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ABSTRACT

The 3D-partner is a web tool to predict interacting
partners and binding models of a query protein
sequence through structure complexes and a new
scoring function. 3D-partner first utilizes IMPALA
to identify homologous structures (templates) of
a query from a heterodimer profile library. The
interacting-partner sequence profiles of these tem-
plates are then used to search interacting candi-
dates of the query from protein sequence databases
(e.g. SwissProt) by PSI-BLAST. We developed a new
scoring function, which includes the contact-
residue interacting score (e.g. the steric, hydrogen
bonds, and electrostatic interactions) and the
template consensus score (e.g. couple-conserved
residue and the template similarity scores), to
evaluate how well the interfaces between the
query and interacting candidates. Based on this
scoring function, 3D-partner provides the statistic
significance, the binding models (e.g. hydrogen
bonds and conserved amino acids) and functional
annotations of interacting partners. The correlation
between experimental energies and predicted
binding affinities of our scoring function is 0.91 on
275 mutated residues from the ASEdb. The average
precision of the server is 0.72 on 563 queries and the
execution time of this server for a query is ~15s
on average. These results suggest that the
3D-partner server can be useful in protein-protein
interaction predictions and binding model visualiza-
tions. The server is available online at: http://
3D-partner.life.nctu.edu.tw.

INTRODUCTION

Protein—protein interactions are involved in most biolog-
ical processes. Identifying their associated networks

comprehensively is the key to understanding cellular
mechanisms (1). Some systematic identification of
protein—protein interactions have been constructed by
high-throughput experimental methods, such as large-
scale two-hybrid system (2) and affinity purifications (3).
A basic problem with most large-scale experimental
methods is the high false-positive rate (4). Many
computational methods have been developed to predict
protein—protein interactions by using gene expression
profiles (5), domain—domain interactions (6-8), phyloge-
netic profiles (9), known 3D complexes (10,11) and
interologs (12,13). These large-scale methods are often
unable to respond how a protein interacts with
another one.

To identify interacting domains from three-
dimensional (3D) structural complexes is able to study
domain—-domain interactions. A known 3D structure of
interacting proteins provides interacting domains and
atomic details for thousands of direct physical interac-
tions. In addition, it is usually possible to build an
interaction model of two proteins by comparative
modeling if a known complex structure comprising
homologs of these two sequences is available
(10,11,14,15). For a pair sequences, these methods
often search a 3D-complex library to find homologous
templates and score how well the query protein pair fit
the known template structures by using a scoring
matrix. In this way, they should evaluate all possible
protein pairs (18000000) in one species if it has 6000
proteins. Our previous study proposed ‘3D-domain
interologs’ which is similar to ‘interologs’ (12). The
3D-domain interologs is defined as ‘Domain « (in chain
A) interacts with domain b (in chain B) in a known 3D
complex, their inferring protein pair A’ (containing
domain a) and B’ (containing domain b) in the same
species would be likely to interact with each other if
both protein pairs are homologous.” Based on this
concept, we are able to search protein databases to
predict protein—protein interactions for many species
by using a 3D-dimer complex (16).
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Figure 1. Overview of the 3D-partner server for inferring interaction partners and binding models.

Here, we report the development of an automatic
server, 3D-partner, for interacting partners and binding
models prediction by using 3D-domain interologs through
structure complexes and a knowledge-based scoring
function which is the key novelty in this article. The
3D-partner utilizes IMPALA and PSI-BLAST to identify
homologous structures (templates) and interacting part-
ners of a query protein sequence from a 3D-dimer
template library and protein sequence databases
[i.e. SwissProt (17)], respectively. These homologous
structures and interacting partners were evaluated by
a scoring function which considered steric and special-
bond matrices (i.e. hydrogen bonds, electrostatic interac-
tions and disulfide bonds) but also the template consensus
scores (couple-conserved residue score and template
similarity). After interacting partners were identified, the
3D-partner provides 3D interacting domains and contact
residues for visualizing molecular details of any
protein pairs between the query and interacting partners.
The 3D-partner server was tested on 275 mutated residues
selected from the Alanine Scanning Energetics
database (ASEdb) (18) to predict the binding affinities.
The correlation between experimental energies and
predicted energies is 0.91. In addition, the average
precision of this server for interacting partner prediction
is 0.72 by using a non-redundant set.

METHOD AND IMPLEMENTATION

Figure 1 presents the details of the 3D-partner server for
inferring interacting partners and binding models of a
query sequence through structure complexes and a new
scoring function by the following steps. First, the server
uses IMPALA to search template candidates of a query
(Q) from 3D-complex profile library (1894 heterodimers).

