0.83 0.70 0.79 0.94 0.84 1.53
o 88.5% 89.0% 88.0% 88.2% 87.4%
3 FOVE 0.69 0.24 0.58 0.33 0.46 0.42 0.39 0.48 0.29 0.57
LHS 0.70 0.25 0.63 0.34 0.57 0.45 0.55 0.60 0.57 1.00
o* 88.5% 89.5% 87.7% 87.2% 86.0%
Expected system reliability 51.27% 53.08% 55.11% 56.67% 56.89%
Actural system reliability 78.04% 72.64% 74.0% 74.02% 73.6%
Note: a”=actual reliability obtained from LHS simulation.
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Fig. 6. Histogram of land subsidence data at control point ¢ in the
third time period under 90% compliance reliability

uncertainty level of hydraulic conductivity and Lame constants
are chosen with a sufficiently wide range of variation to cover the
hydrogeological parameter values for aquifers. Thus, the results
of the application study substantiate the accuracy and applicabil-
ity of the proposed stochastic management model.

Conclusions

In this paper, a stochastic groundwater management model ex-
plicitly considering land subsidence control is developed using
the response matrix technique within the chance-constraint frame-
work. A one-dimensional consolidation equation is used in the
management model to explicitly consider land subsidence. The
stochastic groundwater management model also explicitly consid-
ers the spatial randomness of hydraulic conductivity and Lame
constants in the consolidation equation.

The developed management model was applied to a hypotheti-
cal example in that the deterministic management model was
found to overestimate the optimal total pumpage that would cause
undesirable land subsidence if only drawdown constraints were
considered. Hence, joint consideration of drawdown and land
subsidence is necessary if the latter is an important factor to con-
sider in the groundwater management.

Five cases of varying degrees of parameter uncertainty are
considered in the application of stochastic management model.
The results of postoptimality indicated that the use of LHS to
estimate the statistical features of the unit impulse response coef-
ficients can provide a quite satisfactory estimation of uncertainty
features of total drawdown even under high level of parameter
uncertainty. On the other hand, the accuracy of estimated uncer-
tainty features of land subsidence by the FOVE method deterio-

rates with increases in parameters uncertainty. This is primarily
due to nonlinearity of the consolidation equation and higher sen-
sitivity under relatively small parameter values. However, the ac-
tual compliance reliability interestingly matches closely to the
stipulated value due to the compensating effect of positively
skewed subsidence.

For complex real-world problems, the implementation for the
proposed management model has two major concerns. The first
one is the stability of the MINLP solver which is mostly depen-
dent on the number of nonlinear constraints. Thus, removal of the
nonnecessary control points can improve the efficiency of the
MINLP solver. A review of the implementation for large scale
MINLP can be found in Floquet et al. (1993). The second concern
is the determination of parameter values. Based on the available
field-experiment data and Wagner and Gorelick (1989), the
parameter values can be generated. An issue arises as the experi-
mental values of Lame constants are rare but available in litera-
ture. Fortunately, Reismann and Pawlik (1980) showed that the
relationship between Lame constants and Young’s modulus is lin-
ear. Once Young’s modulus for an interesting aquifer is obtained,
the Lame constants can then be decided.

In summary, in the region where the groundwater is the major
resource for water supply and one wishes to control overpumpage
to mitigate land subsidence hazards, the proposed stochastic
model could be useful for optimal groundwater management such
that the land subsidence could be controlled to achieve desired
management objectives.
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Notation

The following symbols are used in this paper:
ay = correlation scale of log-hydraulic conductivity;
B = layer thickness of soil;
G = max[0 drawdown during one time period];
g = gravitation acceleration;
i = index of time period;
j = index of pumping well;
K = hydraulic conductivity;
k = index of control point;
O = large negative coefficient;
m = binary variable which only equals O or 1;
O = pumping rate;
S = sink or source term,;
S, = specific storage;
t = time;
UP = large positive coefficient;
Var[ | = variance operator;
W = vector of independent standard normal
random variables;
Y = natural logarithm of hydraulic conductivity;
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oy, oo = specified reliability for drawdown and
subsidence constraints, respectively;
3 = unit response coefficient;
Ah = magnitude of drawdown;
As = magnitude of land subsidence;
N = Lame constant;
p = Lame constant;
iy = expectation of log-hydraulic conductivity;
p,, = density of water;
oy = standard deviation of log-hydraulic
conductivity;
®~'[a] = standard normal quantile corresponding to the
probability o
) = random variable of drawdown during one
time period; and
o = the magnitude of drawdown during one time
period.
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