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bstract

Amphiphilic pseudo-amino acid composition (Am-Pse-AAC) with extra sequence-order information is a useful feature for
epresenting enzymes. This study first utilizes the k-nearest neighbor (k-NN) rule to analyze the distribution of enzymes in the
m-Pse-AAC feature space. This analysis indicates the distributions of multiple classes of enzymes are highly overlapped. To cope
ith the overlap problem, this study proposes an efficient non-parametric classifier for predicting enzyme subfamily class using an

daptive fuzzy r-nearest neighbor (AFK-NN) method, where k and a fuzzy strength parameter m are adaptively specified. The fuzzy
embership values of a query sample Q are dynamically determined according to the position of Q and its weighted distances to the
nearest neighbors. Using the same enzymes of the oxidoreductases family for comparisons, the prediction accuracy of AFK-NN

s 76.6%, which is better than those of Support Vector Machine (73.6%), the decision tree method C5.0 (75.4%) and the existing
ovariant-discriminate algorithm (70.6%) using a jackknife test. To evaluate the generalization ability of AFK-NN, the datasets for

ll six families of entirely sequenced enzymes are established from the newly updated SWISS-PROT and ENZYME database. The
ccuracy of AFK-NN on the new large-scale dataset of oxidoreductases family is 83.3%, and the mean accuracy of the six families
s 92.1%.

2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Enzymes can be classified into six families accord-
ng to specific molecular functions and acting objects
Webb, 1992): oxidoreductases, transferases, hydro-

ases, lyases, isomerases, and ligases. Each family can
e further classified into a number of subfamilies.
able 1 displays the numbers of subfamilies and func-
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tions of each family, as given in the ENZYME database
(Release 38).

For a novel enzyme sequence, determining its family
or subfamily class is an important task, because it gives
direct evidence of its specific molecular functions and
the objects on which they act (Webb, 1992). Such a task
is usually performed with using biochemical analysis of
either eukaryotic and prokaryotic genomes, or microar-
ray chips (Chou and Elrod, 2003). These experimental

methods are both time-consuming and expensive. With
the explosion of protein entries in databanks, understand-
ing the functions of many enzymes from large-scale
sequencing projects is of priority concern. Thus,

ed.
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Table 1
The number of subfamilies and its function for each family obtained from Release 38.0 (September 2005) of the ENZYME database and SWISS-PROT
databank (Version 48.5, November 2005, http://tw.expasy.org/enzyme)

Enzyme family No. of Subfamily No. of samples Function

Oxidoreductases 20 10,184 Roughly take responsible for catalyzing oxidoreduction
reactions

Transferases 9 30,947 Transferring a group from one compound to another
Hydrolases 9 45,271 Responsible for catalyzing the hydrolysis of various

bonds
Lyases 6 51,054 Cleaving C–C, C–O, C–N and other bonds by means

other than hydrolysis or oxidation
Isomerases 5 54,487 Catalyzing geometrical or structural changes within one

molecule
Ligases 6 60,682 Catalyzing the joining together of two molecules
accurately predicting the enzyme family or subfamily
class from its amino acid sequence is highly desired.

Most previous research about sequence analysis has
focused on extracting a number of effective features
and developing accurate classifiers from these effec-
tive features to distinguish the sequences from different
class instances (Nakai and Kanehisa, 1992; Hua and
Sun, 2001; Cai et al., 2002; Huang and Li, 2004;
Chou, 2005). Previous studies generally used two major
categories of feature representations, sequence sorting
signals (Nielsen et al., 1999; Nakai, 2000) and amino
acids composition (AAC). The AAC representation of a
given enzyme sequence is denoted by a 20-dimensional
vector which consists of occurrence frequencies of the
amino acids.

The AAC representation has recently been widely
utilized in predicting protein structural classes (Bahar
et al., 1997; Zhou and Assa-Munt, 2001), subcellular
localizations (Cedano et al., 1997; Nakai, 2000; Hua
and Sun, 2001), subnuclear localizations (Lei and Dai,
2005), and enzyme family or subfamily class (Chou
and Elrod, 2003; Chou, 2005). Owing to the lack of
sequence order information in the conventional AAC
feature, some improved versions of AAC such as pseudo-
amino acid composition (Pse-AAC, Chou and Elrod,
2003) and amphiphilic pseudo-amino acid composition
(Am-Pse-AAC, Chou, 2005) have been developed.

