行政院國家科學委員會補助專題研究計畫 ■成果報告 □期中進度報告

The classification of Willmore spheres and tori in the three dimension sphere

計畫編號	E: NSC	個別型計 96-2115- 手8月1日	-M-009-	0064		十畫			
計畫主持共同主持計畫參與	人:								
成果報告	·類型(依經費核	定清單	規定総	数交):	∶■精	簡報告	- □完	整報告
□赴國外□赴大陽□出席國	\出差或 生地區出] 際學術	5以下應然 下習 可		-份 服告- 及發表	之論が	て各一/	份		
處理方式	管計	學合作研 畫及下列 及專利或	情形者外	小 ,得	立即公	開查詢	J		
執行單位	1:國立	交通大學							
中華	民	國	97	年	7	月	31	日	

行政院國家科學委員會專題研究計畫成果報告

三維球中 Willmore 球面與環面之分類

The classification of Willmore spheres and tori in the three dimension sphere

計畫編號:NSC 96-2115-M-009-0064

執行期限:96年8月1日至97年7月31日

主持人: 許義容

執行機構:國立交通大學應用數學系

E-mail: yjhsu@math.nctu.edu.tw

摘要

假設 M 為 3 維球面上之緊緻 Willmore 曲面。此報告旨在利用 Minkowski 空間之保角幾何建構出球面之對應的四次微分形與保角變換。

關鍵詞 Willmore 曲面、解析四次微分形

Abstract

In this report, we will construct the holomorpic quartic differential form and the conformal transformation of a Willmore surface in the three dimensional sphere S^3 Which were constructed by Bryant in the Minkowski space, and study surfaces with constant conformal transformation which is given in this report.

Keywords: Willmore surface, holomorpic quartic differential form

1. Introduction

Let $x: M^2 \to S^3$ be a compact immersed surface in the 3-dimensional unit sphere S^3 . Let h_{ij} be the components of the second fundamental form of M^2 , and $H = \sum h_{ii}$ the mean curvature. The Willmore functional of x is given by

$$W(X)=\int_{_{M^2}}\Phi,$$
 where $\phi_{ij}=h_{ij}-rac{H}{2}\delta_{ij}$ and $\Phi=\sum(\phi_{ij})^2.$

The critical points of the Willmore functional are called Willmore surfaces, they satisfy the Euler-Lagrange equation $\Delta H + \Phi H = 0$ (see [W]). Willmore sphere was classified by Bryant, so call Bryant's sphere (see [B1] and [B2]).

Since minimal surfaces are Willlmore surfaces, it is nature that certain results about minimal surfaces also worked for Willmore surfaces. Indeed if M^2 is a compact immersed Willmore surface in the 3-dimensional unit sphere, and $0 \le \Phi \le 2 + \frac{H^2}{4}$, then M^2 is either totally umbilical or the Clifford torus (see [CH1]). On the other hand, if $2 + cH^2 \ge \Phi \ge 0$, for

some $\frac{1}{2} > c$, on M^2 , then M^2 is either a

Bryant's sphere with nonnegative Gaussian curvature or the Clifford torus. For the case of pinching constant $c = \frac{1}{2}$, we know that

 M^2 is either a Bryant's sphere with nonnegative Gaussian curvature or a flat Willmore torus.

In section 2 of this report we will find the quartic differential form of x in S^3 that corresponds to the holomorpic quartic differential of x in the Minkowski space constructed by Bryant. In section 3 we relate conformal differential geometry of the Minkowski space L^5 with geometry of the three dimensional sphere S^3 , and construct the Willmore dual of x in S^3 . In section 4 we study the surfaces with constant conformal transformation which is given in section 3

2. The holomorpic quartic differential

Let $x: M^2 \to S^3$ be an immersed surface. In this section we will find the quartic differential of x in S^3 that corresponds to the holomorpic quartic differential of x in the Minkowski space constructed by Bryant ([B1]). Palme presented it in the Euclidean space ([P]).

