US008836009B2 # (12) United States Patent Chin et al. (10) Patent No.: US 8,836,009 B2 (45) **Date of Patent: Sep. 16, 2014** ## (54) FLASH MEMORY (75) Inventors: **Albert Chin**, Hsinchu (TW); Chun-Yang Tsai, Hsinchu (TW) (73) Assignee: National Chiao Tung University, Hsinchu (TW) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 192 days. (21) Appl. No.: 13/308,959 (22) Filed: **Dec. 1, 2011** ## (65) **Prior Publication Data** US 2013/0140621 A1 Jun. 6, 2013 (51) Int. Cl. H01L 29/792 (2006.01) (52) U.S. Cl. USPC 257/324; 257/326; 257/314; 257/325; 257/365; 257/410; 257/E21.21; 257/E29.309; 257/E21.409; 257/E21.546; 257/E27.062; 438/586; 438/201; 438/268; 438/559; 438/381 # (58) Field of Classification Search See application file for complete search history. # (56) References Cited ## U.S. PATENT DOCUMENTS | 6,828,618 | B2 * | 12/2004 | Baker et al | 257/311 | |-----------|------|---------|-----------------|---------| | 7,105,889 | B2 * | 9/2006 | Bojarczuk et al | 257/324 | | 7,655,971 | B2* | 2/2010 | Ino et al | 257/325 | |--------------|------|---------|---------------|---------| | 7,759,747 | B2* | 7/2010 | Forbes et al | 257/411 | | 7,772,072 | B2 * | 8/2010 | Wang et al | 438/287 | | 7,947,582 | B2 * | 5/2011 | Hautala et al | 438/515 | | 2007/0057292 | A1* | 3/2007 | Park et al | 257/213 | | 2007/0120179 | A1* | 5/2007 | Park et al | 257/324 | | 2008/0099826 | A1* | | Lai et al | | | 2008/0290400 | A1* | 11/2008 | Jenne et al | 257/324 | | 2009/0261405 | A1* | 10/2009 | Kim et al | 257/324 | | 2010/0052037 | A1* | | Chin | | | 2011/0101442 | A1* | 5/2011 | Ganguly et al | 257/324 | ## OTHER PUBLICATIONS Tsai et al., "Highly-Scaled 3.6-nm ENT Trapping Layer MONOS Device with Good Retention and Endurance", IEDM Tech. Dig., pp. 110-113 (2010). ## * cited by examiner Primary Examiner — Jerome Jackson, Jr. Assistant Examiner — Bo Fan (74) Attorney Agent or Firm — Edwards Wilds (74) Attorney, Agent, or Firm — Edwards Wildman Palmer LLP; Peter F. Corless; Richard B. Emmons # (57) ABSTRACT A MONOS Charge-Trapping flash (CTF), with record thinnest 3.6 nm ENT trapping layer, has a large 3.1 V 10-year extrapolated retention window at 125° C. and excellent 106 endurance at a fast 100 µs and ±16 V program/erase. This is achieved using As⁺-implanted higher κ trapping layer with deep 5.1 eV work-function of As. In contrast, the un-implanted device only has a small 10-year retention window of 1.9 V at 125° C. A MoN—[SiO₂—LaAlO₃]—[Ge— HfON]—[LaAlO₃—SiO₂]—Si CTF device is also provided with record-thinnest 2.5-nm Equivalent-Si₃N₄-Thickness (ENT) trapping layer, large 4.4 V initial memory window, 3.2 V 10-year extrapolated retention window at 125° C., and 3.6 V endurance window at 10⁶ cycles, under very fast 100 μs and low ±16 V program/erase. These were achieved using Ge reaction with HfON trapping layer for better charge-trapping and retention. # 11 Claims, 10 Drawing Sheets FIG. 14 FIG. 16 # 1 FLASH MEMORY # BACKGROUND OF THE INVENTION ### 1. Field of the Invention This invention relates to flash memories, and, more particularly, to a flash memory having a charge-trapping layer formed by implanting arsenic into ZrON. ## 2. Description of Related Art According to International Technology Roadmap for Semiconductors (ITRS), the degraded endurance and retention are the toughest challenges to further down-scaling the Charge-Trapping Flash (CTF), due to the fewer electrons stored in highly scaled device. On the other hand, scaling down the Si₃N₄ charge-trapping layer to 3-4 nm is needed in ITRS for continuous device scaling, but no proposed solution up to now. However, this worsens the retention and endurance due to the poorer trapping capability at thinner Si₃N₄, where nearly no charge trapping was found in 2 nm Si₃N₄. Although the retention