With regard to establishing efficient classifiers for
prediction problems of biological and medical data,
some professional classifiers were proposed such as Sup-
port Vector Machine (SVM, Cortes and Vapnik, 1995;

Hua and Sun, 2001; Cai et al., 2002; Lei and Dai,
2005), fuzzy k-nearest neighbor (k-NN, Keller et al.,
1985; Bezdek et al., 1993; Leszczynski et al., 1999;
Huang and Li, 2004), neural network (Chandonia and
coupled with the hydrolysis of a pyrophosphate bond in
ATP or a similar triphosphate

Karplus, 1995; Cai et al., 2000), C5.0 decision tree
(Quinlan, 2003), and covariant-discriminate algorithm
(CDA, Chou, 2005).

Chou (2005) used CDA with the Am-Pse-AAC fea-
ture to predict the enzyme subfamily class, and achieved
a prediction accuracy of 70.6% using enzymes of the
oxidoreductases family. To design a more accurate clas-
sifier, the distribution of enzymes in the Am-Pse-AAC
feature space using the k-NN rule were analyzed in this
study (Cover and Hart, 1967). Analysis results show
that the k nearest neighbors of a sample often belong
to several enzyme subfamily classes, revealing that the
distributions of multiple classes of enzymes are highly
overlapped.

After investigating the abilities of three state-of-the-
art classifiers based on k-nearest neighbor, SVM, and
C5.0, in coping with the overlap problem, this study pro-
pose an adaptive fuzzy k-nearest neighbor (AFK-NN)
classifier using the Am-Pse-AAC feature for predict-
ing the enzyme subfamily class, where k and a fuzzy
strength parameter m are adaptively specified. The fuzzy
membership value of a query sample Q is dynami-
cally determined according to the position of Q and its
weighted distances to the k-nearest neighbors.

Using the same dataset of oxidoreductases family
with 16 subfamilies and 2640 enzymes for comparisons,
the prediction accuracy of AFK-NN was found to be
76.6% using a jackknife test, which is better than 66.5%
for a standard k-NN classifier, 75.4% for C5.0 and 73.6%
for SVM. The three proposed classifiers AFK-NN, C5.0,
and SVM are all better than CDA (Chou, 2005) with

70.6%. This result indicates that AFK-NN performs well
in predicting members of the oxidoreductases family,
which has a large number 16 of subfamilies with a high
overlap distribution.

http://tw.expasy.org/enzyme
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Table 2
The 16 subfamily classes of oxidoreductases family with 2640
enzymes, obtained from Chou and Elrod (2003)

Subfamily
class

Groups acted by the enzyme No. of samples
(Chou and
Elrod, 2003)

1 CH–OH group 314
2 Aldehyd/oxo group 216
3 CH–CH group 194
4 CH–NH2 group 130
5 CH–NH group 112
6 NADH/NADPH 305
7 Other nitrogenous compounds 64
8 Sulfur group 59
9 Heme group 254
10 Diphenols and related substances 94
11 Peroxide 154
12 Single donors 94
13 Paired donors 257
14 Superoxide radicals 155
15 –CH2 group 84
1
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6 Reduced ferredoxin 154

otal 2640

All six families of entirely sequenced enzymes
erived from the ENZYME database (Version 38,
airoch, 2000) and SWISS-PROT (Version 48.5,
airoch and Apweiler, 2000) were further tested to eval-
ate the generalization ability of AFK-NN. The accuracy
f AFK-NN on the new large-scale dataset of oxi-
oreductases family increased to 83.3%, and the mean
ccuracy of the six families was as high as 92.1%, which
s also slightly better than 91.2% for C5.0 and 91.7% for
VM.

