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Abstract

Relying on non-redundant diagonal precoding and i.i.d. source assumption, this
paper proposes a blind channel estimation scheme for single-carrier
frequency-domain equalization based space-time block coded systems. The proposed
method exploits the precoding-induced linear signal structure in the conjugate
cross-correlation between the two temporal block received signals as well as the
circulant channel matrix property, and can yield exact solutions whenever the channel
noise is circularly Gaussian and the receive data statistic is perfectly obtained. The
channel estimation formulation builds on rearranging the set of linear equations
relating the entries of conjugate cross-correlation matrix and products of channel
impulse responses into one with a distinctive block-circulant with circulant-block
(BCCB) structure. This allows a simple identifiability condition depending on
precoder parameters alone, and also provides a natural yet effective optimal precoder
design framework for improving solution accuracy when imperfect data estimation
occurs. We consider two models of data mismatch, from both deterministic and
statistical points of view, and propose the associated design criteria. The optimization
problems are formulated to take advantage of the BCCB system matrix property and
are solved analytically. The proposed optimal precoder aims to optimize solution
robustness against deterministic error perturbation and also minimize the mean square
error when the data mismatch is modeled as a white noise. Pair-wise error probability
analysis is conducted for investigating the equalization performance. Numerical

examples are used to illustrate the performance of the proposed method.

Keywords: Blind channel estimation, block-circulant matrix with circulant blocks
(BCCB), circulant matrix, multiple input single output (MISQO), nonredundant
precoders, single-carrier frequency-domain equalization, space-time block code

(STBC), transmit diversity.
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Chapter 1

Introduction

A. Overview

Space-time block code (STBC) is a widely-known transmit diversity technique for
combating channel fading in modern wireless communications [22]. Most of the
existing proposals are devised for the flat- fading channel environment, e.g., the
Alamouti’s scheme [1] and the related generalization by Tarokh et. al [34], among
others. When the propagation channels are subject to frequency-selective fading, one
popular STBC technique is via time-reversal block-wise encoding, either combined
with OFDM mechanism [27], [40], or resorting to time-domain equalizer [26], for
removing the channel distortion. The multi-carrier related solutions, although
simplifying receiver implementations, would incur high peak-to-average power ratio
(PAPR) and is sensitive to carrier frequency offset. The scheme with time-domain
equalization, on the other hand, can provide additional multipath diversity at the
expense of decoding complexity. To avoid the drawbacks of the multi-carrier strategy
and to also maintain low receiver complexity, an alternative single-carrier
frequency-domain equalization (FDE) based STBC was proposed in [2]. The
aforementioned STBC’s capable of mitigating dispersive channels can be cast into a
general code formulation [39]; comparisons pf the achievable performances and

implementation costs can be found in [3].

To realize the diversity benefit of STBC, the channel state information must be



known at the receiver to coherently combine the multiple temporal received signals
for decoding®. Since STBC potentially entails low spectral efficiency and training
based channel estimation further consumes bandwidth resource, blind approaches
then become appealing candidate solutions. There has been extensive literature on
blind multi-input multi-output (MIMO) channel estimation [14], [16]. However, only
a few studies are tailored for STBC systems, typically through a multi-input
single-output (MISQO) channel link. Under flat-fading assumption, several schemes
were put forth for orthogonal STBC [4], [7], [32], and for a general linear code family
[33]. For time-reversal STBC over frequency-selective channels, the work [5] focused
on codes with time-domain equalization [26]. Through linear symbol precoding, blind
schemes for OFDM-based STBC were shown in [27] and [40]. The method [27]
resorts to zero-padding for removing inter-block interference, and is applicable only
for constant-modulus sources and channel pairs without common zeros; the one in
[40], instead, uses cyclic prefix (CP) as guard interval and leverages redundant
precoding to relieve the source and channel-zero constraints imposed in [27]. For
FDE-STBC, training based channel estimation is recently considered in [11]. It is
known that single-carrier FDE systems fall within the class of precoded OFDM, with
FFT matrix as precoder [25]. In view of this fact, the method in [40] for OFDM
scenario also provides an immediate blind solution for FDE-STBC: one just chooses
FFT precoding matrix to convert the multi-carrier transmission into a single-carrier
scheme and then inserts certain redundancy into the symbol streams to facilitate

channel identification. The price to be paid for this approach, however, would be the

® Differential STBC does not require channel information for decoding but incurs a 3-dB penalty in

SNR [22, Sec. 9.6].



loss in the effective data rate.

B. Paper Contributions

This paper proposes a blind channel estimation scheme for FDE-STBC systems in a
two transmit antennas and single receive antenna environment. The proposed
approach relies on non-redundant diagonal precoding (hence preserving the baud
rate), assumes i.i.d. source statistics (irrespective of constellation modulus), and does
not impose constraints on sub-channel zero locations. It exploits the
precoding-induced linear signal structure in the time-domain conjugate
cross-correlation between the two temporal receive branches, as well as the circulant
channel matrix property after CP is discarded. Specifically, we show that the set of
linear equations relating the entries of conjugate cross-correlation matrix and products
of channel impulse responses can be rearranged into one with a block-circulant with
circulant-block (BCCB) structure. The products of channel taps are first obtained by
solving this linear equation set; the channel pair is then simultaneously identified, up
to a 2x2 complex matrix ambiguity, as the dominant left singular vectors of an
associated rank-two matrix. A similar “bilinear” estimation strategy has also been
adopted in [13], [21], [24], [37]. In our formulation, a natural sufficient condition for
unique channel recovery is the non-singularity of certain BCCB matrix with precoder
coefficients as its entries. Channel identifiability is thus free from any priori
assumptions on sub-channel characteristics, and is shown to be fulfilled by almost all
choices of precoders. As long as the channel noise is circularly Gaussian and the
received data statistic is perfectly obtained, the resultant channel estimate is exact. In
the presence of finite-sample estimation error, the proposed channel estimation

framework allows a natural precoder design formulation for improving solution

3



robustness. We consider two models of data mismatch, one as an unknown
deterministic perturbation while the other statistically as a white noise, and propose
the associated optimal precoder design criteria, aiming for minimizing the worst-case
solution sensitivity to perturbation and mean-square errors, respectively. Both
optimization problems are further formulated to take advantage of the BCCB system
matrix property and are then analytically solved; the resultant solutions are shown to
be the same two-level form precoder. Pair-wise error probability (PEP) analysis is
conducted to investigate the equalization performance of the proposed optimal
solution and characterize the associated design trade-off. It is noted that blind channel
estimation via non-redundant diagonal precoding has been considered in the single
channel case [31], [10], [24], [37]; the related generalizations to MIMO single- and
multi-carrier spatial multiplexing systems can be found in [8] and [9]. The rest of this
paper is organized as follows. Section Il briefly describes the system model and the
underlying assumptions. Section Il presents the proposed method; the associated key
features are investigated in Section IV. Section V addresses the optimal precoder
design against imperfect data estimation. Section VI examines the equalization
performance through PEP analysis. Section VII contains the simulation results.

Finally, Section VIII is the conclusion.

Notation List: Let R™" and C™" be respectively the sets of m xn real and
complex matrices. Denote by ()", (), and ()", respectively the transpose,
complex conjugate, and Hermitian operations. The symbols I, and 0, denote the

m x m identity and zero matrices; 0 is the m xn zero matrix. The notation

mxn

® stands for the Kronecker product [19, p-242]. For X € C™" with X € c"

being the jth column, define vec(X):=[x/ - x]]" €C™. For x€C", let
4



diag{x} be the m xm diagonal matrix with the elements of x on the main

diagonal. The notation FEy stands for the expected value of the random variable

and j:=+/—1. We denote by F e C"*" the FFT matrix with the ki-th entry

[Fl,, = 1/N - D0 S where w = exp(j2n /N), 1<kI<N. We denote

by ||-|| the two-norm of a vector and by x(X) the condition number of matrix X.



Chapter 2

System Model and Basic Assumptions

-\ln" *-.h,_‘_f\,_‘_“
5 S Diagonal s l_r— = F.DE Sp”w_ - h T Data | ¥4 “:'r'f_1 FFT Y_r-‘ Y 1 FDE Space | S-S e
' = Precoder p —| Time Block TN Buffer -~ Matrix " Time Decoder i
e T "I. ’ "----_.___ ¥
| D X, [cp|Ant1 Channel
Estimator
| % |cr| x. |cP|Ant.2
Transmitter Receiver

Fig. 1. FDE-STBC system diagram.

We consider the discrete-time baseband model of an FDE-STBC system [2] over

frequency-selective channels as shown in Figure 1. Let s, and S be two

N-dimensional symbol blocks to be transmitted. Priori to the STBC encoder, each

symbol block is precoded by an N x N diagonal matrix

P := diag{[p(0)---p(N —1)]' }, (2.1)
with p(n) € R, to obtain

XZIPSl,fOI’ =k k+1, (2.2)

which are then spatially and temporally coded according to [2] for transmit diversity

as well as for mitigating the multipath channel distortion. For 1<i <2, let A (n)

be the impulse response of the channel between the ithtransmit antenna and the
receive antenna. In terms of block signals, the input-output relations in time-domain
are described as [2]

y, =Gx, + G2xk+1 Vv (2.3)

and



-G GX, + (2.4)

Vit X1 Vi1

where, for [ =k, k+1, y, and v, are the received signal (upon CP removal) and

l

noise, x, is the time-reversed and element-wise conjugated version associated with

!
X, that is,

*

x(n)=x,((-n)y), 0<n<N-—1, (2.5)

and G, € C"" is circulant with”
r N
g = |h(0) - h(L) 0 - 0] ec, (2.6)

as the first column, 1 <7 <2.Since G, iscirculant, we have G, = FHD,];F, where

D, is diagonal with [Dz‘},, =S hmw ™", 1<m <N . Let us define
m "0 ¢

Y =Fy , X =Fx , and V,=Fv, , for =k k+1 . Then the

frequency-domain representation associated with (2.3) and (2.4) can be expressed in a

compact vector-matrix form as [2]

Yk D1 D2 Xk Vk
Yk+1 _D2 D1 k+1 Vk+1
T

Y, D o0, X, \A
YkJrl 0N Xk+1 k+1

® Without loss of generality we may take L as a common channel order, or simply an associated upper

bound, which can be determined as the maximum among the two.