is improved by using a thicker tunnel oxide, this yields reduced erase speed. Such retention and erase-speed 20 invention; trade-off is a basic limitation of CTF. Previously we addressed this limitation with a deep trapping energy E_{vac}-E_C Al(Ga)N or HfON in a metal-oxidenitride-oxide-Si (MONOS) device. The better retention of high- κ Al(Ga)N MONOS CTF was also listed in ITRS. One $_{25}$ drawback of desired higher κ HfON is the lower trapping efficiency; thus, the double trapping HfON—Si₃N₄ CTF was used. Yet the scaling equivalent-Si₃N₄-thickness (ENT) is still limited to 7 nm. ## SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is a primary objective of the present invention to provide flash memory that has a charge-trapping layer formed by implanting arsenic into ZrON. In an embodiment of the present invention, the flash memory includes: a substrate; a first SiO₂ layer formed on the substrate; a first high-κ layer formed on the first SiO₂ layer; a metal-implanted oxynitride layer formed on the first high-κ layer; a second high-κ layer formed on the metal-implanted 40 oxynitride layer; a second SiO₂ layer formed on the second high-κ layer; and a gate layer formed on the second SiO₂ layer. In another embodiment of the present invention, the flash the Si substrate; a first high-κ layer formed on the first SiO₂ layer; a first HfON layer formed on the first high-к layer; a first Ge/oxynitride layer formed on the oxynitride layer; a second high-κ layer formed on the Ge/oxynitride layer; a second SiO₂ layer formed on the second high-κ layer; and a gate layer formed on the second SiO₂ layer. The present invention further provides a method of fabricating a flash memory, including: providing a substrate; forming a first SiO₂ layer on the substrate; forming a first high-κ layer on the first SiO2 layer; forming a metal-implanted oxynitride layer on the first high-κ layer; forming a second 55 high-κ layer on the metal-implanted oxynitride layer; forming a second SiO₂ layer on the second high-κ layer; and forming a TaN layer on the second SiO₂ layer. In an embodiment, the As-implanted ZrON is formed by implanting ZrON with As at 60°-tilted angle, 3 KeV and 60 5×10^{15} cm⁻² dose, and followed by 950° C. RTA. # BRIEF DESCRIPTION OF DRAWINGS The invention can be more fully understood by reading the 65 following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein: 2 FIGS. 1(a) to (c) are schematic band diagrams of a traditional MONOS CTF, a double Si₃N₄—HfON trapping CTF, and a As⁺-implanted ZrON CTF, respectively; FIG. 2 shows J_o-V_o curves of ZrON MONOS nonvolatile memory (NVM) devices with and without As⁺-implant; FIG. 3 shows C-V hysteresis of ZrON MONOS NVM devices with and without As⁺-implant: FIG. 4 shows program characteristics of control ZrON MONOS NVM devices for different voltages and times; FIG. 5 shows erase characteristics of control ZrON MONOS NVM devices for different voltages and times; FIG. 6 shows program characteristics of As⁺-implanted ZrON MONOS NVM devices for different voltages and FIG. 7 shows erase characteristics of As+-implanted ZrON MONOS NVM devices for different voltages and times; FIG. 8 is a schematic structure of an As⁺-implanted ZrON/ LaAlO₃/SiO₂/Si of an embodiment according to the present FIG. 9 shows XRD of control and As+-implanted ZrON/ LaAlO₃/SiO₂/Si structure after 950° C. RTA; FIG. 10 shows SIMS of the As⁺-implanted ZrON/LaAlO₃/ SiO₂/Si structure after 950° C. RTA; FIG. 11 shows retention characteristics of control un-implanted ZrON MONOS NVM devices at 25-125° C.; FIG. 12 shows retention characteristics of As⁺-implanted ZrON MONOS NVM devices at 25-125° C.; FIG. 13 shows endurance characteristics of As⁺-implanted 30 ZrON MONOS NVM devices; FIGS. 14(a) and (b) are a schematic structure and s