. Materials and methods

.1. Datasets

For comparison the dataset used in previous investigations
Chou and Elrod, 2003; Chou, 2005) were used in this study.
he dataset of the oxidoreductases family has 2640 enzymes
elonging to 16 subfamilies, where each subfamily acts on a
ifferent target, as shown in Table 2. The sequence lengths of
ll enzymes are larger than 20.

To evaluate the generalization ability of the proposed AFK-
N, six datasets were established from all six enzyme families

rom Release 38.0 of the ENZYME database (Bairoch, 2000),
here an enzyme commission (EC) number and a primary

ccession number were assigned to each enzyme. According

o the accession numbers, the protein sequences of enzymes
ere obtained from SWISS-PROT (Version 48.5, Bairoch and
pweiler, 2000). The subfamilies were selected through the

ollowing screening procedure (Chou and Elrod, 2003): (1)
emove the enzymes having more than one EC number, (2)
s 90 (2007) 405–413 407

delete the sequences identical to any of the others in the dataset,
and (3) remove the enzymes with the sequence length not larger
than 20. For each enzyme family, the numbers of subfamilies
and samples of each family are listed in Table 1. Notably, the
new dataset of the oxidoreductases family has 20 subfamilies
and 10184 enzymes.

2.2. Amphiphilic pseudo-amino acid composition

The amino acid composition (AAC) of a protein sequence
is a 20-dimensional vector, reflecting the normalized occur-
rence frequencies pi of the 20 native amino acids. A protein is
given with a sequence of L amino acids R1R2R3· · ·RL, where
Ri represents the amino acid at chain position i, 1 ≤ i ≤ L. The
AAC feature of a protein can be expressed as a vector PAAC in
a 20-dimensional space:

PAAC = [p1, . . . , p20]t. (1)

The hydrophobic and hydrophilic values of proteins play a
crucial role in protein folding and interaction with its environ-
ment, which are involved in the Am-Pse-AAC feature (Chou,
2005). The Am-Pse-AAC feature of a protein is expressed as
a vector P, which consists of 20 + 2λ components. The first
20 components are the AAC features and the next 2λ ones
are a set of correlation factors that reveal the physicochemical
properties hydrophobicity and hydrophilicity along a protein
sequence. The vector P of the Am-Pse-AAC feature is repre-
sented as follows:

P = [p1, . . . , p20, p20+1, . . . , p20+λ, p20+λ+1, . . . , p20+2λ]t,

(2)

pu = ωπu−20∑20
i=1pi + ω

∑2λ

j=1πj

, 21 ≤ u ≤ 20 + 2λ, (3)

where ω is a weight factor, and πj is the jth-tier sequence-
correlation factor calculated based on the following equation:

π1 = 1

L − 1

L−1∑
i=1

H1
i,i+1, π2 = 1

L − 1

L−1∑
i=1

H2
i,i+1,

π3 = 1

L − 2

L−2∑
i=1

H1
i,i+2, π4 = 1

L − 2

L−2∑
i=1

H2
i,i+2, . . . ,

π2λ−1 = 1

L − λ

L−λ∑
i=1

H1
i,i+λ, π2λ = 1

L−λ

L−λ∑
i=1

H2
i,i+λ, λ < L,

(4)

where H1
i,j = h1(Ri)h1(Rj) and H2

i,j = h2(Ri)h2(Rj). The
terms π1 and π2 are called the first-tier sequence-correlation
factors between all the most contiguous amino acids along

a protein chain with hydrophobic and hydrophilic attributes,
respectively, and π2λ−1 and π2λ are the corresponding λth-
tier sequence-correlation factors between all the λ contiguous
amino acids. h1(Ri) and h2(Ri) are the corresponding hydropho-
bic and hydrophilic values for the ith amino acid in the protein,
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subject to a standard conversion computed by

h1(Ri) = h1
0(Ri)−Γ1√∑20

u=1[h1
0(�u)−Γ1]

2
/20

, Γ1=
20∑

u=1

h1
0(�u)/20,

h2(Ri) = h2
0(Ri) − Γ2√∑20

u=1[h2
0(�t)−Γ2]

2
/20

, Γ2 =
20∑
t=1

h1
0(�t)/20,

(5)

where �t (t = 1, . . ., 20) are the 20 native amino acids based
on the alphabetical order of their single-letter codes, A, C,
D–I, K–N, P–T, V, W and Y. And h1

0(�) and h2
0(�) are the

original hydrophobic and hydrophilic values of the amino acid
� (Tanford, 1962; Hopp and Woods, 1981).

