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57) ABSTRACT

A method of motion estimation for video encoding con-
structs a binary pyramid structure having three binary layers.
A state update module registers and updates repeat occur-
rence of final motion vectors and a static-state checking
module determines if the method is in a static mode or a
normal mode based on the repeat occurrence. In a normal
mode, the first binary layer is searched within a +3 pixel
refinement window to determine a first level motion vector.
In the second binary layer, a search range is computed based
on six motion vector candidates. By checking every point
within in the search range, a second binary layer search
generates a second level motion vector. Finally, a third
binary layer search within a +2 pixel refinement window
generates a final motion vector according to the second level
motion vector. In a static mode, a fine tuning module
performs search within a =1 pixel refinement window and
generates a final motion vector.
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Sequence Y PSNR | U PSNR| ¥ _PSNR | AY_PSNR
(Target biirate, Method ﬂ(a’B) B) aB) Total Bits B
Size)
FS 3486 | 4059 | 41.12 | 238928
ABME H, | 3473 | 4028 | 4105 | 239072 0.13
Mother- ABME Hy | 3474 | 4030 | 4099 | 239120 0.12
Daughter ABME_Hc | 3475 | 4034 | 4106 | 239904 0.11

ABME 34.77 40.31 41.01 239016 -0.09
ABME 115 34.78 40.34 41.04 239200 -0.08
ABME_Hj3 34.74 40.26 41.04 239064 -0.12

(24kbps, QCIF)

FS 2984 | 3739 | 3664 | 98832

ABME H, | 2960 | 3735 | 3643 | 99216 | -0.24

comaine | ABMEHs | 2962 | 3747 | 3643 | 9952 | 022
ABME He | 2060 | 3726 | 3640 | 99144 | 024

(10kbps, QCIF) | ApME Fy | 2960 | 3728 | 3644 | 99304 | -024
ABME Hy | 2963 | 3741 | 3645 | 99256 | -021

ABME Hyp | 29358 | 3731 | 3647 | 99176 | -0.26

FS 2700 | 3898 | 4151 | 1116152

ABME_H}, 26.73 39.13 41.64 1115072 -0.37
ABME_Hjp 26.87 39.07 4]1.82 1114904 -0.23
ABME He 26.90 39.03 41.54 1114568 -0.20
ABME Hy 26.89 39.02 41.58 1115520 -0.21
ABME_H;s 26.95 39.19 41.81 1114800 -0.15
ABME Hj3p 26.92 39.04 41.93 1113264 -0.18

FS 30.19 36.79 37.53 1114624
ABME_H, 29.56 37.05 37.83 1114912 -0.63
ABME_Hp 29.76 37.08 37.89 1114864 -0.43
ABME_H¢ 29.78 37.12 37.95 1114784 -0.41
ABME_H;3 29.72 37.08 37.92 1114864 -0.47
ABME_ Hj;s 29.82 37.06 37.87 1114792 -0.37
ABME_ Hsg 29.81 37.16 38.14 1114928 -0.38

FS 40.77 44.06 45.16 1115760
ABME_H; 40.72 43.98 45.01 1115872 -0.05
ABME_Hp 40.73 44.00 45.08 1115992 -0.04
ABME_H¢ 40.74 44.08 45.15 1115808 -0.03
ABME H3g 40.74 44.02 45.11 1115600 | -0.03
ABME Il 40.76 44.03 45.13 1115824 -0.01
ABME_H3 40.72 43.96 45.04 |45.04129 -0.05

FIG. 10

Coastguard
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Sequence Y PSNR | U PSNR | ¥ PSNR | AY_PSNR

(Target bitrate, Method (B) (iB) (B) Total Bits dB)
Size)
I'S 29.55 34.22 33.96 5095128

ABME_H, 29.36 34.33 34.03 | 5095072 -0.19
Stefan ABME _Hg 2945 34.40 34.11 5095440 -0.10
(512kbps, ABME He | 2946 | 3439 | 3410 | 5095344 |  -0.09
CCIR601) | ABME Hy | 2942 | 3437 | 3410 |5095344 | -0.13

ABME H)s 2945 34.39 34.11
ABME_Hjy 29.44 34.40 34.11

5095640 -0.10
5095160 -0.11

Table Tennis

FS

34.65 39.60 39.86

ABME H, | 3428 | 3953 | 39.74

19901976
19901784 -0.37

(2Mbps, ABME Hy | 3449 | 3963 | 3990 |19901688| -0.16
CCIRGOD | ARME H, | 3450 | 39.64 | 3991 |19901680| -0.15
FIG. 10 (Continued)
Complexity Bus Bandwidth
Search
Methods Operations / .
Ranges Speedup Mbytes / sec Ratio
Macroblock
FS 196608 1 1239 100%
16 ABME_H, 4819 40.80 1.26] 1017 %
ABME_Ji, HW 1599 122.96 127 1025%
FS 786432 1 2004 100%
32 ABME _H, 7459 105.43 132 6.60%
ABME_H; HW 1607 489.38 134 6.67%
FS 3145728 1 3850 100%
64 ABME _H, 18499 170.05 147 3.82%
ABME_H, HW 1623 193822 150 3.90%

FIG. 11
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1
METHOD AND APPARATUS FOR MOTION
ESTIMATION WITH ALL BINARY
REPRESENTATION

FIELD OF THE INVENTION

The present invention generally relates to motion estima-
tion for video encoding, and more specifically to motion
estimation based on a pyramid structure with all binary
representation for video encoding.

BACKGROUND OF THE INVENTION

In a multimedia embedded system, the video encoding
module contains several major components including DCT
(Discrete Cosine Transform)/IDCT (Inverse DCT), motion
estimation (ME), motion compensation, quantization,
inverse quantization, bit rate control and VLC (Variable
Length Coding) encoding, where the most computationally
expensive part is the motion estimation. Generally the
motion estimation takes around 50% of the total computa-
tional power for an optimized system. Thus, to further
optimize motion estimation is critical in cost reduction for
real-time video encoding in an embedded multimedia sys-
tem.

Many fast search algorithms have been developed includ-
ing the three-step search, the 2-D logarithmic search, the
conjugate directional search, the genetic search, the diamond
search, the feature-based block motion estimation using
integral projection, and sub-sampled motion field estimation
with alternating pixel-decimation patterns. These various
search approaches reduce the complexity at the expense of
motion vector accuracy, which leads to a selection of only
local minimum of mean absolute difference (MAD) as
compared to global minimum of a conventional full search
algorithm.

Conventional multi-resolution motion estimation tech-
niques perform the search with a much smaller window from
lower to higher resolution layers. The motion vectors are
refined gradually at each layer but the search area is equiva-
lent to that of the full search with much lower complexity.
To further reduce the complexity, the conventional binary
motion estimation algorithms significantly decrease both the
computational complexity and bus bandwidth by reducing
the bit depth. Based on a binary pyramid structure, Song, et.
al., disclose a fast binary motion estimation algorithm,
namely fast binary pyramid motion estimation (FBPME), in
“New fast binary pyramid motion estimation for MPEG2
and HDTV encoding”, IEEE Trans. on Circuits and Systems
for Video Technology, vol. 10, no. 7, pp. 1015-1028, Octo-
ber 2000. The pyramidal structure of FBPME contains one
integer layer at the lowest resolution (smallest picture size)
and three binary layers that contain detail information.
FBPME performs the tiled motion search with XOR (Exclu-
sive OR) Boolean block matching criterion on binary layers
and MAD on the integer layer. The block matching uses
XOR operations that are much simpler and faster to imple-
ment than MAD operations.