schematic energy band diagram of a Ge/HfON CTF memory of an embodiment according to the present invention, respectively; FIGS. 15(a) and (b) show program and erase characteristics of HfON CTF memory with and without Ge for different voltages and times; and FIGS. 16(a) and (b) show retention characteristics of a flash memory and cycling characteristics of HfON CTF memory with and without Ge. # DETAILED DESCRIPTION OF THE INVENTION The following illustrative embodiments are provided to illustrate the disclosure of the present invention, these and memory includes: a Si substrate; a first SiO₂ layer formed on other advantages and effects can be apparently understood by those in the art after reading the disclosure of this specification. The present invention can also be performed or applied by other different embodiments. The details of the specification may be on the basis of different points and applications, and numerous modifications and variations can be devised without departing from the spirit of the present invention. > High performance MONOS CTF with highly scaled 3.6 nm ENT is reached and meets ITRS scaling target for the first time. At 125° C. and ±16 V program/erase (P/E), the device has fast 100 µs speed and large extrapolated 10-year retention of 3.1 V. The excellent results were reached using metallic Arsenic (As) implant into higher κ ZrON (κ =35) as trapping layer. In contrast, small 10-year retention window of 1.9 V is found in control ZrON CTF. The improved memory window is due to the better electron trapping capability of As+-implanted ZrON. The excellent 10⁶ cycles and good 125° C. retention may be ascribed to the deep E_{vac} - E_C ZrON and 5.1 eV work-function (Φ_m) of metallic As, to minimize the Schottky emission and tunnel leakage. The excellent 10⁶ cycles are vitally important to allow further endurance improvement in highly scaled CTF device with fewer electrons. These results compare well with other reported data listed in Table 1, with 3 the smallest 3.6 nm ENT, fast 100 µs speed, large memory window, good retention at 125° C. and the best 10⁶ endurance. SiO_2 layer 112. In an embodiment, the SiO_2 layer 104 is 2.5 nm thick; the LaAlO₃ layer 106 is 2.5 nm thick; the As- TABLE 1 | | P/E conditions
for retention &
cycling | Initial $\Delta V_{th}(V)$ | ΔV _{th} (V) for
10-year
retention
@85° C. | ΔV _{th} (V) for
10-year
retention
@125° C. | $\Delta V_{th}(V)$ @Cycles | |--|---|----------------------------|---|--|----------------------------| | This work (As+-implanted) | 16V 100 μs/–16 V 100 μs | 4.9 | 3.4 | 3.1 | 4.3@10 ⁶ | | This work (control un-implanted) | $16V~100~\mu\text{s}/16~V~100~\mu\text{s}$ | 2.9 | 2.1 | 1.9 | _ | | TANOS
SiO ₂ /Si ₃ N ₄ /Al ₂ O ₃ /TaN | 13.5 V 100 $\mu s/13~V$ 10 ms | 4.4 | 2.07 | _ | 4@10 ⁵ | | Tri-gate
SiO ₂ /Si ₃ N ₄ /SiO ₂ | 11.5 V 3 ms/–11.5 V 100 ms | 1.2 | 1.1
(@25° C.) | _ | 1.5@10 ⁴ | | FinFET
SiO ₂ /Si ₃ N ₄ /SiO ₂ | $13~\mathrm{V}~10~\mu\text{s}/12~\mathrm{V}~1~m\text{s}$ | 4.5 | 2.4 | _ | 3.5@10 ⁴ | | SiO ₂ /AlGaN/AlLaO ₃ | $11\mathrm{V}100~\mu\text{s}/11\mathrm{V}100~\mu\text{s}$ | 3.0 | 1.6 | _ | $2.3@10^5$ | The TaN—[SiO₂—LaAlO₃]—ZrON—[LaAlO₃— ²⁰ SiO₂]—Si CTF device has 2.5 nm thermal SiO₂, 2.5 nm LaAlO₃, 18 nm ZrON_{0.2}, 8 nm LaAlO₃, 6 nm LPCVD SiO₂, and 200 nm TaN. The LaAlO₃, ZrON_{0.2}, and TaN were deposited by physical vapor deposition (PVD). To improve the trapping capability, the ZrON was implanted by As at 60°-tilted angle, 3 KeV and 5×10¹⁵ cm⁻² dose, followed by 950° C. RTA to reduce the ion-implanted damage. After gate definition, self-aligned As⁺ implant is applied and RTA is used to activate the dopants. The LaAlO₃ was from binary Al₂O₃ and La₂O₃, used for V_t tuning in 32 nm gate-first high-κ p- and n-MOSFETs, respectively. For comparison, control CTF device was also fabricated without the As⁺-implant into ## A. P/E Characteristics: FIG. 1 shows the traditional, double trapping Si₃N₄-HfON, and As+-implanted ZrON MONOS CTF devices. The As⁺-implanted ZrON has higher κ than HfON and deep Φ_m of As for trapping. FIG. 2 shows the gate current (J_o) of CTF. Close J_a of As⁺-implanted device with control is reached. 