2.3. Analysis of sample distribution

The distribution of samples should be analyzed before
designing an accurate classifier. The settings λ = 9 and ω = 0.5
were used to obtain the best prediction accuracy of CDA
for multiple-class prediction problems, as recommended by
Chou (2005). Therefore, the sample distribution of all N = 2640
enzymes of the oxidoreductases family having C = 16 subfam-
ilies in the 38-dimensional feature space was analyzed using a
k-NN rule.

Each of the N = 2640 enzymes is considered as a query
sample in turn. The number δ of categories to which the k
nearest neighbors of a query sample belong are first counted,
where 1 ≤ δ ≤ min(C, k). Let Nδ be the number of query sam-
ples, where their k nearest neighbors belong to δ categories.
Let the sample ratio ϕδ = NδN where

∑
ϕδ = 1. Fig. 1(a) indi-

cates the statistical result of the sample ratio with k = 10. The
figure shows that there are only 26.90% (=ϕ1) of samples are
surrounded by k = 10 nearest neighbors belonging to one cat-
egory. However, the k = 10 nearest neighbors belong to more
than three classes in 53.64% (=

∑
ϕi, 4 ≤ i ≤ 10) of the sam-

ples. This result reveals that the distributions of C = 16 classes
in the Am-Pse-AAC space are highly overlapped. The over-
lap problem must be concerned when designing a classifier for
prediction.

The number n of enzymes belonging to the same subfam-
ily of the query sample from the k = 10 nearest neighbors are
also counted where 0 ≤ n ≤ k. Let Cn be the number of samples
which has n of the k nearest neighbors belonging to the same
subfamily of the query sample where C0 + C1 +· · ·+Ck = N. Let
the sample ratio ℘n = Cn/N. Fig. 1(b) illustrates the statistic
result of ℘n. The case ℘0 = ℘1 = 0 indicates that each query
sample can always find at least two of k = 10 nearest neigh-
bors belonging to the same subfamily. Therefore, an adaptive
fuzzy k-nearest neighbor (AFK-NN) method is proposed while

considering the distribution property.

Fig. 2 shows a typical query sample O83491 belonging to
the second subfamily (class 2), which is adopted as an example
to illustrate the high-overlap distribution. For visualization, the
two features p1 and p2 having the best significant discrimination
Fig. 1. Statistic results of oxidoreductases family in the Am-Pse-AAC
space with λ = 9 using a k-NN rule with k = 10 (a) the sample ratio ϕδ

and (b) the sample ratio ℘n.

capability are selected from the top two ranks of rank sum
test (Snedecor and Cochran, 1989). Fig. 2(a) shows that the
nearest neighbors of O83491 belong to many classes. Fig. 2(b)
indicates that the query sample is surrounded by 10 nearest
neighbors belonging to five subfamily classes, namely P17445
of class 1, P33327 of class 2, P0807 of class 3, P40875, O79677,
O84970, O85274, O99826, and P00390 of class 4, and P43083
of class 13.

2.4. Proposed AFK-NN

The proposed AFK-NN classifier assigns fuzzy member-
ship values rc(P) of a query sample P to each class c as follows

rc(P) =
∑k

j=1rc(Pj)(||P − Pj||−2/(m−1))∑k

j=1||P − Pj||−2/(m−1)
, c = 1, 2, . . . , C.