However, the FBPME structure uses an integer layer,
which leads to two distortion computation modules to per-
form both MAD and XOR operations. It requires bigger
code size and more hardware complexity. The FBPME
structure also needs more complicated pre-processing
including filtering, decimation, binarization and interpola-
tion. The hardware complexity for both MAD and XOR
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operations and more complicated pre-processing in the
multi-layer approach result in more power consumption for
hardware implementation.

Another conventional fast binary motion estimation algo-
rithm presented by Natarajan, Bhaskaran, and Konstan-
tinides is based on a simple one-bit transform with conven-
tional search schemes. It provides single layer motion
estimation that derives the current and reference blocks.
However, the binary representation does not use any hier-
archical structure. When a hierarchical structure is adopted,
it is more challenging to get an accurate binary representa-
tion at a lower resolution.

SUMMARY OF THE INVENTION

This invention has been made to overcome the above-
mentioned drawbacks of conventional motion estimation.
The primary object is to provide a method for motion
estimation with all binary representation for video coding.
Accordingly, a binary pyramid having three binary layers of
video images is constructed. The first binary layer is first
searched with a criterion based on bit-wise sum of difference
to find a first level motion vector. Six motion vector candi-
dates are used to determine a motion vector in the second
binary layer. Finally, a search in the third binary layer
according to the second layer motion vector generates a final
motion vector.

In the present invention, the construction of the binary
pyramid includes filtering, binarization and decimation. The
precise edge information is extracted based on the spatial
variation within a small local area of an image to provide all
binary edge information without having to use any integer
layer. In the first level search, the search is performed within
a *3 pixel refinement window. In the second level search,
this invention calculates the ranges of two dimensional 8x8
motion offsets ([R,.,."s Rour | [Ross Roae’ 1) through the
six motion vector candidates from the current and previous
frames according to the spatial-temporal dependencies that
exist among blocks. The refinement window in the second
level has thus covered the dominant ranges of'the search area
with dimension (R,,,."-R,.,/+Dx(R,,..2-R,..,7+1) around
the mean vector of the six motion vectors. The invention
then performs the full-search XOR Boolean block matching
with (R, "R, “+1)xR, 7-R,. 7+1) pixels for refine-
ment at the second level. Similarly, the resultant motion
vector candidate will be passed onto the next binary level. In
the third level, the search is performed within a +2 pixel
refinement window. At each level, the search and determi-
nation of the best motion vector is based on a criterion of
minimum bit-wise sum of difference using XOR block
matching,

It is also an object of the invention to provide an apparatus
for motion estimation for video encoding. Accordingly, the
apparatus comprises a binary pyramid construction module,
a first level search module, a second level search module,
and a third level search module. Each level search module
includes a data loading module, a bit alignment module, and
an XOR block matching module. The binary pyramid con-
struction structure further comprises a filtering module, a
binarization module and a decimation module. Each XOR
block matching module further includes a table lookup
sub-module and a bit-wise sum of difference (SoD) sub-
module.

The motion estimation of this invention is feasible for
pipelined architectures. The method of motion estimation
can be implemented in various architectures including gen-
eral-purpose architectures such as x86, single instruction
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multiple data (SIMD) architectures using Intel’s MMX
technology, and systolic arrays. The pipelined architecture
of the invention contains three major common modules
including the integrated construction, compact storage, and
parallel block matching.

The invention uses a MPEG-4 reference video encoder
and employs a macroblock with size 16x16 for block
matching to show the performances. According to the
experimental results, it not only has the benefits of low
computational complexity and low memory bandwidth con-
sumption but also is insensitive to search range increase.
System designer can choose better binarization methods to
further improve the visual quality. In addition, various
optimization methods can be developed for specific plat-
forms with different register size. The invention thus is more
flexible than other motion estimation method. From the
operation counts, the motion estimation of this invention is
very desirable for software implementation on a general-
purpose processor system. It can be realized by a parallel-
pipelined implementation for ASIC design and allows
tradeoffs between silicon area, power consumption and
visual quality during the hardware design phase.

The foregoing and other objects, features, aspects and
advantages of the present invention will become better
understood from a careful reading of a detailed description
provided herein below with appropriate reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a shows a block diagram of the three-level binary
pyramid structure for motion estimation according to this
invention.

FIG. 15 illustrates the static-state checking module for
motion estimation according to this invention.

FIG. 1c illustrates the state update module for motion
estimation according to this invention.

FIG. 2 shows the first level search module for the motion
estimation illustrated FIG. 1.

FIG. 3 shows the second level search module for the
motion estimation illustrated FIG. 1.

FIG. 4a shows the third level search module for the
motion estimation illustrated FIG. 1.

FIG. 4b shows that an XOR block matching module
according to the invention comprises a table lookup sub-
module and a bit-wise sum of difference (SoD) sub-module.

FIG. 5 illustrates the construction of each binary layer
according to the invention.

FIG. 6 illustrates a parallel processing of the binarization
process.

FIG. 7 illustrates the bit alignment to the initial search
position for the Level 3 search.

FIG. 8 illustrates the spatial-temporal representation of
parallel block matching for each column of check points
using systolic arrays.

FIG. 9 illustrates the detail implementation of parallel 2-D
block matching.

FIG. 10 illustrates the computational complexities and
bus bandwidths for full search, the motion estimation with
and without hardware acceleration according to this inven-
tion.

FIG. 11 illustrates the performance comparison of the
motion estimation according to this invention vs. full search
based on the various encoding conditions, filters, and visual
quality in PSNR.
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4

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The all binary motion estimation of the invention basi-
cally comprises a multi-level binary pyramid structure and
multiple search modules. To achieve a tradeoff between the
precision of the estimated motion vectors and the compu-
tational complexity, the preferred embodiment of this inven-
tion includes a three-level pyramid for motion estimation. In
the following parts of the description, the levels are denoted
as level 1, level 2, and level 3, respectively.

FIG. 1a shows a block diagram of the three-level binary
pyramid structure for motion estimation according to this
invention. The apparatus for motion estimation of FIG. 1
comprises a binary pyramid structure 101, a first level search
module 103, a second level search module 105, a third level
search module 107, a fine tuning module 109, a static-state
checking module 117, and a state update module 119. Each
level search module includes a data loading module, a bit
alignment module, and an XOR block matching module.
The binary pyramid structure 101 further comprises a fil-
tering module 111, a binarization module 113 and a deci-
mation module 115. Using simple decimation, the block
sizes used in the XOR block matching at the three levels are
4x4, 8x8 and 16x16. In the fine tuning module, the motion
search is skipped and the block size used in the XOR block
matching is 16x16. FIGS. 2-4 illustrate the first, the second
and the third level search modules respectively.

Referring to FIGS. 15 and 1¢, in the static-state checking
module and the state updating module, there is one counter
121 and three comparators 122, 123, 124. Initially, the
counters for all blocks are set to zero when processing the
first frame in the source video. Two constants S1 and S2
(52>S1>2) are used to control the occurrence of the static
mode and to retain the video quality. To process each block
1, the comparator 122 in the static-state checking module
checks if the content of the counter, is larger than S1. If it is
true, the motion search enters the static state and fine tunes
the motion vector within a range of =1 in the fine tuning
module. Otherwise, the motion search goes through the
normal state and proceeds to the three level binary search.
After motion estimation, in the state updating module, the
comparator 123 checks if the final motion vector of each
block 1 in the current frame j equals to the stored motion
vector of the block i in the previous frame j-1, whose
coordinates are identical to the current block. If the two
motion vectors are the same, the comparator 124 checks if
the content of the counter, 121 is less than S2. If it is less
than S2, the counter, 121 is increased by one. Otherwise, the
counter; 121 is reset to zero. The same steps are applied to
every block in the current frame. It should be noted that the
same counter; 121 is used in FIGS. 14 and 1c.