40 Larger Č-V hysteresis of 8.1 V was obtained in As⁺-implanted CTF than control device under ±16 V sweep (FIG. 3). FIGS. 4 and 5 show the program and erase data in control devices. A small ΔV_{th} memory window of 2.9 V was measured at 100 µs at ±16 V P/E that is typical for metal-oxide-nitride trapping 45 MONOS with low trapping efficiency. The ΔV_{th} is significantly larger for As⁺-implanted CTF devices shown in FIGS. **6** and **7**, with a large ΔV_{th} window of 4.9 V at ± 16 V 100 μ s P/E. This indicates the better trapping efficiency in As⁺-implanted ZrON that may be due to metallic As atoms and 50 implant-created defects. Since a 950° C. RTA is applied to lower the implanted defects, the As atoms may play a major role for better trapping. The fast 100 µs P/E speed is due to the existing ΔE_C and ΔE_V in LaAlO₃/SiO₂ for easier tunneling, where the larger physical thickness improves the retention 55 with only 3 nm EOT in tunnel oxide. ## B. Characterization of As⁺-Implanted ZrON: The As⁺-implanted ZrON has a schematic structure shown in FIG. **8**, which was analyzed by XRD and SIMS shown in FIGS. **9** and **10**. As shown in FIG. **8**, a flash memory **10** of an 60 embodiment according to the present invention comprises a substrate **102**, a SiO₂ layer **104** formed on the substrate **102**, a LaAlO₃ layer **106** formed on the SiO₂ layer **104**, an Asimplanted ZrON layer **108** formed on the LaAlO₃ layer **106**, another LaAlO₃ layer **110** formed on the As-implanted ZrON 65 layer **108**, another SiO₂ layer **112** formed on the another LaAlO₃ layer **110**, and a TaN layer **114** formed on the another implanted ZrON layer 108 is 18 nm thick; the another LaAlO₃ layer 110 is 8 nm thick; the another SiO₂ layer 112 is 6 nm thick; and the TaN layer 114 is 200 nm thick. The ZrON poly-grains are found in X-TEM that gives the higher κ value and smaller ENT. The XRD shows weak As peaks with the same angle of clustered As-dots in As-rich GaAs, which suggests the forming small As metal dots in ZrON although beyond our TEM resolution. Such metallic As with deep 5.1 eV Φ_m inside ZrON traps may also reduce the Schottky emission and tunnel leakage, in addition to the large E_{vac} – E_C of ZrON. From SIMS, the As concentration at 60° 3-keV implant reduces rapidly with thickness and mainly within ZrON that explains the close J_g with control device in FIG. 2. C. Retention & Endurance: FIGS. 11 and 12 show the retention data of As+-implanted and control ZrON CTF devices at 25, 85 and 125° C. A large 10-year extrapolated window of 3.1 V is measured at 125° C. in As+-implanted devices at 100 µs and ±16 V P/E. This is significantly better than the 1.9 V 10-year window in control devices. Such large 10-year retention data allows multi-level cells (MLC) storage even at 125° C. The good retention is due to the extra ΔE_C confinement energy in LaAlO₃/ZrON/ LaAlO₃ and also deep Φ_m of metallic As shown in FIG. 1(c), while fast 100 µs erase is also reached from the lowered hole energy barrier ΔE_V in LaAlO₃/SiO₂ tunnel oxide. The fast P/E speed and lowered hole tunnel barrier ΔE_{ν} lead to excellent endurance: as shown in FIG. 13, a still large 4.3 V window is obtained even at 10⁶ P/E cycles. Such excellent cycling data are vitally important and allow further improving the endurance in highly scaled CTF device with fewer stored electrons. Table 1 compares various MONOS CTF devices. The