7



where D= DD, + DD, € R™" s diagonal with [f)]ﬁ = HDlLi g HD2L:¢ .

1 <4 < N: this asserts that two-fold transmit diversity is achieved in the frequency
domain. To recover the source signals, per-tone frequency-domain equalizer [2], [15]
can be designed based on (2.8), as long as a channel estimate is available at the
receiver. Based on the time-domain signal model (2.3) and (2.4), this paper proposes a
blind channel estimation scheme by using the second-order statistics of the received

signal and discusses an optimal design of the precoder p(n) for improving channel

estimation accuracy. The following assumptions are made in the sequel.

a) The source sequence s(n) is independently identically distributed (i.i.d.) with

*

zero mean and FEs(k)s(l) =6(k—1), where 6(-) is the Kronecker delta
function.

b) The noise w(n) is white circular Gaussian with zero mean, variance o2, and is

independent of the source sequence s(n).



Chapter 3
Blind Channel Estimation

To introduce the proposed method, we first assume that all the signal statistics can
be perfectly obtained; the case with imperfect data estimation will be treated later. To
obtain the channel matrix D, one may focus on direct estimation of the N tones of
the channel frequency response. Since the block length N could be large, this strategy
would involve considerable computational efforts. Hence, we propose to instead

estimate the time-domain channel impulse response hl.(n), for 0<n<L and

1 <14 < 2; the gains of the associated frequency tones can then be obtained by using

FFT operations.

A. ldentification Equations

The proposed approach exploits the imbedded linear signal structure in the

time-domain conjugate cross-correlation matrix of the two received signals y, and

Y., @S well as the circulant property of the channel matrix G,. To proceed, let us

first define the matrix

10 0
o @ ... 1

L= S (3.1)
0 1 0

Then, from (2.5), it is easy to see

x, =Ix, and %, =Tx_ . (3.2)

9



With (2.2) and (3.2), the signal models (2.3) and (2.4) then become

y,=GPs, +GPs,_ +v,, (3.3)
and
Y. =GIPs,  —GJIPs +v, . (3.4)
From (3.3), (3.4), and by assumptions a) and b), it is easy to check
R,(1) = Ey,y,,, = G,P’TG] — G PTG} +{GPFEs,v|  +GPEs v +Bvv |
(3.5)

Since the noise w(n) is circular, we have Evkvf+1 =0, . Also, we assume that both

the real and imaginary components of the noise process are independent of those of

< thi ; ; T _ T
the source sequence s(n): this thus implies Es,v, = Es, v,  =0,. Under

these conditions, the noise contributions to the conjugate cross-correlation matrix

R, (1) in(3.5) become a zero matrix, leading to

R,(l) = G,P’TG] — GP’TG]. (3.6)
For a given R (1), the matrix equation (3.6) defines a set of N? scalar equations
nonlinear in the unknowns A (0), ---, h,(L), 1 <7 <2, but is linear with respect to
product channel coefficients hi(k)i%(l), 1<4,4 <2.Asaresult, in lieu of directly
solving for A (0), ---, h,(L), we propose to exploit the imbedded linear structure in
R (1) for channel estimation. This will be done by further taking into account the

circulant property of the channel matrices G;’s.

Specifically, define the following permutation matrix

10



e RV, (3.7)

I 0

N-1 (N=1)x1

Since G, is circulant, it can be expressed in terms of its first column (cf. (2.6)) as
G =lg Jg - I Il 1<i<2. (3.8)

By definitions of P and I'" (see (2.1) and (3.1)) and from (3.8), it follows

G,P’TG] = (G,P*)-(IG/)

n

B _ T N-1 . N_
pors, w07, v el s o ] = e
—G,P’ TG’ .

(3.9)

Similarly, we have

Nl N—n
G,PTG! = Zo p(n)’I'gel (37) . (3.10)
Combining (3.9) and (3.10), R, (1) in (3.6) becomes
N-l 9 ~ T N-—n
R,(1)= Y p(n)J"G(I")" ", (3.11)
n=0
where®
gT
~ 1 %
G:=gg —gg z[gQ gl}- L, eCV (3.12)

With g. given in (2.6), the matrix G is seen to contain the product channel

impulse responses of the form 4, (k)h, (1) — h (k)h,(I), 0 <k, < L, which are to be

determined from (3.11). Toward a tractable procedure for computing G, we observe

© We assume that the two channel impulse response vectors are linearly independent, for otherwise G
is identically a zero matrix; this assumption holds whenever the environment is with sufficiently rich
scattering.

11



that R (1) in (3.11) is a weighted sum of N matrices of the form J”G(JT)N_n

in which the unknown G are pre, and post, multiplied by the known matrices J"
and (JT )N_n. Based on this structural property, we can further rearrange (3.11) into

a standard linear equation form. This is done via the next lemma.

K
Lemma 3.1 [19, p-255]: The matrix equation > A, XB, = C can be equivalently
k=1

K
> B, ©A,

k=1

expressed as vec(X) = vec(C). O

Based on Lemma 3.1, we can immediately rewrite (3.11) as

N-1

> b a" " o

n=0

vec(G) = vee(Ry(1)). (3.13)

By definitions of the Kronecker product and J in (3.7), equation (3.13) turns out to

be
p(0)°T, P e p(N =230 p(N 1) 30
p(N =123 p(0)°L, - p(N =33 p(N —2)3"
: ' ' : vee(G) = vec(Ry (1))
p(2)*F* p3I o p(0)'L, p(1)*J
p(1)J P23 p(N -1 p(0)°T,
=q

(3.14)
The N? x N? real-valued matrix Q defined in (3.14), which is characterized by
the N circulant matrices {p(O)QIN,p(l)QJ, ---,p(N—l)QJN‘l} on the top row

block, is block circulant with circulant blocks (BCCB) [12, p-184]. Equation (3.14)

forms the basis of the proposed approach.
12



B. Identification of Channel Impulse Response

Assume that wvec (C‘.) and hence the matrix G, can be uniquely recovered from

the linear equation (3.14); the uniqueness condition and the computational issue will
be investigated in the next section. We then collect the product unknowns

h, (k) (1) = h (K)h,(I), 0 <k, <L,toformthe following (L +1)x (L +1) matrix

i)y oy Where H = By (B () — By (E)hy (1) (3.15)

Observe that the matrix H is of rank two, and can be factorized as

. , 0 —1)|h/
H=hh/ -hh] =|h bl | (3.16)
where
r L+1
h, = |h(0) K1) - K(L)] eC, 1<i<2, (3.17)

is the desired channel impulse response vectors. Based on (3.16), the channels can
thus be identified, uptoa 2x2 complex matrix of the form

a b

U al’ with ad —bc =1, (3.18)

C

by computing the two dominant left singular vectors associated with H ; the inherent

matrix ambiguity must satisfy (3.18) since, for any vector pair of the form

h = [hl hQ]U with U € C¥?, we have

0 -1
1 0

h h' =hh/ —hh; (3.19)

whenever U verifies (3.18). We note that a similar matrix outer-product based
13



approach for blind channel estimation is also adopted in [13], [21], [24], [37].
C. On Ambiguity Removal

The matrix ambiguity (3.18) can be resolved through insertion of additional pilot

symbols. To see this, let [El HQ} be a dominant left singular vector pair associated

with the rank-two matrix H defined in (3.15). Then we have

b, b,|=|h, h|U,with UeC> fulfilling (3.18); this implies

(3.20)

Since both G, and G, are circulant, the first output branch (2.3), at some £ =k,

can be alternatively expressed as

y, =C gl—i-C

0

k 18t Vi, o (3.21)

where g, (i =1,2) is the zero-padded channel impulse response as in (2.6), and

C e CMN s circulant with the precoded symbol vector x, as the first column,

I =k,,k, +1.Letus write

T

— n ;
g = 0, | 1<i<2, (3.22)

where h, is the desired channel impulse response vector defined in (3.17). With

(3.22), equation (3.21) is then reduced to

vy, =C. h +C__h , (3.23)

o ko e TV

where C, € C"*"*Y contains the first L +1 columns of C,. With (3.20), we can

14



write (3.23) in terms of the scalar ambiguities as

Vi, = éko (db, — ch,) +C

0

ko +1 <_bﬁl + a1_12) + Vi,

- - X T T (3.24)
—¢,h, —C.h, €,k € Bfd b oaf v,

2 ko+171

=T
It is noted that, subject to the constraint ad —bc =1, there are only three
independent unknowns in (3.24). One can just solve for, say (b,¢,d), from (3.24) and
then determine « via the nonlinear equation a = (1+ bc)/d; this, however, would
be more prone to error propagation. Hence we propose to instead compute (a,b,c,d)

all at once from (3.24). Toward this end, pilot symbols should be appropriately

inserted to produce at least four training components in y, . We observe that each
0

column of T in (3.24) is a linear combination of L + 1 circularly shifted symbol

vector x, for some I € {kk, +1}. The cyclicity structural constraint implies at

least L +4 pilot symbols are needed in both x,. One plausible placement, in

particular, is to insert four (and L, respectively) consecutive pilots at the head (and

tail) of x,, [ =k ,k, +1; in this way, the first four components in y, , denoted by
. ‘0

y,, then act as training data and the scalar unknowns are estimated via

~

ﬁ baf:tww (3.25)

(o9

where T, e C** contains the first four rows of T .Hence, even though the

proposed blind method reduces the number of unknown channel parameters from
2L + 2 to three, no less than 2L + 8 pilot symbols are nonetheless required for

ambiguity removal. This is due to the non-redundant precoding based channel

15



TABLE 1
ALGORITHM SUMMARY

1) Estimate the conjugate cross-correlation matrix Ry (1) via

. K
R () = l: Z]y('l)y(H W

=
where K is the number of temporal received symbol block pairs.