To further reduce the computational complexity, an
optional counter can be used to register the repeat occur-
rence of motion vector for each macroblock. If the motion
vectors remain identical for the past four frames, the inven-
tion assumes the current macroblock is static and skips the
motion search and only makes a refinement within a smaller
search range of +1 by the fine tuning module 109 in FIG. 1a.
With all binary representation, XOR operation, and smaller
search window, the speed of the motion estimation can be
improved with only minor loss of the reconstructed image
quality.

Referring to FIG. 2, the first level search module includes
a data loading module 201, a bit alignment module 203, and
a parallel XOR block matching module 205. The bit align-
ment module 203 has a +3 pixel refinement window. With
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reference to FIG. 3, the second level search module 105 also
includes a data loading module 301, a bit alignment module
303, a parallel XOR block matching module 305, and a
motion offset module 307.

Referring to the motion offset module 307 in FIG. 3,
before entering the fine tune search of level 2, with six
motion vector candidates estimated from the first level
search and from the previous frame, the motion offset
module calculates the ranges ([R,,..,.", Ruax 1 Ry s R 1)
of two dimensional motion offsets for every 8x8 block.
Based on the derived motion offsets, the bit alignment
module 303 has a ([R,,,”. R,.."]. [R,..> R, pixel
refinement window.

Referring to FIG. 4a, the third level search module
includes a data loading module 401, a bit alignment module
403, and a parallel XOR block matching module 405. Each
of the parallel XOR block matching modules 205, 305 and
405 of FIGS. 24 further includes a table lookup sub-module
and a bit-wise sum of difference (SoD) sub-module as shown
in FIG. 4b. The method of motion estimation implemented
in the apparatus shown in FIG. 1 comprises four major steps.
The first step is to construct the multi-level binary pyramid
structure. The second step is to perform full search XOR
Boolean block matching with a +3 pixel refinement window.
The third step is to calculates the ranges ([R,...", R,..."],
[R,..: R,..>]) of two dimensional motion offsets for every
8x8 block with the six motion vectors candidates from the
previous and current frames and perform XOR Boolean
block matching within specified area for refinement at the
second level. The fourth step is to perform full search XOR
Boolean block matching with a £2 pixel refinement window
at the last level.

In the first step, three sub-steps including filtering, bina-
rization and decimation are performed by the filtering mod-
ule 111, binarization module 113 and the decimation module
115 respectively to build the three-level pyramid structure.
Each original pixel is compared to a threshold, which is
computed from an average of the neighboring luminance
pixels, to derive the binary representation. At the decimation
stage, the filtered image is then sub-sampled by 2 in each
dimension of the image to achieve the next layer iteratively.

During the construction of the binary pyramid structure,
the precise edge information is extracted based on the spatial
variations within a small local area of an image. In the
invention, the design of the filtering module provides all
binary edge information without having to use any integer
layer that is needed in FBPME. The spatial variations can be
extracted with various filters. Assume that an 8-bit repre-
sentation of the current frame, F, is low-pass filtered to
create a new frame I,. In other words,

F;=F
F=H(F),

with 1=1 . . . L, where L is the total number of pyramidal
levels used. In the invention, L is set to 3. The frame T, is a
blurred version of the original frame F, with the same size at
the 1-th level. The construction of each pyramidal level in
binary format is illustrated in FIG. 5.

The filtered frame F, is then used to create the binary
representation of the current frame. The construction of the
binary representation is based on a threshold T,. The thresh-
old is defined to precisely represent the edge information in
binary format. The edge information can be found by
differencing the original image and its lowpass version. To
compute the binary representation, the invention adopts a
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novel differencing operation using a specified threshold as
computed from frame F,, which provides the average spatial
variations for the neighboring area. Thus, the binary repre-
sentation of the 1-th level is computed by the following
one-bit transformation:

— L if (Fx, y) 2 Ty = Fylx, y)
Six y) = T (F, Fi) = . .
0 otherwise

In the last process of decimation, the lowpass frame T,
which contains most of the spatial information from the
original image at the current level, is used to create the input
frame in the next pyramidal level. To compute the next level,
the frame F, is decimated every other pixel to yield the new
frame T,_; as described in the following equation:

Fi=lF).

In the second step, the full search XOR Boolean block
matching with a £3 pixel refinement window is performed at
the first level search module 103 to locate one initial motion
vector candidate with a block size of 4x4. The initial motion
vector candidate is projected to the next binary level which
has a block size of 8x8.

The matching criterion of this invention is bit-wise sum of
difference (SoD):

SoD@, = 3 (S, ) @Sy1tx+u, y+ )]
(x,y)eBlock

where S, , (x, y) denotes the current binary block at the 1-th
leveland S, ,_, (x+u, y+v) denotes the reference binary block
with offset (u, v) from the left top corner of the current block.
Because the frame data are in all binary formats, a simple
XOR operation is used to compute the difference.

This invention performs the full search at the first level
with a search range of +3 instead of a search range of +16
(R;,;=R/4-1), where R is the target search range. With a
smaller window, motion vectors covering 16 times of the
actual search area are still obtained.

In the third step, based on the spatial-temporal dependen-
cies that exist among blocks, this invention selects the best
8x8 motion vector from six candidates in the current and
previous frames using XOR matching criterion mentioned
above. The six motion vector candidates are motion vectors
corresponding to the upper right (UR), upper (U), and left
(L), initial motion vector candidate of level 1, a motion
vector of temporally previous (P) blocks and the center (C).
The center candidate means a zero motion vector.

According to the invention, the minimum and maximum
offsets of the six candidates for each dimension are selected
as the boundaries of the refinement window in the second
level by the motion offset module 307 shown in FIG. 3.
Thus, the motion offset module 307 defines the ranges
(IR, R ] [Rs”s Ry D of two dimensional motion
offsets for every 8x8 block. The refinement window in the
second level has covered the dominant ranges of the search
area with size (R, "R, +DxR, >-R, . 7+1) around
the mean vector of the six motion vectors. We then perform
the full-search XOR Boolean block matching witha (R, . "~
R, #DX(R,, 00 -R,+1) pixel window for refinement at
the second level. Similarly, the resultant motion vector
candidate is passed onto level 3 for further refinement within
a search range of +2.
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In the fourth step, a +2 search window refined search is
used to derive the final motion vector for a block size of
16x16. In the present invention, the final motion vector
accuracy is affected by the efficiency of the binarization
process in the first step. The threshold T, use in the bina-
rization process depends on the average spatial characteris-
tics and the edge information retained after the filtering
process. A low pass filter with a higher cutoff frequency
removes less amount of the average spatial variation and
retains more high frequency components in the binary
representation S, (X, y) as shown above. Additional high
frequency information retained may increase the precision
of the all binary edge information. For practical implemen-
tation, a trade-off needs to be made between the coding
efliciency and the complexity of the filter.

To demonstrate that the motion estimation of the inven-
tion is suitable for pipelined architecture, specific imple-
mentations are investigated to achieve pipelined processing
for various architectures which include general-purpose
architectures such as x86, SIMD architectures using Intel’s
MMX technology, and systolic arrays. For simplicity, in all
implementations described below the filter used in the
filtering module 111 is:

010
1
Hy=-(1 0 1]

010

To verify the effectiveness of the approach in the present
invention over the full search approach, this invention uses
the x86 system and C language for simulations. Since the
initial locations and the storage units of each level are
distinct, the speedup of the block matching is accomplished
level by level with the disclosed method in the invention.
The level-by-level implementation allows low memory
bandwidth consumption with frequent data access for block
matching.