novel device compares well with other devices, with the record thinnest 3.6 nm ENT trapping layer, large memory window, good 125° C. retention, fast 100 µs P/E speed, and the highest 10⁶ endurance. Using low energy As⁺-implant into higher κ ZrON trapping layer, this novel CTF device shows excellent device performance of highly scaled 3.6 nm ENT, large 10-year extrapolated retention window of 3.1 V at 125° C. and 1 million times endurance, at a fast 100 μ s and low \pm 16V P/E. Among various types of NVM, the flash memory has irreplaceable merits of the lowest switching energy and excellent device distribution that are vital for high-density sub-Tb memory arrays. To continue downscale into sub-20-nm, the MONOS CTF devices are proposed to replace the poly-Si floating-gate (FG) flash memory according to ITRS. This is due to the discrete charge-trapping property, simple planar 4 5 structure, and small cell-cell disturbance that are needed for three-dimensional (3D) flash memory. One challenge for CTF is the small confinement energy between $\mathrm{Si}_3\mathrm{N}_4$ trapping layer and SiO_2 barrier that degrades the high temperature retention. To address this issue, deep E_C high- κ AlGaN and HfON were used to replace the $\mathrm{Si}_3\mathrm{N}_4$, which was listed in ITRS for continuous downscaling. In addition, we improved the charge-trapping efficiency at an ENT of 3.6-nm, by using As⁺-implanted high- κ trapping layer to reach a large 10-year retention window of 3.1 V at 125° C. However, further downscaling the ENT is limited by the ion-implanted damage to tunnel oxide. In this context, a high performance CTF memory at a record thinnest 2.5-nm ENT trapping layer is disclosed for the first time. This device has a large extrapolated 10-year retention memory window of 3.2 V at 125° C. and excellent endurance of 10^6 cycles, under fast 100 μs and low ± 16 V P/E pulses. These were achieved using Ge reaction with HfON trapping layer to form the HfGeON, even at ultra-thin 2.5-nm ENT. Such excellent device integrity is unreachable for conventional Si_3N_4 CTF device due to nearly no trapping at 2-nm Si_3N_4 . # Experiments The MoN—[SiO₂—LaAlO₃]—[Ge—HfON]-[LaAlO₃—SiO₂]—Si MONOS CTF devices were made on standard 6-in p-type Si wafers. The double tunnel oxide layers of 2.7-nm thick thermal SiO₂ was first grown on Si substrates and followed by depositing 2.5-nm thick LaAlO₃ by physical vapor deposition (PVD). Then the charge trapping layers of 8-nm thick HfON and 1.5-nm thick Ge were deposited by PVD. Next, a 6.5-nm thick LaAlO₃ was deposited by PVD and 6.5-nm thick SiO₂ was deposited by chemical vapor deposition (CVD) using Tetraethyl orthosilicate (Si(C₂H₅O) 4) to form the double blocking layers. Finally, a 200-nm thick MoN was deposited by PVD, followed by gate definition, reactive ion-etching (RIE), self-aligned 25 KeV P+ implantation at 5×10^{15} cm⁻² dose and 900° C. RTA to activate the dopant at source-drain region. The CTF devices were with 10-μm gate length, 100-μm width and isolated by field oxide. The fabricated devices were characterized by cross-sectional transmission electron microscopy (TEM), P/E, cycling and retention measurements to 125° C. FIGS. **14**(*a*) and (*b*) show the schematic structure and energy band diagram of the MoN—[SiO₂—LaAlO₃]—[Ge—HfON]—[LaAlO₃—SiO₂]—Si CTF device. An ultrathin ENT of 2.5-nm was obtained from X-TEM. As shown in FIG. **14**(*a*), a flash memory **20** comprises a Si substrate **202**, a SiO₂ layer **204** formed on the Si substrate **202**, a LaAlO₃ layer **206** formed on the SiO₂ layer **204**, a HfON layer **208** formed on the LaAlO₃ layer **206**, a Ge/HfON layer **210** (that is formed by reacting Ge with HfON) formed on the HfON layer **208**, another LaAlO₃ layer **212** formed on the