Let (x_1, x_2) be an isothermal coordinate of M^2 , $e_j = e^u \frac{\partial}{\partial x_j}$, j = 1,2, be an orthonormal frame field, and $\theta_j = e^{-u} dx_j$, j = 1,2, the corresponding dual coframe. Then the Codazzi's equation is given by

$$e^{u} \frac{\partial H}{\partial x_{1}} = \frac{\partial}{\partial x_{1}} (e^{2u} (h_{11} - h_{22})) + 2 \frac{\partial}{\partial x_{2}} (e^{2u} h_{12}),$$

$$e^{u} \frac{\partial H}{\partial x_{2}} = -\frac{\partial}{\partial x_{2}} (e^{2u} (h_{11} - h_{22})) + 2 \frac{\partial}{\partial x_{1}} (e^{2u} h_{12}),$$

and the Gauss equation is given by

$$u_{z\bar{z}} = \frac{1}{16} (e^{-2u} |\varphi|^2 - e^{2u} (4 + H^2)),$$

where $\varphi = e^{2u}\phi$, $\phi = (h_{11} - h_{22}) - 2ih_{12}$ is the Hopf's dfferential. On the set of M^2 – umbilic locus, let

$$q = \frac{1}{4}\varphi^{2}(\frac{1}{4}H^{2} + \Delta\log\varphi)$$

$$= \frac{1}{16}\varphi^{2}(H^{2} + 4) + e^{-2u}\varphi\varphi_{z\bar{z}} - e^{-2u}\varphi_{z}\varphi_{\bar{z}}.$$

It follows from the equations of Codazzi and Gauss that

$$q_{\overline{z}} = e^{4u} \left(\frac{1}{4} \varphi(\Delta H + \Phi H)_z + (\varphi u_z - \frac{1}{4} \varphi_z)(\Delta H + \Phi H)\right).$$

Thus if $x: M^2 \to S^3$ is a Willmore surface then q is holomophic, and hence

$$9 = qdz^{4} = \frac{1}{4}((1 + \frac{H^{2}}{4} - 2K)\phi^{2} + \phi\Delta\phi - \phi_{k}^{2})(\omega_{1} + i\omega_{2})^{4}$$

is a holomorpic quartic differential. When ϑ vanishes identically, combining with the Willmore equation, the second derivatives of the mean curvature can be presented in terms of lower order derivatives of the second fundamental form.

3. The Willmore dual surfaces

Let $x: M^2 \to S^3$ be a Willmore surface. In this section we relate conformal differential geometry of the Minkowski space L^5 with geometry of the three dimensional sphere S^3 , and construct the Willmore dual of x in S^3 .

Here we use the notions of the moving frame used by Bryant ([B1]) and Chern et al ([CDK]) respectively. We choose a local orthonormal frame field E_1 , E_2 , and E_3 in S^3 so that when restricted to $x(M^2)$ the vectors E_1 , E_2 are tangent to $x(M^2)$, and E_3

is a local field in the normal bundle of $x(M^2)$. Let $\theta_1, \theta_2, \theta_3$ be its dual coframes in S^3 .

Let L^5 denote the Minkowski space, R^5 together with the standard Minkowski inner product, orientation and time orientation, and ℓ^+ denote the space of positive null vectors in L^5 . Let

$$e_0 = (1, x), e_1 = (0, E_1), e_2 = (0, E_2), e_3 = (0, E_3), e_4 = \frac{1}{2}(1, -x).$$

Then e_0, e_1, e_2, e_3, e_4 is a frame field in the first order frame bundle of x, a positively oriented basis, $x = [e_0],$ $\langle e_a, e_b \rangle = B_b^a$, where \langle , \rangle is the Minkowski inner product, and

$$B = \begin{bmatrix} 0 & 0 & -1 \\ 0 & I & 0 \\ -1 & 0 & 0 \end{bmatrix}.$$

It follows that there exist 1-forms ω_b^a satisfying

$$de_a = e_b \omega_a^b$$
, $d\omega_b^a = -\omega_c^a \Lambda \omega_b^c$.

Since $\omega_0^3 = 0$, Cartan's Lemma implies that there are h_{ii} such that $\omega_i^3 = h_{ii}\omega_0^j$, $h_{ii} = h_{ii}$.