The pipelined architecture of the invention comprises
three major common modules including the integrated con-
struction, compact storage, and parallel block matching. For
each module, the size and type of storage are constrained by
the data bins/registers defined in the individual architecture,
which provides various distinct sizes of data storage devices/
registers. To implement each generic module in an x86
systemny, the use of C language provides three basic data bins
including INT (32 bits), SINT (16 bits), and UCHAR (8
bits). In the Intel SIMD architecture using MMX technol-
ogy, the largest data bin is a register of 64-bit MMX for
every module. Unless larger data bin is available, the opti-
mization processes for this kind of architecture are similar to
that of x86 architectures. For further reductions in memory
bandwidth between the processing units and reductions in
operation counts on both architectures, the use of the largest
data bin is preferable to store the binary representation of
several consecutive blocks in a packed way.

The first module, integrated construction of the 3-level
binary pyramid, consists of three processes including filter-
ing, binarization and decimation. This module can be
enhanced in two sub-modules including the boundary par-
titioning and parallel processing. The boundary partitioning
is used to skip the branching decision on whether the current
data is located at the frame boundaries. The first sub-module,
boundary partitioning, is achieved by classifying the frame
into the nine regions: four corners, two boundary rows and
two boundary columns, and the interior. The second sub-
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module, parallel processing, is achieved by loading multiple
sets of pixels that are sequentially stored in registers with a
larger size. FIG. 6 shows an example of using the filter H,
to construct the lowpass frame T, The pixel F,(x, y) indi-
cates the pixel at the coordinates (x, y) within the processing
frame of the I-th pyramid level. The shadowed circle rep-
resents the current pixel to be binarized. The derivation of
the lowpass frame using the filter H, is equivalent to the
computation of the average value of the neighboring pixels
surrounding the check point with a distance of one.

Assume the frame data are stored in the data bin, named
as SINT, under C/C++ environment in x86 system. FIG. 6
also demonstrates an example of processing the pair ([F (0,
1) F(1, 1]),,. This invention first loads four neighboring
pairs, ([F,(1, 0) F/(0, 0)])s,, ([F«1, 2) FA0, 2)])sa. ([F(0, 1)
0])5, and ([F42, 1) F(1, 1)]);,, from the reference frame into
four 32-bit INT registers, (R;)s5, (R5)s5, (R3)35, and (R,)s5.
After loading, the summation and rounding operations can
be performed directly since no overflow or underflow occurs
for the frame data. This is because only 8-bit wide data are
stored in a 16-bit data bin. After summation and loading, the
results are put back to a 32-bit INT register (R),,:

(R)z = (Ry)zp + (Rp)3p + (B3 )35 + (Ry)3, + 0200040004
= ([Fy(L,0)+ F;(1,2) + Fy(0,1) + F;2,1)]
[F(0,0) + F1(0,2) + 0 + Fi(1,1)])35 + 0x00040004,

where the value 0x00040004 is used for the rounding
purpose of the concurrently processed pixels. The threshold
for each pixel can be derived by extracting the pair of the
values inside the register (R);,,

(Rrsp>>2)16~((R)3>>2)& Ox3FFF

(Rusp>>2)16=(R)32>>(2+16)

where ‘>>" means the logical SHIFT RIGHT operation. The
derived threshold is used for binarization. With this optimi-
zation, the construction stage has about 30% improvement
in speed.

If a larger bin is available, the speed can be increased by
a factor that equals to the number of the pixels that can be
simultaneously loaded into a single bin. In the Intel SIMD
architecture using MMX technology, the binary pyramid can
be similarly constructed with the boundary partitioning and
parallel processing as described previously for x86 archi-
tectures. However, the achievable parallelism based on
MMX technology is almost doubled due to the 64-bit
architecture. Based on the two equations just shown above,
the improvement is 63% in speed.

The binary representation of frame data results in desir-
able compact storage for the pyramid layers. At level 1, each
row of a 4x4 block only occupies four bits. Hence, one data
bin with 4a bits can store the same row for several sequen-
tial o blocks. At level 2, a continuous and sequential search
range of size (R, ,."~R,.., +1)x(R,, .2 -R,,.,7+1) is defined
based on the six candidates. The packing of multiple blocks
into a single bin as the blocks of level 1 is adopted in the
second level search. Thus for both computer architectures,
this invention stores every row of the successive a8x8
blocks at level 2 into a single data bin of size 8. Using the
same concept of level 1, the invention packs every row of the
sticcessive a16x16 blocks at level 3 into a single data bin of
size 16a.. Note that the widest data bin in both architectures
is only used for speedup of block matching.
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The block diagrams for the fast block matching using all
binary edge information are illustrated in FIGS. 2—4 includ-
ing loading, bit alignment, and parallel XOR block match-
ing. The loading module puts each group of sequential data
into the corresponding bins of a larger size for reducing
memory access. Since the frame data in binary format has
been compactly and sequentially stored, the memory access
becomes a simple fetch instruction. Thus, the loading mod-
ule loads the current data and the reference data in the search
window into the on-chip memory, respectively.

As shown in FIG. 2, for each group of four sequential 4x4
blocks at level 1, this invention loads the same row of the
current four blocks into a specified SINT register one by one,
and puts the corresponding row of the reference blocks into
an INT register one by one in x86 architecture. Thus, the
four SINT registers can be used for following parallel block
matching so that the speed is increased by about 4 times as
compared to the block-by-block matching scheme. The
same processes are employed in the Intel SIMD architecture
except for the use of 64-bit data bins to handle each group
of eight sequential 4x4 blocks at level 1. Thus, the four
MMX registers can be used for a factor of about 8 in
parallelism as compared to the block-by-block matching
method.

The bit alignment module synchronizes the reference data
in the search window with the current data. After bit
alignment, (parallel) XOR block matching, table lookup,
and SoD comparison sub-modules are adopted for finding
the motion vector with the minimal SoD. The XOR opera-
tion is applied to compute the distortion. To derive the block
SoD after the XOR module, a table lookup operation is
applied in the table lookup sub-module by counting the
number of ‘1’s in this temporary register. Finally, by com-
paring all SoDs, this invention can determine which motion
vector is the best for each of the four blocks separately in the
SoD comparison sub-module. While going through all
blocks of the current frame, the resultant motion vector with
the minimal SoD is selected.

The optimization processes of motion vector search in
either architecture are similar except that the 64-bit registers
can handle more successive blocks simultaneously and
special instructions are used to operate on the registers in
SIMD architecture. Thus, only relevant steps in x86 system
at each search level are described in detail to show how to
achieve such parallelism. The optimization of the parallel
XOR bock matching modules will be explained in detail at
level 1. For the remaining levels, the relevant descriptions
are skipped because of their similarities.

In level 1, because each block has the initial location
assigned sequentially, the invention can simultaneously
compute SoDs for four blocks in x86 architecture and derive
SoDs for eight blocks with MMX technology in a row-by-
row manner. The following five steps summarizes the opti-
mization for achieving parallelism:

Step 1 (Loading): Since the invention processes four neigh-
boring blocks of size 4x4 for the current frame simulta-
neously, 16-bit data is needed to compute the SoDs for each
row. With the search range of 3, the data of the reference
frame that needs to be loaded into a data bin should be larger
than or equal to 22 bits for parallel block matching.

Step 2 (Bit Alignment): For the initially loaded data, the
invention aligns the reference block with a horizontal offset
of 43 relative to the current blocks at level 1 as shown in
FIG. 2. To move to the next check point, the bits of the
overlapped area are reused by right shifting the bits in the
register by one.
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Step 3 (XOR): The row-wise matching is illustrated in FIG.
2, where each square indicates a single bit. Since the STNT
contains 16 bits, only the lower 16 bits of the reference
register will be compared with the current data using XOR.
This XOR result is temporarily stored in another STNT
register and three 4-bit SHIFT and three AND (as a mask)
operations are required to get the SoDs for the four blocks
respectively.