2) Form the matrix equation (3.14), and select a precoder p(n) with which the matrix Q is nonsingular.

3) Compute the product channel coefficients based on (4.3) or (4.8).

4) Form the rank-two matrix H as in (3.15). The channel impulse response pair is then computed, up to a

2x 2 matrix ambiguity, as the two dominant left singular vectors associated with H.

5) Remove the matrix ambiguity by inserting extra training symbols as suggested in (3.25).

estimation formulation as well as the circulant signal structure (the proposed channel

estimation procedures are outlined in Table I).

16



Chapter 4
Identifiability and Product Unknowns

Computation

This section first specifies the channel identifiability condition, and then introduces
two methods for computing the product channel coefficients. The presented results

also lay the foundation for further investigating the optimal precoder design problem.
A. Channel Identifiability

From the previous discussions, it is easy to see that the channel can be identified if

vec(G) is uniquely determined from (3.14): this is true if the matrix Q is

nonsingular. By exploiting the BCCB property of Q, the following theorem
explicitly shows the associated eigenvalues, and in turn specifies the condition for Q
to be nonsingular. Roughly speaking, if we define the vector

p=[p07 pQ)° - p(N-17]" eRY, (4.1)
then the N? eigenvalues of Q are completely determined by the N eigenvalues

associated with the N x N circulant matrix with p” as the first row (the proof of
theorem is given in Appendix A).
Theorem 4.1: Let F bethe N x N FFT matrix; also, associated with the vector p
in (4.1) we define the polynomial

p(2) = p(0)* + p(1)°z " + -+ p(N — 12"V, (4.2)

17



Thenthe N* eigenvalues of the matrix Q defined in (3.14) are given by the N
replicas of the N -tuple {p(l),p(w), ---,p(wal)}_

O

Theorem 4.1 shows that channel identifiability is guaranteed whenever p(w") = 0
for all 0 <n < N —1; this condition is quite mild and can hold for almost all
choices of p(n). We should note that the significance of Theorem 4.1 is far above

just characterizing a sufficient condition for unique channel recovery. It moreover

specifies the eigenvalues associated with the matrix Q: this result will be exploited
for selecting p(n) to improve the reliability of channel estimate against the

finite-sample estimation error (see Section V).

B. Computation of vec(G)

A crucial step for implementing the proposed channel estimation scheme is the

computation of the product channel coefficient vector vec(G) based on (3.14). In

what follows we propose two methods for fulfilling this task.

i) Direct Matrix Inversion: An immediate approach to solving (3.14) is through

direct matrix inversion so that

vec(é) = Q lvec (Ry(1)>. (4.3)
Observe from (3.14) that Q is BCCB and is characterized by the particular set of
circulant matrices {p(O)ZIN,p(l)QJ, ---,p(N—l)QJN‘l}. This appealing structure

allows for a potentially low-complexity implementation via FFT operations. In
18



Appendix B we derive a simple closed-form expression of Q' based on which this

figure of merit is justified.

i) Solution via Zero Entry Removal in (3.14): It is noted from (2.6) that, for
1<i<2, the vector g contains L+1 channel impulse response 5 (n),
0<n<L,followedby N —L —1 trailing zeros. As a result, the N?xN? matrix

G(=g,g] —g,g,), and hence the associated vectorized representation vec(G), has

actually (L +1)* nonzero product unknowns. By removing the zero entries in

vec(G), and the corresponding indexed columns of the matrix Q, equation (3.14)

can be simplified to a set of N? scalar equations in (L +1)* unknowns. Indeed,

with g defined in (3.22), we have

h h’ 0 _
glg? _ () (L+1)><(N—L—1) ’ 1 S Z,'l S 2 (4.4)
O(Nfol)x(LJrl) ONfol
and hence
H 0
~ (L+1)x(N—L-1)
G=gg —g8 =|, 0 , (4.5)
(N—L-1)x(L+1) N-L-1

where H is defined in (3.15). Based on (4.5) and by definition of the wvec(:)

operation, equation (3.14) can be shown (after some direct manipulations) to be

reduced into

QJ, (IL+1 ® JQ) vec(H) = vec(R, (1)) (4.6)

in which

I

N(L+1)

I
Jl — c RNQXN(L+1) and J2 — L+1 c RNX(L+1) .

0 0

N(N—L-1)xN(L+1) (N=L-1)x(L+1)
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4.7
The matrix Q € R *“*° in (4.7) is obtained by deleting N* — (L +1)® columns
from Q. It is thus of full column rank whenever Q is nonsingular and, if so, the

product channel coefficients can be computed via

Q" vec(R, (1)) (48)
Compared with the direct matrix inversion method (4.3), the solution (4.8) can yield
better estimation accuracy at the expense of computational complexity (see Appendix
B for complexity evaluation). Based on (4.3) and (4.8), the selection of precoder

p(n) for optimal numerical robustness is discussed next.
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Chapter 4
Optimal Precoder Design

If the conjugate cross-correlation matrix R (1) is perfectly obtained, both

solutions (4.3) and (4.8) are exact. In practice, however, only a finite number of data

samples can be used for estimating R (1); equations (3.14) and (4.6) should be

accordingly modified as

vee(R, (1)) = Quec(G) + w, (5.1)
and

vee(Ry (1)) = Quec(H) +w, (5.2)
where f{y(l) is an estimate of R (1) and w accounts for the data mismatch due

to finite-sample estimation. Given the error-corrupted Ry(l), it is impossible to

recover the actual product channel coefficients. Instead, with (5.1) and (5.2), the

estimated solutions are respectively

~

vec(G) = Qilvec(f{y(l)) = vec(G) + Q'w (5.3

and

A ~ =1 ~ A -1
vec(H) = (QTQ) QTvec(Ry(l)) = vec(H) + (QTQ) Q'w. (5.4)
In what follows, we consider two different modeling schemes of w, and propose the
associated optimal criteria for designing p(n) against imperfect data estimation.
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A. Minimal Worst-Case Sensitivity to Error Perturbation

We will first treat w as an unknown “deterministic” perturbation since the
statistical property of the data estimation error is in general difficult to characterize.
From this standpoint, typical solution robustness measures for (5.3) and (5.4) are the

condition numbers of the matrices Q and Q, respectively (see, e.g., [18] and [23]).

Small x(Q) and k(Q), in particular, are known to ensure small worst-case

sensitivity of the error-perturbed solution to data mismatch [18, p-338]. Since both Q

and Q depend entirely on p(n), a natural approach to improving the channel

estimation accuracy is to choose p(n) so that both x(Q) and ~(Q) are kept as

small as possible. This type of optimization problem would seem formidable to tackle

since the condition number of a matrix is in general a highly nonlinear function in the
entries. Toward a tractable design formulation, we note the crucial fact: since Q

contains a subset of columns of Q (see (4.6)), it follows [23, p-27]

K(Q) < k(Q). (5.5)
Inequality (5.5) suggests that, to jointly improve the accuracy of solutions (5.3) and

(5.4), it is plausible to just minimize (Q) because a small (Q) will also

guarantee x(Q) to be small. Such a design strategy, on the one hand, can bypass

direct minimization of x(Q) which would appear rather intractable. More

importantly, it will allow us to exploit the eigenvalue characteristics of the BCCB

matrix Q (in Theorem 4.1) to analytically derive a solution, as is shown below.
Hence, we specifically propose to minimize (Q), subject to the following two
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constraints

N-1
> p(n) =N, (5.62)
n=0
and
min p(n)> > & forsome 0 <6 <1. (5.6b)

The constraint (5.6a) normalizes the average transmit power within one block to unity,
and the constraint (5.6b) imposes a minimal threshold on the floor power. In the
context of single channel blind identification based on
modulation-induced-cyclostatonarity, the two constraints have been used in [10], [24],

and [37] for precoder design against the channel noise effect.

To derive the optimal solution, we shall first specify x(Q) in terms of the
eigenvales of the matrix Q . Since Q is BCCB, it can be factorized as
Qz(F@F)A(FH ®FH) for some diagonal A [12, p-181]. This then implies that

Q is anormal matrix [18, p-100], as can be seen by

Q'Q=(FeF)A" (F' o F")FoF)A(F o F")

=1 (5.7)
= (FoF)A'A(F" o F") = (Fo F)AA" (F" o F") = QQ";

in deriving (5.7), we have used the identity (A ® B)(C® D)= AC®BD [19,
p-244]. As Q is normal, it is known that [18, p-340]

K(Q)=p(Q)p(Q"), (5.8)
in which p(M):= max{| A |: X's are eigenvalues of the matrix M} . Equation (5.8)
links the condition number of Q with the extreme magnitudes of the associated
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eigenvalues which, according to Theorem 4.1, are exactly the maximum and

minimum among the N elements {|p(1)|, [p(w)|, -, [p(w” ") [}, where p(z) is
the polynomial defined in (4.2). More precisely, we have

max ‘p(wk)‘
K(Q) = ——— for 0<k<N-—1. (5.9)
mln‘p(w )‘

To find the minimal ~(Q) based on (5.9), we shall further characterize p(w")’s

under the two constraints in (5.6). With (5.6a), it is easy to see from (4.2) that, for

k=0,
p(w’)=p(1) = Z p(n)* =N, (5.10)

The following lemma provides an upper bound on ‘p(wk)‘ for 1<k<N—1; the

result is crucial for deriving the minimal ~(Q) (the proof of lemma is shown in

Appendix C).

Lemma 5.1: Forany p(n) satisfying (5.6a) and (5.6b), we have

[p(w")| < N(1—6) forall 1<k<N-1. (5.11)

With (5.9), (5.10), and (5.11), the minimal achievable «(Q), and the corresponding

optimal p(n), are shown in the following theorem.