(6)

In the above equation, a fuzzy strength parameter m is used to
determine the weighting of the distance when calculating the
contribution of each of the k nearest neighbors to the mem-
bership value, and ||P − Pj|| is an Euclidean distance between

j
P and one of its nearest neighbors P . Various definitions of
rc(Pj) can be chosen depending on the applications. In this
study, let rc(Pj) = 1 if Pj belongs to class c; otherwise, rc(Pj) = 0.
After calculating the membership values of the query sample,
P is categorized into the class having the highest membership
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Fig. 2. A typical example for illustrating high-overlap distribution of
enzymes in the Am-Pse-AAC feature space where p1 and p2 are two
most informative features. (a) The nearest neighbors of the query sam-
ple O83491 belong to a large number of categories. (b) The k = 10
n
s
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t
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p
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with λ = 20 was significantly batter than that of the other
two features. The best prediction accuracy was 76.41%
with m = 1.05, k = 19 and λ = 20. Further examining the
accuracy by greedily tuning the m = 1.1, 1.15, . . ., 1.65,
earest neighbors of O83491 belong to five categories where the two
quare symbols belong to the second subfamily.

alue. The best values of both parameters m and k for AFK-NN
re determined based on the training dataset of an individual
nzyme family and the used feature set.

Consider Fig. 2(b) as an example to illustrate merit of AFK-
N. If a standard k-NN classifier is applied, then the query

ample O83491 of class 2 would be classified to class 4 because
ix of the k = 10 nearest neighbors belong to class 4. However,
FK-NN would correctly classify the query sample P into class
because P33327 of class 2 has the smallest distance to P such

hat the largest membership value is rc(P) with c = 2.

. Results

.1. Comparison with CDA

For comparison with the CDA classifier (Chou, 2005),
his study used the dataset of the oxidoreductases family

Table 2) and the Am-Pse-AAC feature with λ = 9 and

=0.5, as used in Chou’s work, since it has the best
rediction accuracy of CDA. The general settings k = 10
nd m = 1.05 of the fuzzy k-NN classifier used by (Huang
Fig. 3. Prediction accuracies of AFK-NN using various values of the
parameter λ of the Am-Pse-AAC feature on the 2640 enzymes of
oxidoreductases family.

and Li, 2004) were adopted to evaluate AFK-NN. The
prediction accuracy of AFK-NN was 74.88%, which is
better than 70.61% for CDA using a jackknife test (Chou,
2005). Fig. 3 gives the prediction accuracies of AFK-
NN using various values of the parameter λ of the Am-
Pse-AAC feature, where λ < L and L > 20 for this used
dataset. The highest accuracy of AFK-NN was 76.29%
with λ = 20, which is higher than 74.88% for λ = 9. AFK-
NN can effectively apply the extra information by using
a larger value of λ.

To investigate the best values of the combination
of k and λ, the features with three typical values of λ

were evaluated: AAC (the case of λ = 0), and Am-Pse-
AAC with λ = 9 and 20. Fig. 4 depicts the prediction
accuracies for the three features, with 1 ≤ k ≤ 30 and
m = 1.05. The prediction accuracies are not changed sig-
nificantly at k ≥ 15. The performance of Am-Pse-AAC
Fig. 4. Prediction accuracies of AFK-NN using k-NN rule and three
typical features of amino acid composition.
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Table 3
Prediction accuracies of enzyme subfamily class on the dataset of oxidoreductases family shown in Table 2 using a jackknife test

Classifier AAC (%) Am-Pse-AAC (λ = 9) (%) Am-Pse-AAC (λ = 20) (%)

CDA (Chou, 2005) 63.64 70.61 NA
AFK-NNa 74.40 74.88 76.63
AFK-NN (m = 1.05, k = 10) 73.80 74.88 76.29
k-NN (k = 10) 64.15 66.46 64.42
C5.0 with boosting 73.90 75.40 75.40

SVM 71.78 73.64 73.22

NA: not available, CDA obtained the best accuracy using λ = 9 (Chou, 2005).
a (m, k) = (1.15, 9), (1.05, 10), and (1.1, 19) for AAC, Am-Pse-AAC with λ = 9 and 20, respectively.