Step 4 (Table Lookup): Diff is a SFNT register that stores the
corresponding SoD of the current row of the n-th block as
computed by

SoD{u, ¥),=T[Diff>>Ax(4-)]& (0000 0000 0000
1)

The overall SoD for each block equals the sum of the SoDs
for each row.

Step 5 (SoD Comparison): Comparing all SoDs, the inven-
tion can determine which motion vector is the best for each
of the four blocks, respectively.

At level 2, the invention stores 2 successive blocks in a
32-bit data bin with similar packing approach used in level
1 for both architectures. For each predefined check point that
is found with the motion offset module 307 of FIG. 3, the
motion estimation at level 2 computes the block difference
in a row-by-row manner. For the current row, the invention
needs not only load the required bits within the predefined
search range into the registers but also aligns the reference
data by shifting the registers [} bits, which are equal to the
horizontal offset indicated by the current motion vector. For
the consecutive check points, extra shift operations are
necessary to align the reference data. The bit alignment
process for the level 2 search is shown in FIG. 3.

In level 3, the modules including loading and bit align-
ment in x86 architecture are optimized as follows. In the
loading module, one 32-bit register A stores the same row of
the reference data at the block X and the previous block
(X-1). The other 32-bit register B stores the same row at
block (X+1). Both registers contain partial bits of reference
data within the specified search window as demonstrated in
FIG. 7. To align the reference data, the horizontal predictive
motion vector is initially set to be -10 as an example.
Register A is shifted left by 10 while register B is shifted
right by 6 to reach the initial search position. The invention
combines the contents of the two registers with a simple
XOR/OR operation. In the last step, the reference bits are
aligned to match the initial search location +2. When the
invention moves to the next location in the same row, an
extra shift operation is needed to synchronize the pair of data
for matching.

The following describes the implementation of the inven-
tion using systolic arrays. The all-binary representation for
each pyramid level reduces the storage from N” bytes to N*
bits, which can be stored as groups of row or column
vectors. Since the vectors are consecutively stored, the
invention accesses the information efficiently through pipe-
lining the binary information and overlapping the processing
time for each matching process. Because the current block
is fixed in the search process, the reference data can be
accessed and propagated in the form of pipelines for an
ASIC implementation. In short, it is advantageous to employ
systolic arrays to design the hardware implementation for
the motion estimation of the invention.

In FIG. 2, FIG. 3, and FIG. 4q, the parallel XOR Block
Matching module is optimized with systolic arrays for level
1, level 2, and level 3 searches. FIG. 8 illustrates the
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spatial-temporal representation of parallel block matching
for each column of check points using systolic arrays, where
each bold dot denotes a processor element and the spatial-
temporal representation of the XOR block matching is
defined as

oD, v) = Y [Syx Y @Sy +u, y+l.
(x, y)eBlock

S;A.) shown in FIG. 8 indicates the I-th level binary
representation of the current frame at time t. S, ,(.,.)
presents the reference data at the same pyramid level of the
temporally previous frame. For block matching, the block
dimension is set as NxN and the search range is +R. The
motion vector from the current block to the corresponding
reference block is indicated by (u, v).

The binary data of both the current block and the refer-
ence block can be transported into the processors in the order
that the resultant SoD’s can be computed by summing the
XOR block matching criterion in a row-by-row manner. For
each block of the current or the reference frame, the binary
data of each row is stored as a 1-D vector. Each pair of
vectors from the current and reference blocks is delivered to
the processing element (PE) for computing the SoD. The
current block is further passed to the next PE through the
systolic arrays. Consequently, for each column of check
points, the invention obtains (2R+1) final SoDs as shown in
FIG. 8.

To cover all check points of size (2R+1)*, the invention
computes and compares the SoDs with a pipelined approach,
where each PE handles a specified row of the reference
blocks at the same column within the search window. Based
on the pipelined approach, the invention can process each
column within the search window sequentially in time. That
is, the invention checks every check point located at the first
column of the search window, and selects from these check
points to find the best candidate with the minimal SoD. The
pipeline scans through the subsequent 2R columns using all
PEs in the array, and the invention obtains the final candidate
with the minimal SoD) among all search points, which leads
to the resultant motion vector for the current block.

The pipelined architecture requires (2R+1) PEs, (2R+N)
*(2R+1) cycles, (2R+N)*(2R+1) memory access to get the
reference data and N*(2R+1) memory access to load the
current data from the on-chip memory to compute (2R+1)?
SoDs of each block with N* bits, where additional 2R cycles
are used for pipeline initialization and each memory access
takes N bits of the reference block and N bits of the current
block. The gate counts for constructing (2R+1) PEs are
small while memory access efficiency poses the challenge.

To further reduce the latency for the memory access, the
invention discloses a 2-D parallel block matching architec-
ture using systolic arrays. The 2-D architecture removes the
overhead of loading the overlapping bits within the succes-
sive reference blocks by simultancously fetching all the
(2R+N) bits within the reference window into the on-chip
memory. From each row of (2R+N) bits, the invention then
de-multiplexes each group of N serial bits into the corre-
sponding pipeline. The overall SoD for each pair of block is
computed in a PE, which is implemented with detail circuits
as shown in FIG. 9.

FIG. 9 illustrates the detail implementation of parallel 2-D
block matching. The apparatus for 2-D parallel block match-
ing of FIG. 9 comprises a storage 1 module, a delay module,
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(2R+N)? PEs, an MUX module, a on-chip memory module,
and a storage 2 module. The storage 1 stores the binary data
of the current blocks. The delay module receives the row of
binary data of the current blocks and sends the row out after
one clock cycle delay. The (2R+N)? PEs that are arranged as
a 2-D array with 2R+N) rows by (2R+N) columns as shown
in FIG. 9 receives the rows of the binary data from the
current block and the reference blocks and performs XOR
operations of multiple bits in parallel, computes the number
of 1’s using a decoder, and finally accumulates the total
number of 1°s as the SoD. The MUX receives the (2R+N)
bits of the binary data from the reference block and distrib-
utes every N bits into each row of PEs. The (2R+N) bits
received by the MUX are fetched into the on-chip memory
from the storage 2.

The (2R+N)? PEs that are arranged as a 2-D array with
(2R+N) rows by (2R+N) columns as shown in FIG. 9 further
comprises a XOR module, a decoder module, a summation
module, two delay modules, and a switch module.

A decoder 1010 is used to compute the number of ‘1’s
within each input data. Blocks with label ‘D’ are the delay
elements. The SoD stored in the delay element of the inner
loop is accumulated with all outputs from the decoder 1010.
The overall SoD of concurrently matched blocks is com-
pared by a comparator, which is not shown. The motion
vector with minimal SoD is found after going through all of
locations within the search areas. S, (.,.) shown in FIG. 9
indicates the I-th level binary representation of the current
frame at time t. S;,_,(.,.) presents the reference data within
the same pyramid level of the temporally previous frame
t-1. For block matching, the search range is zR. The motion
vector from the current block to the corresponding reference
block is indicated by (u, v). The delay element ‘D’ next to
the decoder 1010 stores the accumulated SoD for the cor-
responding position within the search area.