Compare the structure equations of the three dimensional sphere S^3 with that of the Minkowski space L^5 , we get

Minkowski space
$$L^{5}$$
, we get
$$\begin{bmatrix}
\omega_{0}^{0} & \cdots & \omega_{4}^{0} \\
\vdots & \vdots & \vdots \\
\omega_{4}^{d} & \cdots & \omega_{4}^{d}
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{1}{2}\theta_{1} & -\frac{1}{2}\theta_{2} & 0 & 0 \\
\theta_{1} & 0 & \theta_{21} & -\sum h_{1j}\theta_{j} & -\frac{1}{2}\theta_{1} \\
\theta_{2} & \theta_{12} & 0 & -\sum h_{2j}\theta_{j} & -\frac{1}{2}\theta_{2} \\
0 & \sum h_{1j}\theta_{j} & \sum h_{2j}\theta_{j} & 0 \\
0 & \theta_{1} & \theta_{2} & 0 & 0
\end{bmatrix}$$
(1) $r = 1, p = \begin{bmatrix} 0 \\ 0 \\ H \\ 2 \end{bmatrix}$, $A = I$.

We note that the second fundamental forms of M^2 in S^3 coincide with these h_{ii} in L^5 .

Since on the first order frame bundle, $\omega_i^3 = h_{ii}\omega_0^j$, we may define the covariant derivatives of h_{ij} by

$$dh_{ij} + h_{ij}\omega_0^0 - h_{kij}\omega_i^k - h_{ik}\omega_j^k + \delta_{ij}\omega_3^0 = h_{ijk}\omega_0^k,$$

$$h_{iik} = h_{iki}. \quad \text{It follows that } dH = h_i\omega_0^j,$$

where
$$h_i = h_{iij} = H_i$$
.

The first order frame bundle of x is a right principal G-bundle with fibers of the form

$$g = \begin{bmatrix} \frac{1}{r} & p'C & \frac{r}{2}|p|^2 \\ 0 & C & rp \\ 0 & 0 & r \end{bmatrix},$$

where

$$r > 0, p = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}, C = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix},$$
$$A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}, c^2 + s^2 = 1.$$

We notice that if

$$g_{i} = \begin{bmatrix} \frac{1}{r_{i}} & p_{i}^{t}C_{i} & \frac{r_{i}}{2}|p_{i}|^{2} \\ 0 & C_{i} & r_{i}p_{i} \\ 0 & 0 & r_{i} \end{bmatrix}, i = 1, 2,$$

then $g_1g_2 = \begin{vmatrix} \frac{1}{r} & p^tC & \frac{r}{2}|p|^2 \\ 0 & C & rp \\ 0 & 0 & r \end{vmatrix}$,

$$r = r_1 r_2$$
, $A = A_1 A_2$, $p = \frac{1}{r_1} C_1 p_2 + p_1$.

To construct the conformal transformation, we follows the procedures of Bryant ([B1]),

$$(1)_{r=1, p} = \begin{bmatrix} 0 \\ 0 \\ \frac{H}{2} \end{bmatrix}, A = I$$

(2)
$$r = 1$$
, $p = 0$, $A = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$

(3)
$$r = \frac{2}{\sqrt{(h_{11} - h_{22})^2 + 4h_{12}^2}}, p = 0, A = I$$

(4)
$$r = 1, p = \begin{bmatrix} \frac{H_1}{2} \\ -\frac{H_2}{2} \\ 0 \end{bmatrix}, A = I$$

Where

$$c = \frac{1}{\sqrt{2}} \sqrt{1 + \frac{h_{11} - h_{22}}{\sqrt{(h_{11} - h_{22})^2 + 4h_{12}^2}}},$$

$$s = \pm \frac{1}{\sqrt{2}} \sqrt{1 - \frac{h_{11} - h_{22}}{\sqrt{(h_{11} - h_{22})^2 + 4h_{12}^2}}} (\pm \text{ depends on the sign of } h_{12}).$$