IMPALA, widely used for local sequence alignments,
searches the query sequence against each of the template
profiles, which constitute a database of PSI-BLAST-
generated position-specific score matrices (PSSMs).
A template is considered as a candidate if the E-value is
<0.05 and the aligned contact residue ratio (CR) between
the Q and candidate is >0.5. The aligned procedure
of IMPALA is a sequence (Q) to profile (template)
alignment. Second, our scoring function is applied to
calculate the interacting score and Z-value for each
candidate, which is selected as a homologous template
(C, in Figure 1) of Q if its Z-value > 3.0, according to the
aligned contact pairs on the template.

After homologous templates are identified, the
3D-partner identified interacting partner candidates of
the query. For each homologous template (C,), this server
applies PSI-BLAST to scan the interacting-partner
sequence profile (C, in Figure 1) of C, against each
of protein sequences in the SwissProt version 51.3
(containing 250296 protein sequences). The sequence
profile, built by using the same procedure for template
sequence profiles, is the initial PSSM of PSI-BLAST and
the number of iteration is set to one. Therefore, this search
procedure can be considered as a profile-to-sequence
alignment. The sequences whose E-value<0.05 and
CR>0.5 are selected as homologous sequences of Cj.
Finally, for each homologous sequence, our scoring
function is applied to calculate the interacting score and
to evaluate the Z-value between the query Q and the
homologous sequence according to the aligned contact
pairs on the hit template. A homologous sequence
is considered as an interacting partner of the query if the
Z-value >3.0. The server reports interacting partners
of the query ordered by Z-values which represent the
statistical significances of hit interacting partners.
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3D-dimer library and interacting domains

The 3D-partner uses IMPALA to identify the 3D-dimer
templates of a query sequence. Here, the 3D-dimer
template library, which consists of 1894 heterodimers
(i.e. 3788 sequences), was extracted from the Protein
Data Bank (PDB) (19) released in 24 February 2006.
Any sequence in the library has <98% sequence identity
to each other to eliminate the duplicated complexes.
We excluded the dimer whose chains are shorter than
30 residues (15,20). For each complex in the 3D-dimer
library, we identified interacting domains and contact
residues of two chains. Contact residues, whose any heavy
atoms should be within a threshold (distance <4.5A) to
any heavy atoms of another chain, were considered as the
core parts of the 3D-interacting domains in a complex.
Each domain must have>contact residues and the
number of interacting contact-residue pairs >25 to make
sure that the contact between the domains was reasonably
extensive (21). After interacting domain were determined,
we identified its SCOP domain (22). Finally, each template
profile in the IMPALA profile library was constructed
using PSI-BLAST by searching SCOP domain sequence
against the UniRef90 database (23) in which the sequence
identity is <90% of each other.

Scoring function and matrices

We have developed a scoring function to measure the
reliability of a protein—protein interaction. This scoring
function includes the contact-residue interacting score,
which consists of the steric (i.e. shape complementary) and
specific energies (e.g. hydrogen-bond energy), and the
template consensus scores which contain couple-conserved
residue and the template similarity scores. Based on this
scoring function, the 3D-partner server is able to evaluate
how well the interfaces of pairing proteins and provides
the statistic significance (Z-value), the binding models
and functional annotations of interacting partners.
The scoring function is defined as

Eior = Evgw + Esp + WEgons 1

where E,q 1s the van der Waal’s energy; Esr is the special
energy (i.e. hydrogen-bond energy, electrostatic energy
and disulfide-bond energy); w is constant weight; and
E.ons 1 the template consensus score. Here, w is set to 0.8.
The E,4, and Egp are given as

cp

Evdw = Z (VSS,']' + VSblj + VSbji) 2
i
cp

Esp = Z (Tssy + Tsby + Tsby) 3

i

where CP denotes the number of the aligned-contact
residues of proteins 4 and B aligned to a hit template;
Vss; and Visb; (Vsb;) are the sidechain-sidechain and
sidechain—backbone van der Waals energies between
residues 7 (in protein 4) and j (in protein B), respectively.
Tss; and Tsb; (Tsb;) are the sidechain-sidechain and
sidechain-backbone special interacting energies between
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i and j, respectively, if the pair residues i and j form the
special bonds (i.e. hydrogen bond, salt bridge or disulfide
bond) in the template structure. The van der Waals
energies (Vss;, Vsb; and Vsb;) and special interacting
energies (7ss;, Tsb; and Tsb;) can be obtained from
our four knowledge-based scoring matrices (Figure Sl
in Supplementary Data), including sidechain—sidechain
(Figure S1-A) and sidechain—backbone van-der Waals
scoring matrices (Figure S1-B); and sidechain—sidechain
(Figure S1-C) and sidechain—backbone special-bond scor-
ing matrices (Figure S1-D). The sidechain—sidechain
scoring matrices are symmetric and sidechain—backbone-
scoring matrices are non-symmetric. The interaction
scores from these matrices provide protein—protein inter-
action binding affinity estimates and preferences of
two contacted residues in the interfaces.