Theorem 5.2: Under the constraints (5.6a) and (5.6b), the minimal condition number

associated with the matrix Q is given by
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Frin (@) = —— (5.12)

which is attained by the following two-level solution: for a fixed but arbitrary

0<m<N -1,

p(m)> =N —(N —1)8,and p(n)* =6 for n=m. (5.13)
[Proof]: We claim that i) x(Q)>1/(1—6) for any p(n) satisfying (5.6a) and
(5.6b), and ii) equality is attained by the solution (5.13); the theorem thus follows. To

show claim i), it is noted from (5.9) and (5.10) that

max [p(w"”
_maxlp(h) e’ W
w(Q) = min‘p(wk)‘ = min‘p(wk)‘  min ‘p(wk)‘ . (519
Also, (5.10) and (5.11) imply
min ‘p(wk’)‘ < N(1-90),ie, L 1 (5.15)

> .
min ‘p(wk)‘ ~N(1-9)

Claim i) then follows immediately from (5.14) and (5.15). To prove claim ii), it is

noted that solution (5.13) yields, forany % = 0,

N-1
pW) =Y p(nfw ™ ={N - (N -1} +6> w™
n=0 n=m
N-1
= {N1-8)}w ™ +6> w™ ={N1-8)}w ", (5.16)
n=0
N-1
where the last equality follows since Z w™ =0 forany k== 0.Equations (5.10)
n=0

and (5.16) show that, with solution (5.13), we have max‘p(wk)‘ = ‘p(wo)‘ =N and

min‘p(wk)‘ = N(1—6), and hence
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maxpw) N 1
min‘p(wk)‘  NA-6) 1-6 (6.17)

R(Q) =

The proof is thus completed. ]

Theorem 5.2 shows that «_. (Q) depends entirely on the minimal power threshold

o, irrespective of the dimension of Q (and hence the symbol block length N). A

small ¢, in particular, is seen to yield small «_. (Q) and thus improves the channel

estimation accuracy.

B. Minimization of Mean Square Error

In this subsection, we alternatively formulate w as a zero-mean white noise
vector with covariance matrix o>I, and resort to the well-known minimum mean

square error principle, see, e.g., [6], for constructing a solution. Although a theoretical
justification of such statistical data error assumption is difficult to establish, our

simulation study does confirm this tendency.

Since w is white, the mean square errors incurred by solutions (5.3) and (5.4) are,

respectively,

2

vec(é) —vec(G)| =T

E

[@"q) "] (5.18)
and

. 2
EHvec(H) — Uec(H)H =o2Tr

[@"Q) "] (5.19)

Toward an utmost reduction of the white noise effect, the precoder p(n) should thus
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be chosen to jointly minimize

Tr

(QHQ)_I} and Tr

[@"q) "), (5.20)

subject to the constraints (5.6a) and (5.6b). Minimization of this type of cost functions
has been considered in least-squares based channel estimation, e.g., [6] and [22, chap.

9], among others. The reported solution approach therein is via the following

inequality: since both Q”7Q and Q”Q are positive definite, it follows

Tr

(QHQ)_l}ZZ[QHQ]: and Tr

[@"Q) |z x[e"af. Gy

and equalities in (5.21) hold whenever Q”7Q and Q”Q, respectively, are diagonal

[28, p-1041]. If the power normalization equation (5.6a) is the only design concern, it

is easy to check that the impulse sequence
p(m)*> = N,and p(n)’ =0 for n=m, (5.22)
where 0 <m < N —1 is fixed but arbitrary, simultaneously diagonalizes Q”Q

and Q”Q, and is thus the jointly minimizer. However, given the additional threshold
power requirement (5.6b), one cannot rely on this principle for finding a solution

since, subject to the BCCB structure of Q and p(n)* > 0, it is impossible to choose

p(n) to render both Q”Q and Q”Q diagonal. In what follows we propose an
alternative strategy to address the considered optimization problem. Our approach is
grounded on a key fact shown in the next lemma, which directly establishes an
inequality relation analogue to (5.5) regarding the two cost functions in (5.20) (the

proof is given in Appendix D).

Lemma 5.3: Let M be a square nonsingular matrix, and M be constructed from

M by deleting an arbitrary subset of its columns. Then
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(MHM)l} | (5.23)

O

Lemma 5.3 asserts Tr

(QHQ)_l] . This thus

(QHQ)_I} is upper bounded by T
suggests a suboptimal, but would be more simple and efficient, way of precoder

design: we can simply choose p(n) to minimize Tr

(QHQ)_I} . since

Tr

(QHQ)_l} would in turn be kept small. The main advantage of the proposed

design formulation, as expected, is that we can directly take profit of the BCCB

(QHQ)”} is the

property of Q to derive a closed-form solution. Indeed, since T'r

sum of the eigenvalues associated with (QH Q)_1 which, according to Theorem 4.1,

H ny |—2
are exactly the N replicas of the N -tuple {|p(w") [} . wehave
1 N-1 N
rrl(Qia) | = Y — = (5.24)
( ) =0 | P(Wk) ‘2

Equation (5.24) rewrites Tr

(QHQ)l} in terms of p(w")’s; we can then further

exploit equation (5.10) and Lemma 5.1 to construct an optimal solution, as is shown

in the next theorem.

Theorem 5.4: The optimal p(n) minimizing Tr

(QHQ)_I}, subject to constraints

(5.6a) and (5.6b), is the two-level solution (5.13). The resultant minimal mean square
error is

2 2/(a7
Mg, =%e y =l

. . 5.25
min N N(l o 6)2 ( )
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[Proof]: From (5.10), we have

) Xl N N ¥l N 1 N
WCINE STpHP  POP S N S P
(5.26)
From Lemma 5.1, it follows
L > 1 i<ken-t, (5.27)
‘P(Wk)‘ N-(1-9)

with equality attained by the two-level sequence (5.13) (this is easily seen from

(5.16)). From (5.26) and (5.27), the minimal Tr

(QHQ)l} is thus

Tr (5.28)

min N k=1 N<1 - 6)2 N N<1 - 6)2 .

Equation (5.25) follows directly from (5.28), and this thus proves the theorem. (]

Recall that the impulse sequence (5.22) is optimal with regard to the power
normalization constraint (5.6a). When an additional power threshold is imposed, it
turns out that the best choice is the “impulse-like” two-level solution (5.13). With

(5.25), the resultant MSE . is seen to decrease whenever 6 is decreased. Hence, a

small 6 not only limits solution sensitivity to deterministic error perturbation (as we
have shown in the previous subsection), but also improves the estimation accuracy
against white data estimation error. From the equalization point of view, it is however
undesirable to keep 6 unlimitedly small; this will be further discussed in the next
section.

Remarks:

(a) From Theorems 5.2 and 5.4, it is somewhat surprising to see that, although the
29



objective functions x(Q) and Tr

(QHQ)l} are quite different in nature, the

respective minimizing solutions, under constraints (5.6a) and (5.6b), are the same

the two-level form choice (5.13); this is due to the BCCB property of the matrix

Q.

(b) The two-level solution (5.13) minimizes both x(Q) and Tr

(QHQ)l] . but its

optimality with respectto x(Q) and Tr

(Q" Q)_l] appears intractable to verify.

Our simulation results seem to indicate that it is indeed the minimizing solution.

(c) Since x(Q) <k(Q) and Tr

(QHQ)l} <Tr

(QHQ)l}, solution (5.4) can yield

better estimation accuracy than (5.3); numerical simulations (see Simulation 2)
also evidence this tendency.

(d) The optimal solution (5.13) does not depend on the index m at which the peak
power occurs: any 0 <m < N —1 allows for an utmost mitigation for data
estimation error. However, since the trailing components in each symbol block
will be duplicated as CP, the peak power in (5.13) should not be located within the
corresponding index region so as to conserve the power resource.

(e) In the study of single channel blind identification via modulation-induced-
cyclostationarity, the two-level sequence (5.13) is shown to be optimal for
mitigating the channel noise effect for the serial transmission case [10], [24], and

also for the FDE based block transmission [37]. L]
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Chapter 6
Equalization Aspect

Toward symbol recovery in FDE-STBC systems, one commonly used approach is
via frequency-domain per-tone equalization [2], [15] based on (2.8), commonly in
conjunction with linear ZF or MMSE criterion. In this section we resort to ZF-PEP
analysis [35] for investigating the equalization performance regarding the optimal
solution (5.13).

To proceed, based on (2.2), we shall first expand the linearly combined

frequency-domain signal model (2.8) into

D Y, D0y X, L DF Vi | DOy |(FP 0y s, L D¥ Vi
Y| [0y D|Xin Via| |0y D Oy FP| [ Vi
_Zk,k’+1 =P ' ::Vk,k—l-l
(6.1)
or by dropping the block index % and k£ + 1 for notational simplicity,
Z=>®s+ V. (6.2)

The PEP measures the probability that a symbol block s is transmitted but another

S = s is detected. Given the channel realizations h, and h,, the conditional PEP is

by definition given by

Pr(s —§|hh)|=Pr[[s — 8§ <[s—8§| | h,,h,], (6.3)

A

where § is the estimate of s under the ZF metric and, from (6.2), is given by

§ =P 'ZL=5s+®'V. (6.4)
By following the procedures as in [35] and define d :=||s — §|, the conditional PEP

in (6.3) can be upper bounded by

31



Pr[s —§|h;,h,|<Q

a[@;g

|t S o

. (6.5)

where ()(-) denotes the Gaussian tail, and the equality in (6.5) follows directly from

-1
e ) |-

(2.1). For a given channel pair, and hence D, the upper bound in (6.5) is minimized

N-1
if the quantity > p(n)”? attains the minimum. Since, by the Cauchy’s inequality,
n=0

(PO e (N =172 )(p(O) 4+ p(V = 1) = (L +1)° = N7,

(6.6)
and Nz_l p(n)> = N (cf. (5.6a)), we have (p(())_2 4+ 4 p(N —1)‘2> > N, with
n=0

equality holds if and only if p(n)=1 for 0 <n < N —1. This shows the equal

power scheme is optimal from an equalization point of view. Any form of precoding
induced power variation, therefore, will incur a loss in the decision performance. The
precoder (5.13), however, turns out to be the worst-case choice, as can be seen from

the following theorem (see Appendix E for a proof).