Ge/HfON layer **210**, another SiO₂ layer **214** formed on the another LaAlO₃ layer **212**, and a MoN layer **216** formed on the 6 another ${\rm SiO}_2$ layer 214. In an embodiment, the flash memory 20 may further comprise another HfON layer formed on the Ge/HfON layer 210, and another Ge/HfON layer formed on the another HfON layer. The energy band at top Ge/HfON may be narrowed due to the smaller bandgap of Ge (0.67 eV) and HfGeON formation. The small bandgap HfGeON lowers the ${\rm E}_C$ that improves the carrier retention. The band offset in LaAlO₃/SiO₂ double tunnel layers reduces the tunneling barrier for faster P/E speeds and better endurance. The high- ${\rm K}$ blocking and trapping layers lower the P/E voltage, which in turn improves the erase saturation due to the higher electric field across the thin tunnel SiO₂. FIGS. **15**(*a*) and (*b*) show the P/E characteristics of HfON and Ge/HfON CTF, respectively. The V_{th} increases with increasing P/E voltage and time. The larger program V_{th} of Ge/HfON CTF indicates the better trapping capability than that of control HfON device. Small erase saturation was obtained due to the using high- κ dielectrics to give a larger electric field in tunnel SiO₂ for better hole tunneling. Under the ± 16 V and $100 \,\mu$ s P/E, the V_{th} difference (ΔV_{th}) between P and E are 2.7 V and 4.4 V for HfON and Ge/HfON CTF devices, respectively. The larger ΔV_{th} memory window of Ge/HfON CTF than control HfON device is due to the Ge reaction with HfON to form the HfGeON that has higher- κ for better erase and higher traps for more efficient charge-trapping. FIG. 16(a) shows the retention characteristics of HfON and Ge/HfON CTF devices. Under the ±16 V and 100 μs P/E, the 10-year extrapolated retention window at 125° C. for HfON CTF is 1.8 V that largely increases to 3.2 V for Ge/HfON device. Such large 10-year retention window allows multilevel cell (MLC) storage at 125° C. with a record thinnest 2.5-nm ENT. The good retention is due to the deep E_C of HfGeON for carrier storage, like the deep- E_C of poly-Si FG flash memory. In addition, the larger physical thickness of high-κ-LaAlO₂/SiO₂ double barriers improves the retention. Further, the large energy bandgap and small trap density of SiO₂, formed by CVD TEOS, in double barrier also helps the retention improvement. The fast 100 µs erase speed is due to bandgap-engineered lower hole barrier ΔE_{ν} in the LaAlO₃/ SiO₂ tunnel oxide. The better trapping capability, faster P/E speed, and lower hole tunnel barrier further lead to excellent endurance as shown in FIG. 16(b), with a larger 10^6 -cycled memory window of 3.6 V than the 2.2 V of control device, at the same ±16 V and 100 µs P/E. Such excellent cycling data are vitally important to allow further endurance improvement in highly scaled CTF device with fewer stored electrons. The record thinnest 2.5-nm ENT for CTF, large 10-year retention window of 3.2 V at 125° C., and 10° cycled endurance were reached simultaneously under fast 100 µs and low ±16V P/E, which fit the requirements of ITRS shown in Table 2. Table 2 lists a variety of data published by ITRS in 2009. TABLE 2 | | NAND Flash poly ½ Pitch (nm) | | | | | | | |--|------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--| | | 16 | 14 | 13 | 12 | 11 | 9 | | | Cell size 0
area factor a
in multiples
of
F ² SLC/MLC | 4.0/1.0 | 4.0/1.0 | 4.0/1.0 | 4.0/1.0 | 4.0/1.0 | 4.0/1.0 | | | Tunnel
dielectric | SiO ₂ or
ONO | | 35 60 7 TABLE 2-continued | | NAND Flash poly ½ Pitch (nm) | | | | | | | |---|------------------------------|----------------|----------------|----------------|----------------|----------------|--| | | 16 | 14 | 13 | 12 | 11 | 9 | | | material Tunnel dielectric thickness | 3-4 | 3-4 | 3-4 | 3-4 | 3-4 | 3-4 | | | EOT (nm) Blocking dielectric material | Al_2O_3 | Al_2O_3 | Al_2O_3 | Al_2O_3 | Al_2O_3 | Al_2O_3 | | | Blocking