The PE performs XOR operations of multiple bits in
parallel, computes the number of 1’s using a decoder, and
finally accumulates the total number of 1’s as the SoD. The
relationship between the PEs, the current block, and the
reference block can be represented as the block diagram in
FIG. 9. The dimension of the input blocks to each PE is
related to the block dimension of the current pyramid level.
For example, the block dimension is 4 for the level 1 and is
increased to 16 for the level 3. With the 2-D parallel
architecture, the invention requires (2R+1)? PEs, (2R+N)
cycles, (2R+N) memory access to get the reference data and
N memory access to load the current data from the on-chip
memory to derive SoD for a search range of value R and
each block with N? bits. Fach memory access fetches
(2R+N) bits of the reference block and N bits of the current
block from the on-chip memory. As compared to the 1-D
pipelining architecture, the speed is (2R+1) times in com-
putation of SoDs and each reference data is fetched from the
on-chip memory just once, which is the minimal memory
access to load the bits into the system. Because the motion
estimation of this invention requires a small search range for
each level, the increase of gate count in realizing the 2-D
pipelining architecture is still within a reasonable range.
Although the invention provides an implementation
example, it is possible to be more eflicient in mapping the
block diagram of the motion estimation onto a physical
hardware like ASIC or FPGA chips.

FIG. 10 illustrates the computational complexities and
bus bandwidths for the traditional full search (‘FS’), and the
motion estimation of this invention with and without hard-
ware acceleration. The frame size is 352%288 and the frame
rate is 30 fps. The following first describes the analysis of
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computational complexity of the motion estimation of this
invention on x86 architectures with and without the alter-
native implementation of parallel XOR block matching
module in FIGS. 2-4 using the 2-D systolic arrays. The
analysis is based on how a single block computes its motion
vector and the memory access per second for a particular
frame rate. The notations of W, H, +R, and F, (Ips) denote
the frame width, frame height, search range, and frames per
second, respectively. The block size is assumed to be 16x16,
which is the most commonly used in video compression
standards.

For easy analysis of the complexity by the motion
research with a range ([R,,..,."s R,un]s [R,s”s Riad 1) at level
2, the maximum motion search range is used as the worst-
case scenario. The maximum motion search range of all
frames is found for each dimension as in the following. For
each block j within each frame i of the current sequence, the
boundaries of the maximum motion search range for level 2
search are

L 1 1E) {(Rmaxx)l,]}s
Py~ {(Rminx)l,]}a
P X { (R )1 s}

Frnar TAX {(Rmaxy)lJ}>

For each block, the traditional full search using sum of
absolute difference (SAD) needs to process all 4R search
points within search window. Each location takes 16°x3
operations, where the three operations consist of one sub-
traction, one absolute value, and one addition operation for
each pair of data. Hence, the computational complexity of a
full search, labeled as ‘FS’, to obtain a single motion vector
is approximated as §,~3072xR* operations per macrob-
lock. Based on the theoretical best-case scenario for full
search using the 32-bit register in x86 system, to obtain a
single motion vector is approximated as

1 R
Ops = ZéFS =T68 xR

operations per macroblock.

For the same search area, the total operations, labeled as
‘ABME_H,’, required to compute a motion vector for the
disclosed architecture without using 2-D systolic arrays are
O saam_p, 0D, 0,540, 2 per macroblock, where (3,
d;,1: 87,5, and d; 5 represent the operation counts for the
pyramid construction and the motion search at each level of
the binary pyramid, respectively. With a search window of
size 4R? and XOR operations for matching a macroblock of
size 16x16, the search range of level 1 is reduced to (R/2-1)*
and the block sizes from level 1 to level 3 are 4%, 82, and 162,
respectively. The binarization process requires 4.5 opera-
tions per pixel on the average. Thus to build the binary
pyramid needs 3=(4°+8+16%)x4.5=1512 operations per
block.

As for the block matching process, because the data
storage techniques are different from level to level, the
operations required for each level are analyzed individually.
Inlevel 1, each pack of four blocks stored in the 4 SINT bins
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forms a matching unit, which contains the data in the current
row where the four blocks are sequentially stored. To
complete the derivation of the four SoDs, it takes fifteen
operations for every row of the block within the search
window. The fifteen operations include one register shifting
for XOR, three AND operations and three shift operations to
extract the four bit-wise SoDs, four table lookup operations,
and four addition operations to accumulate the SoDs of the
four macroblocks processed concurrently. Hence, the total
operations at level 1 for each macroblock are

_ R 201 R 2
6Lv1:(13><4)><(5—1) X3 =15x(§—1’) .

The computational analysis of level 2 is similar to level 1
but with a larger block size and a dynamic search range,
which is computed with the six motion vector candidates
form the current and the previous frames. In level 2, each
pack of two blocks stored in the 2 SINT bins forms a
matching unit, which contains the data in the current row
where the two blocks are sequentially stored. To complete
the derivation of the two SoDs, it takes seven operations for
every row of the block within the search window. The seven
operations include one register shifting for XOR, one AND
operation and one shift operation to extract the two bit-wise
SoDs, two table lookup operations, and two addition opera-
tions to accumulate the SoDs of the four macroblocks
processed concurrently. The number of search locations is
i F DX, 00— +1) and 8 SINT bins cover all

max min

(r maxx_r m

rows of two Level 2 blocks of size 8x8. Thus, level 2 search
needs

1
(5va:8x7><(r,fm—r,fu-n+1)><(r,ﬁax—r,ﬁ]-n+1)><§

operations per block.

The computational analysis of level 3 is similar to level 2
but with a larger block size and a fixed search range. The
number of search locations is 25 and 16 SINT bins cover all
rows of a Level 3 block of size 16x16. Thus, level 3 search
needs §;,;=16x3x25=1200 operations per block.

To build the binary pyramid needs §,.~(4*+8%+16%)x
4.5=1512 operations per block. The number d,,, of total
operations at level 1 for each macroblock is 15x(R/2-1)*.
The numbers 9; , and §; , of operations per block at level
2 and level 3 are 28x(r, ~-t,. +1)x(, -1, +1) and
1200 respectively. Therefore, total number of operations
required for ‘ABME_H,’ is

8 smate_r,=Oc+0y,1407,040,,3=2712+15x(R2-1)"+
(P =T F L)X Fpuas’ —Fpid +1).

The use of the 2-D systolic arrays for parallel XOR block
matching modules at level 1, level 2 and level 3, which is
called as ‘ABME_H, HW’, reduces the total operations per
macroblock to
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’ v
OaBME Hy_HwW = Oc + 01,7 + 01,2 +0],3

R
:1512+(3—1+4)+(rrfm—rrf”-n+8)+(5—1+16) 5

=

+1)

max min

= 15424 (5 |+ i = 2

)

10
Comparing the values of 8 450z Qumrse_n, _zwand g
this invention outperforms the full search, which is consis-
tent with the computational complexities as shown in FIG.
10 for various search ranges.

The following analyzes total memory bandwidth for load- 15
ing the data from the current and reference frames. For the
full search, the total bandwidth consumption in bytes per
second is CFS:(ZFsiCur*'CFSiRef)XFri where Crs o, and
T, rerare the memory bandwidth to access the data for the

current and reference frames respectively. Assume that the

4] =(L‘)x[(4+§—1)><(4><4+;-1)+[

4x4!

H w1
gL‘Q:(Fy)x[(8+r,{m—r,ym-n+1)><(8><2+r;‘m—r"min+1)+(mx——1]><(8+r,{mx_ry

8

16

tem with and without hardware acceleration using the 2-D
systolic arrays:

(QABMEJJA:@CM'@LA+(€Lv2+(€Lv3)XF and Cpam
_ \ P
Hy_HW CwtCrutlrott ),

respectively. The term ., indicates the bandwidth con-
sumption for loading the current frame. The remaining terms
Cevs €zt Gz Gy 50 and T; denote the bandwidth
required for accessing the reference frame.

In x86 systems without hardware acceleration using the
2-D systolic arrays, the memory bandwidth (bytes) to load
every block of the current frame is

11 1
gCurz(E t7 +1]><HW><§ ~0.164xW x H.