Theorem 6.1: For all p(n) satisfying (5.6a) and (5.6b), the solution (5.13)

N-1
maximizes the quantity > p(n)~*, leading to
n=0

N -1 1

N-1
-2
max ngop(n) == + NV 15 (6.7)

O

Based on (6.7), simple manipulation shows the maximum value, when viewed as a
function of 6, will increase as 6 is decreased. As a result, a small ¢, although
improving channel estimation accuracy, will enlarge the PEP upper bound in (6.5),
and hence bring potentially poor equalization performance. This thus imposes a
tradeoff in selecting 6 ; our simulation study (see Simulation 5) indicates that

6 =0.7 ~ 0.8 are the compromising choices.
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Chapter 7
Simulation Results

This section uses several numerical simulations to illustrate the performance of the

proposed method. The symbol block length and the channel order, respectively, are

set to be N =32 and L = 8; the inserted CP spans 8 symbol periods and the

source constellation is QPSK. Unless otherwise stated, we will consider a block
fading environment in which the channel taps, modeled as i.i.d. zero-mean
unit-variance complex Gaussian random variables, remain constant over a burst of
K symbol blocks and can vary independently between different bursts. The

identification performance is measured by the normalized mean square error (NMSE),

1 & 2 10 (]2 Q) o
EZ ~th , where h)" is the realization of

=1 1

namely, NMSE :=

1

1 (4) (4)
hz B hz

1
the Ith channel in the ith data packet, h{" is the corresponding estimate, and I is

the total number of trials. Throughout the simulations, the peak power index of the

optimal precoder (5.13) is chosen to be m = 0; the signal-to-noise ratio (SNR) is
defined as SNR := <EHh1H2 + EHh2H2)/2a§ . Simulations 1~V investigate the

intrinsic aspects pertaining to the proposed method, and we simply use the
least-squares fit technique for matrix ambiguity removal, as is done in [4], [13], [21];
in Simulations I~1V, we set I = 200.

Simulation 1-Effectiveness of the Optimal Precoder (5.13): This simulation illustrates

the effectiveness of the proposed optimal precoder (5.13). For SNR=10 dB and
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Fig. 2. Channel NMSE (optimal and suboptimal precoders).

6 = 0.6, we consider the optimal sequence (5.13) and another sub-optimal choice

given as p(n)’ = 0.6 for 0 <n <15 and p(n)* =1.4 for 16 < n < 31. Figure

2 shows the computed NMSE with various numbers of symbol blocks K (the product

channel coefficients are computed via (5.4)). It can be seen that the optimal solution
(5.13) significantly improves the performance.

Simulation 2-Performance Comparison of Solutions (5.3) and (5.4): This simulation
compares the estimation performance of solutions (5.3) and (5.4). Figure 3 shows the
respective NMSE, versus number of symbol blocks, for three power thresholds 6:

0.3, 0.6,and 0.92 (SNR s fixed at 10 dB). The result shows that the performances

of the two methods are very close for 6 = 0.3 and 0.6; however, solution (5.4)

seems to yield smaller NMSE when 6 = 0.92. This is because, for 6 = 0.3 and

0.6, the associated condition number pair (m(Q),m(Q)) are (1.4286,1.1370) and
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Fig. 3. Channels NMSE by two solutions.
(2.5,1.5737): both the two matrices Q and Q remain well conditioned, and can
largely limit the error effect. However, for 6=0.92 , we have

(n(Q),m(Q)) = (12.5,6.683): the matrix Q tends to be ill-conditioned, and solution

(5.3) becomes more susceptible to data errors (solution (5.4) will be adopted in
subsequent simulations).

Simulation 3-Robustness Against Channel Order Overestimation: This simulation
tests the proposed method when channel order is overestimated. We consider two
different levels of SNR: 0 dB and 15 dB. For the overestimated channel order
8 <L <15, Figure 4 shows the respective computed NMSE ( K =500 and
6 =0.8). It can be seen that the proposed method is quite robust with respect to
channel order overestimation: the NMSE increment is only about 3 dB as L

increases from 8 to 15.
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Fig. 4. NMSE in the presence of channel order overestimation.
Simulation 4-Estimation Performance Against Blind Subspace Method with Transmit
Redundancy [40]: This simulation compares channel estimation performances of the
proposed scheme with the identical-precoder subspace method [40, p-1218], in which
FFT precoding matrix is adopted to convert the multi-carrier scheme into

single-carrier FDE-STBC systems considered in this paper. To implement the

algorithm in [40], the last 8 entries in each symbol block are set to be zero; this

introduces the minimal amount of transmit redundancy for fulfilling the associated

channel identifiability condition (cf. [40, p-1218]). For fixed SNR= 10 dB, Figure 5

shows the computed NMSE versus number of symbol blocks; the proposed method,
depicted with solid lines, is implemented with various choices of 6. We can first see
from the figure that the performance of the proposed method is improved as ¢

decreases: this is because small 6 results in small x(Q), and also reduces the mean

square error incurred by
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Fig. 5. NMSE of two methods at different numbers of symbol blocks.
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Fig. 6. NMSE of two methods at different SNR levels.

white noise perturbation. Compared with the subspace method [40], the proposed

approach can better track the channel with a small number of received data blocks.
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Fig. 7. BER performance of the proposed method at different minimal power
threshold é.

Figure 6 shows the NMSE of the two methods at different SNR levels (K = 500).
The result shows that, in the medium-to-low SNR region, our method performs better
even with the moderate choice 6 = 0.7. When SNR increases, the output NMSE of
[40] exhibits a fast decay. This is not unexpected since the method [40] is
“deterministic” in nature: it benefits from the finite-sample-convergence property, and
can usually yield impressive estimation accuracy when SNR is high [31]. A similar
tendency is also observed in [31, p-1942] when non-redundant diagonal precoding
based identification is compared with the (deterministic) multi-channel subspace
methods [29] and [38].

Simulation 5-On Selection of Power Threshold é: This simulation considers the
optimal precoder (5.13) and illustrates the impact of 6 on equalization performance.
Figure 7 shows the bit-error-rate (BER) curves for 0.1 <6 <0.9; we set K =500,

I =1000, and use frequency-domain ZF equalizer [15] for symbol recovery. It can
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be seen that, although a large 6 results in a less accurate channel estimate, the BER
is however improved as ¢ increases from 0.1 to 0.8. This would reflect the
ZF-PEP analysis given in Section VI: a large 6 can on the other hand limit the
power penalty and improve the equalization performance. However, if ¢ is too large

(6 > 0.8), the channels will be poorly estimated, resulting in large decision error

floor. Hence 6 =0.7 ~ 0.8 seem to be the compromising choices, as far as
equalization performance is concerned.

Simulation 6-Equalization Performance Comparison: In this simulation we compare
the proposed method (implemented using the optimal precoder (5.13) and 6 = 0.8)

with the blind identical-precoder subspace algorithm in [40] and the training based

scheme [11] in terms of BER. To implement the method [11], pilot symbols (64 in

total) are placed in the initial two blocks in each data burst and are optimally designed

according to [11, p-730]. To fairly compare the three methods under a fixed spectral

efficiency, we will similarly use 64 training symbols, placed also in the initial block

pair per data burst, for ambiguity removal in the two blind approaches; for simplicity

we just choose the optimal sequence reported in [11]. We note that, in the

transmit-redundancy based blind scheme [40], 8 entries in each symbol block are

zero-padded for facilitating channel identification: only 24 entries per symbol block

can thus be used for carrying source data. To compensate for possible spectral

efficiency loss, 20 elements out of which are loaded with 8-PSK symbols, whereas the

remaining four are BPSK modulated: this maintains an overall data rate of 64

bits/block, as in the training scheme [11] and the proposed method (both with QPSK
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Fig. 8. BER performances of three methods (i.i.d. Gaussian channel model).
constellation). Figure 8 shows the BER results of the three methods at different SNR
levels (K =500 and I =1000); the known channel case is also included as the
benchmark performance. The proposed method, as we can see, leads to the lowest
BER. The performance advantage over the training method [11] would come from the
reduction of number of unknowns from 2(L +1) to three: this would further

smoothen the noise effect and thus improve performance. In contrast with [40], our

method yields about a 3~4 dB SNR gain; this benefits from the non-redundant

transmission of the proposed scheme: for a target data rate one can otherwise use

lower order constellations to buy more BER floor margin. Finally we observe that,

compared with the known channel case, our method seems to incur no more than 1

dB penalty. We repeat the above experiment with the exponential delay power profile
channel model [30]. Figure 9 shows the resultant BER curves, which are seen to

exhibit a similar tendency as in the
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Fig. 9. BER performances of three methods (exponential delay-power profile
channel model).

I.1.d. Gaussian channel case.

Simulation 7-Equalization Performance in Slowly Time-Varying Channels: This
simulation compares the proposed method (with optimal precoder (5.13) and
6 = 0.8) against [11] and [40] in a slowly time-varying channel environment. We

assume each channel tap varies according to the Jake’s model with a maximal

Doppler frequency of 52 Hz; this corresponds to a moving speed 3 m/sec and a carrier

frequency of 5.2 GHz (the same simulation environment is considered in [40]). The

number of symbol blocks in each data burst is set to be K = 300. To track the
channel variation, in both blind methods the receive data statistics are adaptively

updated based on the rectangular sliding windowing scheme suggested in [40, p-1218],

with the window size set to be 150. Channel estimation is performed each time a new

sub-burst of 50 symbol blocks are available. As in the previous simulation, the
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optimal pilot sequence designed in [11] is placed in the initial symbol block pair per
sub-burst, for training based estimation as well as for ambiguity removal in the two
blind schemes; for the transmit-redundancy based solution [40], symbol constellations
are likewise loaded for comparison under a fixed data rate. Figure 10 shows the
respective BER curves (averaged over [ = 2000 trials). Compared with the
quasi-static case (Figures 8 and 9), the performances of the three methods degrade
due to the time-varying channel characteristic; the proposed method, still, leads to the

lowest error rate.