Applying (*) to the procedures, we find

$$\widetilde{e}_4 = r(\frac{1}{2}p^t p e_0 + (e_1, e_2, e_3)p + e_4)
= r(\frac{1}{2}(p^t p + 1), \frac{1}{2}(p^t p - 1)x + c_1 E_1 + c_2 E_2 + c_3 E_3).$$

Thus the conformal transformation \hat{x} in the sense of S^3 is given by

$$\hat{x} = \frac{2}{\frac{\left|\nabla H\right|^2}{4r^2} + \frac{H^2}{4} + 1} \left(\frac{1}{2} \left(\frac{\left|\nabla H\right|^2}{4r^2} + \frac{H^2}{4} - 1\right)x\right) - \frac{1}{r} \left(\frac{H_1}{2} \left(cE_1 + sE_2\right) - \frac{H_2}{2} \left(sE_1 - cE_2\right)\right) + \frac{H}{2} E_3,$$

where

$$\begin{split} r &= \frac{2}{\sqrt{(h_{11} - h_{22})^2 + 4h_{12}^2}}\,, \\ c &= \frac{1}{\sqrt{2}} \sqrt{1 + \frac{h_{11} - h_{22}}{\sqrt{(h_{11} - h_{22})^2 + 4h_{12}^2}}}\,, \\ s &= \pm \frac{1}{\sqrt{2}} \sqrt{1 - \frac{h_{11} - h_{22}}{\sqrt{(h_{11} - h_{22})^2 + 4h_{12}^2}}}\,. \end{split}$$

The conformal transformation \hat{x} is constant if M^2 is not totally umbilic and the holomorpic quartic differential \mathcal{G} vanishes on M^2 . In particular that if M^2 is a topological sphere, then \mathcal{G} vanishes identically. Thus M^2 is either totally umbilic or \hat{x} is constant.

4. Constant conformal transformation

In this section we characterize the surface with constant conformal transformation which is constructed in section 3. Suppose that M^2 is not totally umbilic. Let \hat{x} be the constant unit vector a, and $f = |\phi|^2 |\nabla H|^2 + 4H^2$, then

$$(x,a) = 1 - \frac{32}{f+16}, (E_3,a) = \frac{16H}{f+16}.$$

From the structure equations, then we have $(E_j, a) = \frac{32f_j}{(f+16)^2}$ for j=1,2, and

$$H(E_3, a) - 2(x, a) = \frac{32}{(f+16)^2} \Delta f - \frac{64}{(f+16)^3} |\nabla f|^2.$$

It follows that

$$1 - (x,a)^2 - (E_3,a)^2 = \frac{1024}{(f+16)^4} |\nabla f|^2$$
 and

 $8(f+16)^{2}(H^{2}+4) - (f+16)^{3} = 16(f+16)\Delta f - 32|\nabla f|^{2}.$ Since

$$\left|\nabla f\right|^2 = \frac{1}{16}((f+16)^3 - 4(f+16)^2(4+H^2)),$$

we have
$$\Delta f = \frac{1}{16} (f + 16)^2 \ge 0$$
.

Since M^2 is compact, f is constant, and x is a hypersphere which is totally umbilic, a contradiction. Thus M^2 must be totally umbilic.

References

[Be] L. Bers, Local behaviour of solution of general linear elliptic equations, Comm. Pure Appl. Math., 8(1955), 473-497.

[B1] R. Bryant, A duality theorem for Willmore surfaces, Journal of Differential Geom., 20(1984), 23-53.

[B2] R. Bryant, Surfaces in conformal geometry, Proc. Sympos. Pure Maths. Amer. Math.Soc., 48(1988) 227-240.

[CDK] Chern, S. S; do Carmo, M. and Kobayashi, S.: Minimal submanifold of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 59-75.

[CH] Y. C. Chang and Y. J. Hsu, Willmore surfaces in the unit n-sphere, Taiwanese Journal of Math., 8(2004), no. 3, 467-476.

[P] B. Palmer, Uniqueness theorems for Willmore surfaces with fixed and free boundaries, Indiana Univ. Math. J. 49 (2000). [W] Weiner, J. L.: On a problem of Chen, Willmore et al., Indiana Univ. Math. J. 27(1978), 19-35.