Based on the reusability of the data already in the registers,
the memory bandwidth required for each pyramid level to
load reference data within a search window per frame is

id ! 1 4 k 1|x 16
27531+ 3 - 116

1
win T 1) X 16 X§’

2

- H 1
s = [(16+5y+(E —1)x16x(16+5)}x—x—

current block is loaded simultaneously into on-chip memory
with 16x16 UCHAR bins. Thus, to access the data for, the

current frame of size WxH requires Ty ,,=WxH bytes. 35

Assume that the reference block is loaded simultaneously
into on-chip memory with (1642R)> UCHAR bins. When
moving to the next block, the data for overlapped area are

2

2

2 = (o ¥[8+ s~ i+ 1% B+ P~ 0+ 50— 1) (8 P g + 18]

3]
X
(=]

reused and the bandwidth required is 16x(16+2R). Thus, to
completely load the data from the reference frame needs .

additional 0

55

’FSszEx[(16+2R)2+(K—1))<(16+2R)><16
SESRA = 76 SRRSTS

60

bytes. The first term search window, which takes more
operations due to the memory stall in the initialization stage
of pipelining. Because the rest search windows are over-
lapped with its previous one, fewer operations are needed.

For the motion estimation of this invention, the total
memory bandwidth consumption in bytes used in x86 sys-

65

(4+§—1) xl:%—l)x(4+§—l)x4

1678

Where for easy calculation of the memory bandwidth
required for each frame at level 2, the worst case of the
search range is set as [-3,3] for both x and y dimensions.

When the XOR matching modules at levels 1, 2 and 3 are
implemented with 2-D systolic array architecture, the
memory bandwidths required for loading reference data
within a search window per frame are

Xg,

)

oo —

and T'; ,=C; s, respectively. This invention significantly
reduces the bus bandwidth as compared to the full search. As
the search range is increased, the memory bandwidth for the
full search is increased dramatically and those for the motion
estimation of the invention is increased slightly only due to
the increased C; , and T', .. As opposed to the high sensi-
tivity with various R to the memory bandwidth for the full
search, the motion estimation of the invention is insensitive
to the search range variation since the frame size at level 1
is the smallest and the data from the consecutive blocks can
be stored in a larger bin. Such superior performances are
consistent with the observations as shown in FIG. 10.

To show the performance of this invention over the full
search, the invention uses MPEG-4 reference video encoder
and employs a macroblock with size 16x16 for block
matching, The performance comparison shown in FIG. 11 is
analyzed based on the factors including the video sequences,
the encoding conditions, various decimation filters, the
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motion estimation approaches, and the visual quality of the
reconstructed video in PSNR values.

The video sequences with CIF format including Coast-
guard, Foreman, and Akiyo and the sequences with QCIF
format covering Container and Mother-Daughter are used
for testing. The six sequences characterize a variety of
spatial and motion activities. The invention further tests two
CCIR601 sequences, including Table Tennis and Stefan,
which consist of fast moving objects. The fast moving
objects within a picture of larger size are adopted to examine
the performance and the computational load of the motion
estimation of the invention. Fach source sequence consists
of 300 frames.

As for the encoding conditions, each sequence is encoded
under the conditions recommended by MPEG committee.
The target frame rate is set as 10 fps and the bit rates range
from 10 kbps to 2M bps for various sequences. For finding
the precise motion vector, the search range is =16 for each
sequence and the range is increased to £32 for the CCTR-601
sequences.

As for the motion search range for the level 2 search, the
range of size ([r,,.,”", e Js Wniri s Emae 1=C[=3,31,[=3,3]) can
provide satisfactory motion vectors of level 2 empirically
and thus is used for the complexity estimation in FIG. 11.

As for the decimation filters, this invention uses three
two-dimensional (2-D) filters and three 1-D separable filters
1o analyze how various filters impact the binarization and
coding efficiency of the motion estimation. The three 2-D
filters, denoted as H,, Hy, and H_, are

G
0 0
010
101

010

0
0
0
0

, He

B

H—1 H—1
A=7 »HB =g

0
0

o o = o ©
o o o o O
_ 0 O O
o o o o O
—_
[ e =T R R ]
<
o o O o o o O
_ o O O O O =
o o O o o o O

The frame S,(x, y) that is extracted with the filters Hz or H.
retains more high frequency information than the frame that
is extracted with the filter H,.

The three 1-D filters are three separable 13-tap Hamming
filters with distinct cutoff frequencies at 20%, 25% and 30%
of Nyquist frequency. For further reduction in filter com-
plexity, every filter of the 1-D filters is a linear phase FIR
filter with coeflicients in the form of k-27. For a 1-D filter
with M taps, i.e. H=[h;, h,, . . ., h, ], the lowpass frame is
computed as

_ ul M+l
Fitn ) = HIFx ) = ) hasFi(ved- 25
d=1 N

,y]:[i ko xva

d=1

M
where m = logz[z kd].

d=1

For instance, a S-tap filter with the coefficients of H=[1, 4,
6, 4, 1127 can be implemented with only shift and add
operations. The typical cost of such operations on various
modern computer architectures is one cycle. Thus, this type
of filter can achieve significant speedup over the original

o o o — o o ©
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filters although it is not designed with specific filter design
methodology. The three 1-D filters are:

Hyg=[-1,0, 4,15, 33, 49, 56, 49, 33, 15, 4, 0, -1}/

>

Hys=[-1,-2,0, 11, 32, 55, 66, 55, 32, 11, 0, -2,
~1]/256,and

Hy[-1, -2, 4, 4,30, 62, 78, 62, 30, 4, -4, -2,
-1)/256.

Based on the complexity analysis from FIG. 10 and the
performance comparison from FIG. 11, it can be seen as
compared to the full search, this invention not only takes the
benefits of low computational complexity and low memory
bandwidth consumption but also is insensitive to search
range increase. The invention also demonstrates that with
better binarization methods, the visual quality can be further
improved. With this feature, it can provide flexible configu-
rations. System designers can choose the binarization meth-
ods depending on the available memory, computational
power, display resolution, or data bus bandwidth provided
by their system. For example, the characteristics of wireless
mobile phones have less computational powet, lower display
resolution and less available memory. Thus, the smallest
filters should be used for the best execution speed while its
visual quality is still acceptable for the low-resolution dis-
play. On the other hand, for a faster machine such as today’s
personal computers or high-end DSP systems, the filter with
better frequency response can be applied since its compu-

tational power can afford more complexity. In addition,
various optimization methods can be developed for specific
platforms with different register size. Thus, the motion
estimation of the invention is more flexible than other
motion search algorithms.

The invention also demonstrates platform specific opti-
mizations for several hardware architectures including x86,
SIMD using MMX and systolic arrays. From the operation
counts, the motion estimation of the invention is very
desirable for software implementation on a general-purpose

2

: y]] 2,

processor system. It can also be realized with a parallel-
pipelined implementation for ASIC design and allows
tradeoffs between Silicon area, power consumption, and
visual quality during the hardware design phase. Thus, the
motion estimation of this invention is versatile and effective
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for multimedia systems in both software and hardware
platforms.

Although the present invention has been described with
reference to the preferred embodiments, it will be under-
stood that the invention is not limited to the details described
thereof. Various substitutions and modifications have been
suggested in the foregoing description, and others will occur
to those of ordinary skill in the art. Therefore, all such
substitutions and modifications are intended to be embraced
within the scope of the invention as defined in the appended
claims.