Table 4
Prediction rates distribution of C5.0 decision tree with boosting algorithm for two compositions: performed with classical AAC and Am-Pse-AAC

BT AAC (CF = 50) (%) Am-Pse-AAC (λ = 9, CF = 30) (%) Am-Pse-AAC (λ = 20, CF = 40) (%)

0 52.80 53.60 51.60

50 71.60 72.60 73.00
100 72.50 74.90 74.40
150 72.50 74.20 74.40
200 73.90 74.60 74.40
250 73.10 74.80 75.40
300 73.00 75.40 74.70

350 73.10 75.30
400 73.30 75.00

yielded a slightly improved accuracy of 76.63% with
m = 1.1.

3.2. Comparison with other classifiers

Two efficient methods involving C5.0 decision tree
(Quinlan, 2003) and SVM (Hua and Sun, 2001; Cai et
al., 2002; Joachims, 1999) were further investigated by
using the dataset of the oxidoreductases family, as listed

in Table 2. A standard k-NN classifier is also applied
for revealing the effect of fuzziness. Table 3 summa-
rizes the results of these compared methods using the
same jackknife test. Accuracies of C5.0 and SVM were

Table 5
Selected prediction accuracies of SVM using a radial basis kernel function w

AAC Am-Pse-AAC (λ = 9)

γ Accuracy (%) γ A

240 71.02 50 72
250 71.78 60 73
260 71.44 70 73
270 71.63 80 73
280 71.74 90 72
290 71.78 100 72
300 71.59 110 72
74.40
75.20

obtained from the performance of proper settings of con-
trol parameters. Tables 4 and 5, respectively, present
detailed results of C5.0 and SVM.

The conventionally adopted decision tree method
C5.0 is based on a non-parametric type of regression
fitting approach, which is suitable for an unknown
data distribution. Another advantage is that it effec-
tively manages large datasets and the issues of high
dimensionality. One approach to avoiding overfitting

in decision tree learning is tree pruning. The parame-
ter CF of confidence level used to prune the decision
tree affects both tree size and accuracy, which can be
properly tuned to avoid overfitting. The adaptive boost-

ith proper settings of a kernel parameter γ

Am-Pse-AAC (λ = 20)

ccuracy (%) γ Accuracy (%)

.88 20 69.92

.64 30 71.93

.56 40 73.22

.18 50 72.84

.56 60 71.85

.69 70 70.72

.31 80 69.84
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Table 6
Prediction accuracies (%) of AFK-NN obtained from the best settings of parameters m and k where m = 1.05, 1.1, . . ., 1.65 and k = 10, . . ., 30

Enzyme family Accuracy (m, k)

AAC Am-Pse-AAC (λ = 9) Am-Pse-AAC (λ = 20)

Oxidoreductases 80.53 (1.2, 30) 82.13 (1.1, 28) 83.34 (1.1, 23)
Transferases 79.94 (1.2, 17) 81.09 (1.15, 27) 82.64 (1.05, 15)
Hydrolases 90.34 (1.05, 10) 91.90 (1.1, 30) 92.28 (1.1, 15)
Lyases 97.30 (1.2, 28) 97.56 (1.1, 28) 97.87 (1.2, 23)
Isomerases 97.97 (1.2, 16) 98.03 (1.1, 26) 98.30 (1.1, 23)
L
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igases 97.22 (1.2, 29)

ean 90.55 (1.2, 22)

ng algorithm (Freund and Schapire, 1997) improves
he classification process by generating a number of
lassifiers from training data. Due to exploitation of
roups of hypotheses with independent errors, the main
dvantage of boosting is that it increases the overall accu-
acy of classification, and to reduce both variance and
ias of the classification. The parameter BT of boost-
ng trail controls the total number of classifiers. The
roper values of CF and BT are problem-dependent.
hrough various settings of CF (=10, 20, . . ., 100) and
T (=0, 50, . . ., 400), Fig. 4 shows that the best set-

ings for the features AAC and Am-Pse-AAC with λ = 9,
0 are CF = 50, 30, and 40, respectively. The worst
esults of BT = 0 reveal that boosting is effective. The
ighest accuracy was 75.40% for the Am-Pse-AAC fea-
ures with λ = 9 and 20. The prediction accuracy using
AC was 73.9%, which was worse than that using
m-Pse-AAC.
SVM is a powerful machine learning method to

andle classification, prediction, and regression prob-
ems. SVM maps original feature vectors into one either
inearly or non-linearly higher dimensional feature
pace through a nonlinear transformation by using

ne of various kernel functions. Within the feature
pace, SVM seeks an optimal hyper-plane separating
amples of two classes, called binary SVM. Multi-class
lassification can be performed simply by using a series