Simulation 8-On PAPR Performance: This simulation investigates the PAPR results
when the optimal precoder (5.13) is used. For the considered system parameters
(N =32, L=28) and with Nyquist pulse shaping filter, the values of PAPR for
various choices of 6 with respect to different symbol constellations are tabulated in
[37, p-1124]. The results show that the two-level precoder (5.13) does increase PAPR
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over the equal-power case; in particular, the choice 6 = 0.3 raises the PAPR to a
level comparable to that of multi-carrier scenario. It is noted that the PAPR does not
faithfully reflect the actual signal amplitude variation in all cases; this is because the
probability that such a peak occurs could depend on the block length as well [36]. A

more realistic performance metric for describing the actual power amplification

portrait is the instantaneous PAPR [36, p-383]. For 64-QAM and 256-QAM

constellations, Figure 11 shows the probability that the instantaneous PAPR exceeds a

prescribed value ~ with respect to five different choices of power thresholds:

6 =0.7,0.76, 0.84, 0.93,and 0.97 (the precoding induced power spike, i.e.,

N — (N —1)6, are respectively 10.3, 8.44, 6, 3, 1.8). As we can see from the figure, it

is likely that no more than 1 dB power back-off is required as 6 decreases from 0.97

to 0.7 (or equivalently, the spike value increases from 1.8 to 10.3); a slight impact on
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the incurred instantaneous PAPR is also observed when different symbol
constellations are used. As a result, with moderate choices of 6, the proposed

optimal precoder (5.13) does not seem to induce a large power back-off in practice. It

is noted that, although the instantaneous PAPR will increase when ¢ falls below 0.7,

small 6 should be precluded for maintaining the BER performance (see Figure 7).
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Chapter 8
Conclusions

Blind channel estimation for STBC transmission in a MISO environment is a
challenging research problem. This paper presents a solution for FDE-STBC systems.
The proposed method relies on non-redundant diagonal precoding and i.i.d. source
assumption, and exploits the resultant linear signal structure in the conjugate
cross-correlation matrix of the received data. The circulant channel matrix property,
which is unique to FDE based block transmission, leads to an identification equation
set with a BCCB nature. Such a distinctive system matrix structure simplifies the
characterization of channel identifiability condition (in terms of precoder coefficients),
and can also alleviate the underlying algorithm complexity. The proposed channel
estimate has an appealing property: it is exact when perfect data statistic is available
and channel noise is circularly Gaussian. In the presence of finite-sample estimation
errors, our channel estimation framework easily incorporates the data mismatch effect,
and allows for natural precoder design formulation and criteria for improving
estimation accuracy. Through analysis the optimization problems can be formulated
to exploit the BCCB matrix property and are then analytically solved. The proposed
solution tends to optimize the channel estimation robustness against deterministic
error perturbation, and also minimize the mean square error when data mismatch is
modeled as a white noise. The PEP analysis shows a trade-off regarding the proposed
optimal error-resistant precoder: it incurs the worst-case power penalty for symbol
decision. Through numerical simulations compromising choices for precoder

parameters are determined. Simulation results show that the proposed approach
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compares favorably with existing training and blind methods fitted for FDE-STBC

systems.
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Appendix

A: Proof of Theorem 4.

We will denote by BCCB, , the set of all N?x N? block circulant matrices

with circulant blocks [12, p-184], each characterized by N circulant matrices of

dimension N x N . The proof of Theorem 4.1 is based on the following lemma.

Lemma A.1[12, p-185]: If X € BCCB

v o then X can be diagonalized by F ® F.

More precisely, let {CO,---,CN_I} be the set of N x N circulant matrices on the

top row block of X, and let A, be the diagonal matrix containing the eigenvalues

of C, . Then we have

Nin’;v ® An]<F1 ®F), (A1)

n=0

X =(F®F)

where Q= diag{[l w w? wN‘l]T}. Conversely, any matrix of the form

(FRF)A(F ' @F ") for some diagonal A belongsto BCCB, , .

O
[Sketch Proof of Theorem 4.1]: It can be seen from (3.14) that the matrix Q is

characterized by the N circulant matrices {p(O)QIN,p(l)QJ, ...1p(N—1)2JN_1}

on its top row block. If we stack the N eigenvalues of the circulant matrix p(n)*J

into a vector, say u, , by definition of J (cf. (3.7)) it can be verified that
u, = \/N-p(O)QfO and u, = x/N-p(n)2fN_” for 1<n<N-1, (A2

where f =1/JN-[1 " * - &2 WU eV s the (n+1)th

columnof F!, 0<n <N —1.Based on (A.2), Lemma A.1 and by going through
essentially the same steps as in [37, Appendix A], it can be shown that the

eigenvalues of Q arethe N? entries of the vector
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and the assertion thus follows. [
B: On Computation of Product Unknowns

In the following theorem we will show that Q' also belongs to the BCCB
category. Moreover, it possesses an identical structure as that of Q, and is

completely specified by N scalar parameters which are very easy to compute.

Theorem B.1: Let p(z) be the polynomial defined as in (4.2). Assume p(n) is

chosen so that Q is nonsingular. Then Q' is also a BCCB matrix with

[%IN’ ad, -, aNfl.]Nfl] e R™ as the top row block, where

[ao aN_l]T:(\/N)—lF—l[p(l)—l p(w)_l p(wN—l)—l]T' (Bl)

=

O
[Proof]: From Lemma A.l, it is easy to see that Q € BCCB, , implies

Q! € BCCB

v+ and hence we can write Q™' = (F@ F)A(F' @ F~') for some

diagonal A . It suffices to check that, for the BCCB matrix with

{aly 0, - e, IV} on the top row block, the resultant A  satisfies

AA, =1

9 ey where AQ :diag{qQ} and dq is in (A.3). By following the

procedures as in Appendix A, it can be shown A = diag {q}, where

T

e S N U IS P CE

By definition of a in (B.1), it is easy to see that the [th entry of q is simply the
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reciprocal of the [th entry of dq in (A.3). The proof is thus completed.
O
Theorem B.1 asserts that, to invert the N* x N* matrix Q, it merely requires to

compute N scalars «;’s via (B.1). This calls for two N -point FFT operations, one

-1 ’S;

for computing p(w")’s form p(n) and the other for «,’s based on p(w")
additional N multiplications are also needed for evaluating p(w")™'’s from
p(w")’s. When the symbol block length N is chosen to be a power of two, the

number of flop counts is 4N log, N — N . The main computational cost for (4.8), on

the other hand, lies in inverting an (L +1)* x (L +1)* Hermitian Toeplitz matrix

Q" Q; the complexity can be limited to 4(L +1)* by using the Levinson algorithm
[17, p-196]. 0

C: Proof of Lemma 5.1

The assertion relies on the following key observation: any given p(n) satisfying

(5.6) can be constructed by “squeezing” the peak power of the two-level solution
(5.13) so that the ground powers at other time instants are “raised” to the prescribed

levels. More precisely, let p(n) be an admissible sequence such that
6 <p(n)? < N—(N-1)3§ for neZ, where the index set Z is a subset of

{0,---,N —1}\ {m}.Then p(n) can be expressed as

p(my =N —(N-1)6 - 37 A, (C.1)
nez
and
p(n)? =86+ A, for ne€ Z,and p(n)> =6 for n¢ 7, (C.2)

where A, >0 models the excessive power over the ground level ¢ for n e 7.
The sequence of the form (C.1) and (C.2) satisfies the constraints (5.6a) and (5.6b); in
particular, since p(m)* > § is required, we can infer from (C.1) that

S A, <N1-6). (C3)

nez

We assume for the moment that m =0 ; as one will see, the result for the
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1<m < N —1 case easily follows. Associated with p(n) in (C.1) and (C.2), we

have, for 1<k <N -1,

N—

p(w') = > pn)w™ =

=0

—_

+ > (6+ An)w*kn + > Swkn

nez n¢7Z

N—(N-15— S A,

nezZ

3

=|NA-8)+ > (W™ —1)An] 164+ Y dw 4+ ST b = ‘N(l— O+ > (W™ -1,

nez nez n¢Z nezZ
N-1
=6%" wm=0
n=0
(C.49)
Let us define the nonnegative number
d=N1-6->A,, (C.5)

nez

Since w ™" = cosnf, — jsinnd, , where 6, _:= 2k /N , and with (C.5), it follows

from (C.4) that

2 2
2
‘p(wk)‘ = ld + > A, cosnb | +|> A, sinnb,
nez neZ
2 2
=d° +2d[2 A, coankJ —|—[Z A, cosn@k] +[Z A, sinn@k] : (C.6)
nezZ neZ neZ
Observe that
2 2
[Z A, cos nek] +| > A, sin nGkJ =Y A2 +2 Y A, A, (cos n,0, cosn,,0, +sinn0, sinn,0,)
neZ nez nezZ nynpm €2 ! "
2
ST A E A wnon < A2 T aa, -[Sa)
neZ nyny, €7 ! " neZ nynpm €2 ! " neZ
(C.7)
and that
Zd[ > A, cosnf, | <2d| ) An]. (C.8)
neZ / neZ

From (C.7) and (C.8), ‘p(w"’)‘2 in (C.6) can be upper bounded as
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+[Z An] - [d+ZAn] = N'(L-67,  (C9)

nez nezZ

p") < @+ zd[z A,

nezZ

in which the last equality follows from the definition of d in (C.5). This thus proves
the lemma, under the assumption m =0 in (C.1). For 1 <m < N —1, equation

(C.4) is then accordingly modified as

NA=68)+ 3 (wFmm A, jwo™™ (C.10)

nez

p(w') =

n

By going through the same procedures as in (C.5)~(C.8) the conclusion (C.9) will
follow. (]

D: Proof of Lemma 5.3

Without loss of generality we assume M is split as M = [1\7[ Md], in which

M, contains the columns to be deleted; otherwise we can multiply M from the

right by a permutation matrix to put it in this partition. It thus follows
M MM MM,

MM = M [1\71 Md]: . (D.1)

Hq7 H
MM MM,

Since M is nonsingular, MM is positive definite. By the inversion lemma for
block matrix [20, p-572], we have
o _ _ _\—1
1 (MHM—MHMd (M*M,) 1MdHM) x
(M"M) = ’
1 — -1
X (MfMd—MdHM(MHM) MHMd)