What is claimed is:

1. An apparatus for motion estimation in video encoding,
comprising:

a binary pyramid construction module for transforming

video images into first, second and third binary layers;

a static-state checking module determining if said appa-
ratus is in a static mode or a normal mode based on
repeat occurrence of final motion vectors;

a first level search module receiving said first binary layer
and performing parallel XOR block matching with a +3
pixel refinement window in a first level and generating
a first level motion vector for said normal mode;

a second level search module receiving said second binary
layer and using six motion vector candidates to deter-
mine a second level motion vector for said normal
mode;

a third level search module receiving said second level
motion vector and performing parallel XOR block
matching with a +2 pixel refinement window in a third
level and generating a final motion vector for said
normal mode;

a fine tuning module performing parallel XOR block
matching with a +1 pixel refinement window and
generating a final motion vector for said static mode;
and

a state update module registering and updating said repeat
occurrence of final motion vectors.

2. The apparatus for motion estimation as claimed in
claim 1, wherein said binary pyramid construction module
has a filtering module, a binarization module and a decima-
tion module.

3. The apparatus for motion estimation as claimed in
claim 1, wherein said first level search module comprises a
data loading module receiving said first binary layer, a bit
alignment module coupled to said data loading module for
aligning a current block and a reference block with a +3
pixel refinement window in said first level, and a parallel
XOR block matching module for generating a first level
motion vector with a criterion based on minimum bit-wise
sum of difference.

4. The apparatus for motion estimation as claimed in
claim 3, said parallel XOR block matching module further
comprising a table lookup sub-module and a bit-wise sum of
difference sub-module.

5. The apparatus for motion estimation as claimed in
claim 1, wherein said six motion vector candidates are
motion vectors corresponding to an upper right block, an
upper block, and a left block, an initial motion vector of a
current block from said first level, a motion vector of a
temporally previous block and a zero motion vector respec-
tively.

6. The apparatus for motion estimation as claimed in
claim 3, wherein said second level search module com-
prises:
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a motion offset module determining a search range of
motion vector offsets based on said six motion vector
candidates;

a data loading module receiving said second binary layer,
and said search range from said motion offset module;

a bit alignment module for aligning a current block and a
reference block; and

a parallel XOR block matching module;

wherein said bit alignment module and said parallel XOR
block matching determine said second level motion
vector by checking motion vectors corresponding to
said search range determined by said motion offset
module.

7. The apparatus for motion estimation as claimed in
claim 6, said parallel XOR block matching module in said
second level search module further comprising a table
lookup sub-module and a bit-wise sum of difference (SoD)
sub-module.

8. The apparatus for motion estimation as claimed in
claim 6, wherein said third level search module comprises a
data loading module receiving said third binary layer and
said second level motion vector, a bit alignment module
coupled to said data loading module for aligning a current
block and a reference block with a +2 pixel refinement
window in said third level, and a parallel XOR block
matching module for generating a final motion vector with
a criterion based on minimum bit-wise sum of difference.

9. The apparatus for motion estimation as claimed in
claim 8, said parallel XOR block matching module in said
third level search module further comprising a table lookup
sub-module and a bit-wise sum of difference (SoD) sub-
module.

10. The apparatus for motion estimation as claimed in
claim 1, wherein said state update module further comprises
a counter for registering repeat occurrence of said final
motion vectors within previous frames, said counter is
increased by 1 if a same final motion vector within said
previous frames repeats, and said counter is reset to zero if
said counter is larger than a predefined constant or if a
different final motion vector is found.

11. The apparatus for motion estimation as claimed in
claim 10, wherein said static-state checking module sets said
apparatus in said static mode if said counter for registering
repeat occurrence of said final motion vectors within said
previous frames is greater than a pre-defined constant.

12. The apparatus for motion estimation as claimed in
claim 1, wherein said binary pyramid construction module,
said first level search module, said second level search
module and said third level search module are implemented
in a pipelined architecture.

13. The apparatus for motion estimation as claimed in
claim 1, wherein said binary pyramid construction module,
said first level search module, said second level search
module or said third level search module is implemented by
systolic arrays.

14. The apparatus for motion estimation as claimed in
claim 1, wherein said first level search module, said second
level search module or said third level search module
comprises a search circuit having:

a first storage unit storing binary data of a current block;

a delay circuit coupled to said first storage unit;

a second storage unit storing binary data of a reference
block;

an on-chip memory module receiving data from said
second storage unit; and

a multiplexer coupled to said on-chip memory module
and providing a plurality of outputs; and



US 7,020,201 B2

21

a two dimensional systolic array having a plurality of
rows of systolic cells, each systolic cell having a first
input for receiving data from said delay circuit, each
systolic cell in a row except a first systolic cell having
a second input coupled to an output of a preceding
systolic cell in a same row;

wherein a first systolic cell in each row of systolic cells
has a second input coupled to an output of said multi-
plexer.

15. The apparatus for motion estimation as claimed in

claim 14, wherein each systolic cell comprises:

a decoder;

an XOR unit having an output connected to an input of
said decoder, a first input connected to the first input of
the systolic cell, and a second input connected to the
output of the systolic cell;

a first delay unit connected between the second input and
the output of the systolic cell;

a second delay unit;

a summation unit having a first input coupled to an output
of said decoder, and an output connected to said second
delay unit; and

a switch unit for controlling connection between an output
of said second delay unit and a second input to said
summation unit.

16. A method of motion estimation for video encoding,

comprising the steps of:

(a) constructing a binary pyramid by transforming video
images into first, second and third binary layers;

(b) determining if said method is in a static mode or a
normal mode based on repeat occurrence of final
motion vectors;

(c) performing parallel XOR block matching with a +1
pixel refinement window and generating a final motion
vector if said method is in said static mode;

(d) executing a first level search by performing parallel
XOR block matching in said first binary layer with a +3
pixel refinement window in a first level and generating
a first level motion vector if said method is in said
normal mode;

(e) executing a second level search in said second binary
layer according to six motion vector candidates and
determining a second level motion vector if said
method is in said normal mode;

() executing a third level search in said third binary layer
according to said second level motion vector and
performing parallel XOR block matching with a +2
pixel refinement window in a third level and generating
a final motion vector if said method is in said normal
mode; and
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(g) registering and updating said repeat occurrence of
final motion vectors.

17. The method for motion estimation as claimed in claim
16, wherein said step (a) includes filtering, binarization and
decimation.

18. The method of motion estimation as claimed in claim
16, wherein said step (d) is accomplished by aligning a
current block and a reference block with a +3 pixel refine-
ment window in said first level using parallel XOR block
matching with a criterion based on minimum bit-wise sum
of difference.

19. The method of motion estimation as claimed in claim
16, wherein said six motion vector candidates are motion
vectors corresponding to an upper right block, an upper
block, and a left block, an initial motion vector of a current
block from said first level, a motion vector of a temporally
previous block and a zero motion vector respectively.

20. The method of motion estimation as claimed in claim
16, wherein said step (e) comprises:

(el) determining a search range of motion vector offsets
based on said six motion vector candidates; and

(€2) determining said second level motion vector by
checking motion vectors corresponding to check points
within said search range using XOR block matching
with a criterion based on minimum bit-wise sum of
difference.

21. The method of motion estimation as claimed in claim
16, wherein said step (f) is accomplished by aligning a
current block and a reference block with a =2 pixel refine-
ment window in said third level using parallel XOR block
matching for generating said final motion vector with a
criterion based on minimum bit-wise sum of difference.

22. The method of motion estimation as claimed in claim
16, wherein said step (g) uses a counter for registering repeat
occurrence of said final motion vectors within previous
frames, said counter is increased by 1 if a same final motion
vector within said previous frames repeats, and said counter
is reset to zero if said counter is larger than a predefined
constant or if a different final motion vector is found.

23. The method of motion estimation as claimed in claim
22, wherein said method is in said static mode if said counter
for registering repeat occurrence of said final motion vectors
within said previous frames is greater than a pre-defined
constant.