(

able 7
rediction accuracies of C5.0 using the proper settings of CF and BT accordi

nzyme family AAC (CF = 50,
BT = 200) (%)

A
C

xidoreductases 83.40 8
ransferases 81.00 8
ydrolases 89.60 8
yases 96.40 9
somerases 96.46 9
igases 96.28 9

ean 90.52 9
97.58 (1.15, 28) 97.90 (1.1, 28)

91.38 (1.1, 28) 92.09 (1.1, 21)

of binary SVMs. The use of a large number of binary
SVMs seems not to be effective enough for dealing
with classification having a large number of classes
(Huang and Li, 2004). This study utilized SVMlight

(http://svmlight.joachims.org/old/svm light v4.00.html)
using a radial basis kernel function exp(−γ||xi − xj||2),
where xi and xj are training samples and γ is a kernel
parameter. The cost parameter C of SVM was set to a
default value of 1.0. The values of γ = 10, 20, . . ., 500
were evaluated to find the proper setting of γ . The best
prediction accuracies were 73.64% and 73.22% using
Am-Pse-AAC with λ = 9 and 20, respectively. The
accuracy of SVM using AAC was 71.78%, worse than
that using Am-Pse-AAC.

The following conclusions can be drawn from the
results in Table 3:

(a) AFK-NN has the highest prediction accuracy
76.63% for the enzyme subfamily class using the
Am-Pse-AAC feature with λ = 20. AFK-NN is bet-
ter than the standard k-NN classifier with k = 10 and
fuzzy k-NN classifier with fixed settings m = 1.05
and k = 10.
b) AFK-NN can effectively use of extra information
when the value of λ is increased from 9 to 20, while
the other compared methods have performance of
λ = 9 better than or equal to that of λ = 20.

ng to computer simulation

m-Pse-AAC (λ = 9,
F = 30, BT = 300) (%)

Am-Pse-AAC (λ = 20,
CF = 40, BT = 250) (%)

3.70 83.80
1.90 81.40
9.40 89.10
7.31 97.00
7.43 96.90
7.16 96.97

1.15 90.86

http://svmlight.joachims.org/old/svm_light_v4.00.html
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Table 8
Prediction accuracies of SVM using the proper settings of γ according to computer simulation

Enzyme family AAC (γ = 250) (%) Am-Pse-AAC (λ = 9, � = 60) (%) Am-Pse-AAC (λ = 20, γ = 40) (%)

Oxidoreductases 80.05 83.48 83.98
Transferases 79.40 81.86 83.74
Hydrolases 88.61 90.89 91.38
Lyases 95.82 97.11 97.70
Isomerases 97.46 97.93 98.28

Ligases 95.78 97.26

Mean 89.52 91.42

(c) The three presented methods AFK-NN, C5.0 and
SVM are all better than the existing CDA method
(Chou, 2005) using the same features.

3.3. Performance of all six families

To evaluate the generalization abilities of the above-
mentioned three efficient methods AFK-NN, C5.0 and
SVM, the large-scale datasets of all six enzyme fami-
lies derived from the newly updated SWISS-PROT and
ENZYME database (Table 1) were tested and the results
using a jackknife test are given in Tables 6–8. From
Table 6, the prediction accuracy 83.34% for Am-Pse-
AAC with λ = 20 was obtained using the best settings (m,
k) = (1.1, 23) of AFK-NN for the new oxidoreductases
family, where the settings k = 10, . . ., 30, and m = 1.05,
1.1, . . ., 1.65 are evaluated.