(D.2)

in which the notation *“x” stands for the block off-diagonal submatrices irrelevant to

the proof procedures. From (D.2), we have

H A () N )
Tr (Md M, - M/M(M"M) M Md) ]

(MHM)”] = Tr

STHNr Tl ang VR
(M M- M"M, (M'M,) MdM) ]—I—Tr

(D.3)
Since (MHM)_1 is positive definite, so are its principle submatrices and (D.3)
implies
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Tr

(MHM)l} > Ty

(1\71111\7[ — MM, (MM, )71 MdHl\_/I)_W. (D.4)

Using the matrix inversion lemma [20, p-571], inequality (D.4) can be further

expanded into

Tr

VR el H
(M M- MM, (MM,

(MHM)_ll > T

) 1\71)11

= 7r|(M7M) '+ (878) MM, (MM, - M3 ) MHMd)l M;fM(MHM)l]

=1Tr (1\_/IH1\_/I)71} +Tr

(0 5) M, (MM, M (8 R, ) M;IM(MHM)l]
(D.5)

L -1 _
Since (MfMd - M/M(M"M) 1MHMd) is a principle submatrix of (MHM) '

(cf. (D.1)), it is positive definite and S0 IS
1 1 e S

(M78) MM, (MM, - MIM(MPM) MM, | MIM(MTM) . The result
then follows from (D.5). ]

E: Proof of Theorem 6.1

We will prove the theorem by induction. We will first show that (6.7) holds for an
arbitrary admissible three-level sequence which, according to (C.1) and (C.2), can be
parameterized as
: (E.1)

and

p(no)2 =6+ A"o vand p(n)> =6 for n¢ {m, no}, (E.2)

where 0 <n, = m < N —1. From (C.3), we must have A”o < N(1—6). With (E.1)

and (E.2), it follows that

_N-2 1 1 _N-2 N(1—9)
B N—(N-1)§—A, 6 ~A2 + N1—8)A, +[N—(N-186

10 o 1

N-1
-2
HZ::O p(n) 5 T s+A

o
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(E.3)
It thus suffices to show J(A, )= —Aio + N(1—06)A, +[N—(N—-1)]6 is
minimized by either A”o =0 or Ano = N(1—-06) : this confirms that the

maximizing p(n) reduces to the two-level form (5.13). Indeed, simple manipulations

show that the minimal value of J(A, ) within the interval A, €[0,N1-0)] is

[N — (N —1)é]6, which is attained by the two boundary points. Now we assume that

(6.7) holds for an arbitrary K -level sequence (3 < K < N), which is described as

K-2
2 f— p— p— —
p(m)" =N — (N —1)6 ;Ank, (E.4)
and
2 2 ’
p(n) =6+ A, for ke {L,--,K —=2},and p(n)” =6 for n¢gn’s. (E.5)
Hence we have
oo, N—(K—-1) K2 1 P < B R | 1
gp(n) = F —O-kzz:l(erAnk—l—N (N-1)6 ;Ank < 5 +N7(N71)5
(E.6)
Forany (K + 1)-level sequence given by
5 K—-1
m)"=N-—(N-1)6—> A , E.7
p(m) (N 1) kZ::l ny (E.7)
p(n)? =6+ A, for kel K -1} and p(n)? =6 for n¢gn,’s. (E.8)
we have
N-1 N—-—K K-1 1 K-1 -1
EL v §a,
nZ::o 6 o1 0+ Ank =1
(L K—2 K-2 -1
_ N 1 +[N—(N—1)6— A,,]
1) k=1 0 + Ank k=1 '
N-1 T —
~ 5 N—(N-1)5
1 1 K-1 -1 K-2 -1
+ ——+|N-(N-1)0—-> A, —|N —(N —-1)6 — A,
b+A4A, 6 [ ( ) P [ ( ) i1 k]
-0 -

(E.9)
With (E.9), it thus remains to check © < 0. It is easy to verify that
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_A"K—l ng_y

_l_
(6+4, )6 Kl

(E.10)

1

Subject to the power threshold constraint (5.6b), we must have,

K-1 K-2
N—(N—l)é—ZAnk > §, and hence N—(N—l)é—ZAnk >0+A, .

k=1 k=1
(E.11)
The two inequalities in (E.11) imply
K-1 -1 K-2 -1 1
N—-(N-16-> A N—-(N-1)6—)> A <——. (E.12
O S T e e S
The assertion follows immediately from (E.10) and (E.12). [
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Abstract-This paper studies the energy-constrained MMSE
decentralized estimation problem with the best-linear-unbiased-
estimator fusion rule, under the assumptions that i) each sensor can
only send a quantized version of its raw measurement to the fusion
center (FC), and ii) exact knowledge of the sensor noise variance is
unknown at the FC but only an associated statistical description is
available. The problem setup relies on maximizing the reciprocal of
the MSE averaged with respect to the prescribed noise variance
distribution. While the considered design metric is shown to be
highly nonlinear in the local sensor transmit energy (or bit loads),
we leverage several analytic approximation relations to derive a
associated tractable lower bound; through maximizing this bound a
closed-form solution is then obtained. Our analytical results reveal
that sensors with bad link quality are shut off to conserve energy,
whereas the energy allocated to those active nodes is proportional to
the individual channel gain. Simulation results are used to illustrate
the performance of the proposed scheme.

Index Terms: Decentralized estimation; Sensor networks; Energy
efficiency; Quantization; Convex optimization.

I. INTRODUCTION

Low energy/power cost is a critical concern for various
application-specific designs of sensor networks [15], [16]. In
the decentralized estimation scenario, wherein each sensor can
transmit only a compressed version of its raw measurement to
the fusion center (FC) owing to bandwidth and power
limitations, several energy-efficient estimation schemes have
been reported in the literature [1], [7], [10], [11], [13], [14].
Since the transmission energy is proportional to the message
length [2], [13], all these works are formulated within a
quantization bit assignment setup, with the optimal bit load
determined via the knowledge of instantaneous local sensor
noise characteristics, e.g., the noise variance if the fusion rule
follows the best-linear-unbiased- estimator (BLUE) principle [5,
chap. 6]. To maintain the estimation performance against the
variation of sensing conditions, repeated update of the noise
profile is needed: this inevitably incurs more training overhead
and hence extra energy consumption. The design of distributed
estimation algorithms independent of the instantaneous noise
parameters remains an open problem [13, p-419]. Relying on
partial noise variance knowledge in the form of the statistical
distribution, the problem of minimizing total transmission

T This work is sponsored jointly by the National Science Council under
grants NSC-96-2752-E-002-009, NSC-96-2628-E-009-003-MY?3, by
the Ministry of Education of Taiwan under the MoE ATU Program,
and by MediaTek research center at National Chiao Tung University,
Taiwan.
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energy under an allowable average distortion level (measured in
terms of a mean-square-error (MSE) based criterion averaged
with respect to some prescribed statistical distribution) is
recently considered in [11].

This paper complements the study of [11] by addressing the
counterpart problem: how to find the optimal bit load which
minimizes the average distortion under a fixed total energy
budget. The main contribution of the current work can be
summarized as follows: (i) while the design metric, in the form
of the reciprocal of the MSE averaged with respect to the
distribution, is shown in [11] to be highly nonlinear in the
sensor bit load, we leverage several analytic approximation
relations to derive an associated tractable low bound, (ii) by
maximizing this lower bound the problem can be further
formulated in the form of convex optimization which yields a
closed-form solution. Our analytic results reveal that, toward
utmost estimation accuracy under a limited energy budget,
sensors with bad link quality should be shut off, and energy
allocated to those active nodes should be proportional to the
individual channel gain; a similar energy conservation policy is
also found in the previous works [7], [11], [13]. Numerical
simulation evidences the effectiveness of the proposed scheme:
it outperforms the uniform allocation strategy in an
energy-limited environment.

II. SYSTEM SCENARIO

Consider a wireless sensor network, in which N spatially
deployed sensors cooperate with a FC for estimating an
unknown deterministic parameter 6. The local observation at
the ith node is

2, =0+n, 1<i<N, 2.1
where n, is a zero-mean measurement noise with variance

o?. Due to bandwidth and power limitations each sensor

quantizes its observation into a b, -bit message, and then

transmits this locally processed data to the FC to generate a
final estimate of 6. In this paper the uniform quantization
scheme with nearest- rounding [9], is adopted; the quantized
message at the ith sensor can thus be modeled as

m;=z;,+¢q,, 1<i<N, (2.2)
where ¢; is the quantization error uniformly distributed with

zero mean and variance 03’ =R?/(12-4%) [9], where

[-R/2,R /2] is the available signal amplitude range common

to all sensors. The adopted quantizer model (2.2) and the
uniform quantization error assumption, though being valid only
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when the number of quantization bits is sufficiently large [9],
are widely used in the literature due to analytical tractability.
Assuming that the channel link between the ith sensor and the
FC is corrupted by a zero-mean additive noise v; with

. 2 .
variance o0, The received data from all sensor outputs can
thus be expressed in a vector form as®

[?h"'yN]T = [1"'1]T9+[”1"'”AM]T ""[%"'%V]T +[Ul"'UN]T s
=n =q =V
2.3)

where ()7 denotes the transpose. This paper focuses on linear

fusion rules for parameter recovery. More specifically, by
assuming that the noise components {n,q,v} in (2.3) are

mutually independent and the respective samples n,’s, g;’s,
and v; ’s are also independent across sensors, the parameter 6
is retrieved via the BLUE [5, p-138] scheme via
Yi ul 1

Y| = -
Dol +ol+ 847 Sl + ol + 847"
the incurred MSE is thus [5, p-138]

N

Eé—@z[z !