dielectric
thickness | 6 | 5 | 5 | 5 | 5 | 5 | | | EOT (nm)
Charge
trapping
layer
material | SiN/High-K | SiN/High-K | SiN/High-K | SiN/High-K | SiN/High-K | SiN/High-K | | | Charge
trapping
layer
thickness
(nm) | 4-6 | 4-6 | 4-6 | 4-6 | 3-4 | 3-4 | | | Gate material
Highest W/E | Metal
15-17 | Metal
15-17 | Metal
15-17 | Metal
15-17 | Metal
15-17 | Metal
15-17 | | | voltage (V) Endurance (erase/write cycles) | 1.00E+04 | 1.00E+04 | 1.00E+04 | 1.00E+04 | 1.00E+04 | 1.00E+04 | | | Nonvolatile
data
retention
(years) | 5-10 | 5-10 | 5-10 | 5-10 | 5-10 | 5-10 | | | Maximum
number of
bits per cell
(MLC) | 4 | 4 | 4 | 4 | 4 | 4 | | The foregoing descriptions of the detailed embodiments are only illustrated to disclose the features and functions of the present invention and not restrictive of the scope of the present invention. It should be understood to those in the art that all modifications and variations according to the spirit and principle in the disclosure of the present invention should fall within the scope of the appended claims. What is claimed is: - 1. A flash memory, comprising: - a substrate; - a first SiO₂ layer formed on the substrate; - a first high-κ layer formed on the first SiO₂ layer; - an As-implanted metal oxynitride layer formed on the first high-κ layer; - a second high-κ layer formed on the metal-implanted metal oxynitride layer; - a second SiO₂ layer formed on the second high-κ layer; and a gate layer formed on the second SiO₂ layer. - 2. The flash memory of claim 1, wherein the high-κ layer is 55 made of a first material of Al₂O₃, La₂O₃, HfO₂, ZrO₂, TiO₂ or SiN or a ternary or quarternary combination of the first material, the metal oxynitride layer is made of a second material of AlON, LaON, HfON, ZrON, TiON or SiON or a quarternary combination of the second material. - 3. The flash memory of claim 1, wherein the gate layer is made of metal or metal-nitride. - 4. The flash memory of claim 3, wherein the metal-nitride is TiN, TaN or MoN. - 5. A flash memory, comprising: - a Si substrate: - a first SiO₂ layer formed on the Si substrate; - a first high-κ layer formed on the first SiO₂ layer; - a first oxynitride layer formed on the first high-κ layer; - a layer of oxynitride formed on the first oxynitride layer, wherein the oxynitride has a first metal and a second metal, and the first metal is hafnium; - a second high-κ layer formed on the layer of oxynitride; - a second SiO₂ layer formed on the second high-κ layer; and - a gate layer formed on the second SiO₂ layer. - 6. The flash memory of claim 5, further comprising: - a second oxynitride layer formed on the layer of oxynitride; and - a layer of oxynitride having a third metal formed on the second oxynitride layer, - wherein the second high-κ layer is directly formed on the layer of oxynitride having the third metal. - 7. The flash memory of claim 6, wherein the high- κ layer is made of a first material of Al₂O₃, La₂O₃, HfO₂, ZrO₂, TiO₂ or SiN or a ternary or quarternary combination of the first material, the second metal oxynitride layer is made of a second material of AlON, LaON, HfON, ZrON, TiON or SiON or a quarternary combination of the second material, the first metal is As, Sb, Ga, or In, and the third metal is As, Sb, Ga, or Ĭn. - 8. The flash memory of claim 5, wherein the gate layer is made of metal or metal-nitride. - 9. The flash memory of claim 8, wherein the metal-nitride 65 is TiN, TaN or MoN. - 10. The flash memory claim 1, wherein the As-implanted metal oxynitride layer is an As-implanted HfON layer. 8 11. The flash memory of claim 5, wherein the layer of oxynitride having the first metal and the second metal is a HfGeON layer. 9 * * * * * 10