Table 6 shows that the mean accuracies performed by
using the classical AAC and Am-Pse-AAC with λ = 9
were 90.55% and 91.38%, respectively. The accuracy of
Am-Pse-AAC with λ = 20 was better than that with λ = 9
for each of the six families. The mean accuracy 92.09%
for AFK-NN using Am-Pse-AAC with λ = 20 had the
best prediction performance of enzyme subfamily class,
better than 90.72% for AFK-NN using the fixed settings
m = 1.05 and k = 10 for all subfamilies. The fixed settings
of parameters λ = 20, m = 1.1 and k = 21 were recom-
mended for fuzzy k-nearest neighbor classifiers using
Am-Pse-AAC to predict all enzyme families, based on
the simulation results.

Table 7 summaries the prediction accuracies of C5.0
using appropriate settings of CF and BT, obtained from
computer simulation of Table 4. The mean accuracies of
AAC and Am-Pse-ACC with λ = 9 and 20 were 90.52%,
91.15% and 90.86%, respectively. Because C5.0 utilized
the most informative features from part of all features

in P, the difference (0.63% = 91.15 − 90.52%) of mean
accuracy between the best feature (Am-Pse-ACC with
λ = 9) and the worst feature (AAC) is smaller than those
of AFK-NN and SVM which use all features in P.
94.97

91.68

Table 8 shows the prediction accuracies of SVM using
proper setting of γ = 250, 60, 40 from Table 5 for the
three features AAC and Am-Pse-AAC with λ = 9 and
20, respectively. Five of six families performed better
using Am-Pse-AAC with λ = 20. The best mean accu-
racy from Am-Pse-AAC was 91.68% obtained with
λ = 20, and was slightly smaller than 92.09% for AFK-
NN.ConclusionsFor predicting the enzyme subfamily
class, the existing CDA method (Chou, 2005) using
the Am-Pse-AAC feature with the best setting λ = 9
yielded an accuracy of 70.61% for the dataset of the oxi-
doreductases family. The oxidoreductases family has a
distribution property in the Am-Pse-AAC feature space:
a large number 16 of subfamilies, a fairly small number
of enzymes for each subfamily and high-overlap distri-
bution. This study presents three efficient classifiers the
k-NN based classifier AFK-NN, decision tree based C5.0
with boosting and SVM. All of the classifiers AFK-NN,
C5.0, and SVM have accuracies 74.88%, 75.40% and
73.64%, respectively, perform better than CDA (Chou,
2005) using the same feature and jackknife test. Due
to this distribution property, AFK-NN using the fea-
ture Am-Pse-AAC with λ = 20 yields the best accuracy
76.63%.

Large-scale datasets of all six enzyme families,
oxidoreductases, transferases, hydrolases, lyases, iso-
merases, and ligases, obtained from Release 38 of the
ENZYME database and SWISS-PROT (Version 48.5),
were established to perform a comprehensive experi-
ment for evaluating the three efficient methods AFK-NN,
C5.0 and SVM. The numbers of enzymes for six enzyme
families are much larger than 2640 in the old dataset
of the oxidoreductases family. Therefore, the overfitting
problem can be effectively avoided to lower both vari-
ance and bias of classification using a jackknife test.
Carefully setting the control parameters by effectively

searching the feature space means that no method is
significantly superior to the others. This study found
that the mean performance of AFK-NN is slightly
better than C5.0 and SVM, where the parameters k
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nd m of AFK-NN are adaptively specified for each
amily.

The proposed AFK-NN supports dynamic computa-
ion of membership values to predict the category to
hich the query samples belong to. Even though the
istributions of enzyme families in a feature space are
ighly overlapped, AFK-NN performs well in predicting
he enzyme subfamily class. The major concern of AFK-
N is its long computation time. An evolutionary design
f optimal k-NN classifiers by minimizing the sizes of
he reference and feature sets while maximizing accu-
acy can be utilized (Ho et al., 2002). The minimized
eference set can significantly reduce the computation
ime of prediction. The future work for advancing AFK-
N will use an intelligent evolutionary algorithm (Ho et

l., 2002; Ho et al., 2004) to simultaneously minimize
he reference set and optimize the control parameters k
nd m of AFK-NN and λ of the Am-Pse-AAC feature.
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