N

0=

—1
] ; (2.4)

Dol o+ pah

A commonly used statistical description for sensing noise
variance is [7], [13]:

-1
] , B:=R*/12. (2.5)

ol=6+az, 1<i<N, (2.6)
where 6 models the network-wide noise variance threshold,
« controls the underlying variation from the nominal
z ~XE iid.
distributed random variables each with degrees-of-freedom
equal to one [6, p-24]. The proposed energy-constrained
MMSE decentralized estimation scheme is based on the noise
variance model (2.6) and is discussed next.

minimum, and are central Chi-Square

III. MAIN RESULTS
A. Problem Setup

We assume that the ith sensor sends the b, -bit message m;

by using QAM with a constellation size 2% . The consumed
energy is thus [2], [13],

E; :w7<2}" —1) for some w;, 1<i<N; (3.1)
the energy density w; is defined as [2]
w; = pd" -In(2/P,), (3.2)

in which p is a constant depending on the noise profile, d;
is the distance between the ith node and the FC, x; is the ith
path loss exponent, and P, is the target bit error rate assumed
common to all sensor-to-FC links. With (2.5) and (3.1), the
energy allocated to the ith sensor is thus determined by the
number of quantization bits b, . For a fixed set of sensing noise
the problem of MMSE decentralized

estimation, under an allowable total energy budget FE,, can be

2 >

variances o) s,

formulated as

a. As in [1], [7], and [13] we assume orthogonal channel access among
all the sensor-to-fusion links, which can be realized via, e.g., TDMA or
CDMA with orthogonal spreading.
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XV: 1
Dol ol +pah
and b, €Z¢, 1<i<N,

or equivalently,

S, (2" -1)< By,

Minimize [
i=1

-1

, sit. % w,(2" 1)< By

i=1

(3.3)

N 1
Maximize Y ——————
i—1 U? + 05 + 347"

and b, €Z), 1<i<N, (3.4)
where 7, denotes the set of all nonnegative integers. To

obtain a universal solution irrespective of instantaneous noise
conditions, we will consider the following optimization
problem, in which the equivalent distortion cost function in (3.4)
is instead averaged with respect to the noise variance statistic
characterized in (2.6):

N
Maximize fz >
i=1

1
ﬁp(z) dZ,
6+az, + 047"

N
st Sw, (2" 1)< By, beZi, 1<i<N, (3.5)

i=1
where 6 :=6+0> and z:=[z--zy]" with p(z) denoting

the associated distribution. To solve (3.5), the first step is to
find an analytic expression of the equivalent mean MSE metric.

\/ZIE exp(—z/2)u(z)

[6, p-24], where wu(z) denotes the unit step function, it can be

Since z ~ x? is iid. and pr(z):

shown that (see [12] for a proof)
N

—— () &=
fz;(erazz +[347b’ b

—2 /2
ol

(ozzy +6+647" )\/27

00

7o 2

2e-diescn o [F7 5 7a)

Ty

-7 /2
e . . . .
dt is the Gaussian tail function.

oz

Based on (3.6), problem (3.5) can be equivalently rewritten as
(5 +ﬁ47b‘)/a)
Ja(6+pa7")

N
under ZW,;(Q"’ —1) <Ep,and b €Z;, Vi.
i=1

i

(3.6)

where Q(z) = fx

T

! €<5+ﬁ4 by /20 Q

N
Maximize /27 -y,

i=1

s

3.7)
The optimization problem (3.7) appears rather formidable to
tackle because the cost function is highly nonlinear in b,;. In

what follows we will propose an alternative formulation which
is more tractable and can yield an analytic solution.

B. Alternative Formulation
The proposed approach is grounded on the following
approximation to @)(-) function [8, p-115]:
1 e 2
Q) ~ = - -7
2r|(1—7 Do+ Ji* +2n

the approximation (3.8) is quite accurate since the peak relative
error is less than 1.2% for z >0, and is almost identical to

;o ()

zero whenever x >5. Based on (3.8) together with some

straightforward manipulations, the cost function in (3.7) can be
well approximated by



(6+51) /20 .Q( (5 + 847" )/0)

NZRS .
i=1 \/a(é + 84’(”)
N 1
~ Z — — = = X
- (s )+ w*l\/(é +647") +2ma(é + pa7)

3.9
The main advantage of the approximation (3.9) is that it can
lead to an associated lower bound in a more tractable form;
through otherwise maximizing this lower bound we can
eventually obtain a closed-form solution. More specifically, it
can be shown that (see [12])

g: 1
=1(1— n*l)(E + 847" ) + w*l\/(é + 47" )2 + 21 (5 + 847" )
N 1
21:21(17 )(5+ﬁ4*b')+7r*1[(5+64*bf)+m]
N 1 N 4b
:§(6+[34 Vta Sh+@+oa (3-10)

Based on (3.10) we will instead focus on maximizing the lower
bound, and thus reformulate the optimization problem as

N 4b
Maximize ) ————=—,
=18+ (a+6)4"
b€Zs, 1<i<N. (3.11)

To facilitate analysis we first observe that, since b, € Z{ , it

sit. ﬁjw (2" 1)< By, and
i=1

N N
follows 3w, (21" - 1) <>, (41" - 1) . this implies we can
i=1 i=1

replace the total energy constraint in (3.11) by the following
one without violating the overall energy budget requirement:

zvj w, (4" —1) < By (3.12)
i=1

With the aid of (3.12) and by performing a change of variable
with B, = 4% 1, the optimization problem becomes

B +1
(a+6)B;’

Maximize
121 (a+B+6)+

subject to ZwlB,v, <E;,and B, >0, 1<i<N.(3.13)
i=1

In (3.13), the intermediate variable B; is relaxed to be a
nonnegative real number so as to render the problem tractable;
once the optimal real-valued B; (and hence b,) is computed,
the associated bit loads can be obtained through upper integer
rounding, as in [7], [11], [13]. The major advantage of the
alternative problem formulation (3.13) is that it admits the form
of convex optimization and can moreover lead to a closed-form
solution, as is shown next.

C. Optimal Solution
Based on the standard Lagrainge techniques, the optimal

solution to (3.13) can be obtained as follows (see [12] for
detailed proof). Let us assume w; > w, >--- > wy without

loss of generality, and define the function

E. B - 3

1+ = + W,
T[ a+6 ]Z;( !
N
[wy ZK Jw;
j=

, 1I<K<N.

J(K) = (3.14)

Let 1<K, <N be the unique integer such that
J(K,—=1)<1 and f(K)>1; if f(K)>1 for all
1<K <N, then simply set K, =1 (the existence and

uniqueness of such K, when otherwise is shown in [12]).

Then the optimal solution pair (X’p t,pr’) is given by

) -1
[ort — \/— Z \/— B, +[ ~] i w;| ,(3.15)
a+6 0)i=x, !
and
0, 1<i<K, -1,

B 14 K <i<n
a+ 6\ A w, a+6

With B, =4% —1 and § =6&+0>, the optimal bit load

b”" can be directly obtained from (3.16); the resultant average
distortion level is thus (cf. (3.7))

2y g o
N ot 2 Q[\/(§ +ol+ B4 )/a]
MSE = |\2r- % :
=K \/a(é +02+ 847

(3.17)
IV. DISCUSSIONS AND SIMULATION

1.  We note that the minimal achievable average MSE is
attained whenever all the raw sensor measurements with
infinite-precision are available to the FC (i.e., the case
when b, =00, 1<¢<N). Hence, by setting b, = oo
in the mean MSE formula specified in (3.7), we have the

following performance bound
1
2m

a8 +0?)

4.1
Formula (4.1) reveals the impacts of the noise model
parameters « and ¢ on the estimation performance.
Specifically, it is easy to see from (4.1) that the minimal
MSE increases with « : this implies the estimation
accuracy degrades as the sensing environment becomes
more and more inhomogeneous. Furthermore, it can be
checked that MSE . also increases with the minimal

min
noise power threshold ¢ . This is reasonable since a large
¢ implies poor measurement quality of a// sensor data,

MSEmin =

Ne((wa‘f)/zﬂQ( (5+03)/a)

—1

and hence a less accurate parameter estimate. We note that,

although these facts are inferred based on the idealized
distortion measure (4.1), a similar tendency is also
observed for MSE in (3.17) attained with sensor data

quantization (see the numerical results below).
2. Recall from (3.2) that the energy density factor w, is

proportional to the path loss gain d (assuming x; =k

throughout all links). Large values of w, , therefore,

i s
correspond to sensors deployed far away from the FC
(with large d;), usually with poor background channel
gains. In light of this point, the proposed optimal solution
(3.16) is intuitively attractive: sensors associated with the
(K, —1)th largest w, ’s are turned off to conserve energy.
We note that a similar energy conservation strategy via
shutting off sensors alone poor channel links is also found
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(1

[10]

in [7], [11], [13]. Also, we further note from (3.16) that,
for those active nodes, the assigned message length is
inversely proportional to . fw; : this is intuitively
reasonable since sensors with better link conditions should
be allocated with more bits (energy) to improve the
estimation accuracy.

We compare the simulated performance of the proposed
solution (3.16) against the uniform energy allocation
scheme with bit load determined through

w,(2" —1)=E, /N, 1<i<N. (4.2)

In each run we simply choose w; = d;" with x =2, and
d;’s are uniformly drawn from the interval [1,10] as in
[13]. In the following experiments we set the number of
sensors to be N =200, link noise 03 =0.05, and

consider three different levels of total energy:

N

E, =~v> w;, with v=0.251 3, which respectively
i=1

correspond to the low, medium, and high energy regimes.

With fixed ¢ = 2, Figure 1-(a) shows the computed mean

MSE as « varies from 0 to 8, whereas Figure 1-(b)

depicts the MSE for fixed « =2 and 0.5 <6 <8. The

results show that, as expected, the estimation accuracy
improves as FE; increases. Also, the proposed solution

(3.16) outperforms (4.2), especially when FEp is small; it

is thus more effective in an energy-limited environment.
We finally note that the simulated MSE increases with
both « and 6 : this coincides with the asserted facts in
the previous discussions. Figure 2 further depicts the
histogram of the computed bit loads; it appears that a large
fraction of the active nodes are assigned with one or two
quantization bits (hence with BPSK or 4-QAM
modulations adopted).
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