For the sidechain-sidechain van-der Waals scoring
matrix (Figure S1-A), the scores are high (yellow blocks)
if large-aliphatic residues (i.e. Val, Leu, Ile and Met)
interact to large-aliphatic residues or aromatic residues
(i.e. Phe, Tyr and Trp) interact to aromatic residues.
In contrast, the scores are low (orange blocks) when non-
polar residues interact to polar residues. The top two
highest scores are 3.0 (Met. to Met) and 2.9 (Trp to Trp).
For the sidechain—sidechain special-bond scoring matrix
(Figure S1-C), the score is high when the pair-interacting
residue (i.e. Cys to Cys) forms a disulfide bond or basic
residues (i.e. Arg, Lys and His) interact to acidic residues
(Asp and Glu). The scoring values are zero if non-polar
residues interact to other residues.

These four knowledge-based matrices are the key
components of the 3D-partner for predicting protein—
protein interactions. Here, a general mathematical struc-
ture (24) is used to construct these matrices. The entry
(S;), which is the interacting score for a contact residue 7, j
pair (1 <i,j<20), of a scoring matrix is defined as S;=1In
g;i/e;, where g;; and e;; are the observed probability and the
expected probability, respectively, of the occurrence of
each i, j pair. These values of ¢, and e; are derived from a
non-redundant set which consists of 621 3D-dimer
complexes proposed by Glaser et al. (25) This dataset
consists of 217 heterodimers and 404 homodimers and the
sequence identity is <30% to each other.

The consensus score is defined as
Econs = ZE}-P (Cjj+0.5I;), where C; and [; are the
conserved score and template similar score for a contact
residue 7 and j pair, respectively. They are given as

Cjj = max(0,(M;, — Ki) + (M — Kj)) 4

Iy = max(0,(My — Kii +2) + (M — Kj +2))
where M, is the score in the PSSM for residue type 7 at
position p in Protein 4; M, is the score in the PSSM for

residue type j at position p’ in Protein B; K;; and K; are the
diagonal scores of BLOSUMG62 for residue type i and j.

Input, output and options

The 3D-partner is an easy-to-use web server. Users input
the query protein sequence in FASTA format. Users are
also able to assign a specific species for the query
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Figure 2. The 3D-partner server search results of using yeast ATP2 (SwissProt entry P00830) as query. (A) The 3D-partner server predicts five
interacting partners of ATP2. For each interacting partner, this server provides the SwissProt entry, template structure with PDB entry, interacting
Z-value and score, description, organism and Gene Ontology annotations. (B) Detailed interactions between the query and its interacting partner
(SwissProt entry P01098). The server first presents summary interacting binding models, such as numbers of hydrogen bonds and conserved residue
pairs. The alignments of both the query and its partner aligned to template sequences, respectively, are also indicated. The contacted residues are
marked in template sequence based on their interacting characteristics, including hydrogen-bond residues (green); conserved residues (orange); both
(yellow), and others (gray). In this example, D6, E30 and R37 of ATPase inhibitor (PDB entry lohh-H) form hydrogen bonds to K382, E454 and
D471 of ATP synthase subunit beta (PDB entry 1ohh-D), respectively. (C) The template structure consists of ATPase inhibitor (black) and ATP
synthase subunit beta (gray). The backbones are indicated in the ribbon model and the contact residues of 1ohh-D are colored by red and those of

lohh-H are colored by blue. The residues forming hydrogen bonds (E454-

sequence. The server typically returns a list of predicted
interacting partners of the query ordered by Z-values,
which represent the statistical significance of a hit
interacting partner, within 20s. For each predicted
interacting partner, 3D-partner provides the visualization
of the binding model between the query protein and its
partner by aligning them to respective template sequences
and structures (Figure 2). The important contact residues
in the interface are indicated in the following formats:
hydrogen-bond residues (green); conserved residues
(orange), both (yellow), and other (gray). The structure
is visualized in PNG format generated by MolScript and
Raster3D packages. If the Java software is installed in
a browser, the output will display the structures and users

E30 and D471-R37) and electrostatic interaction (K382-D6) are indicated.

are allowed to dynamically view the binding model,
interfaces, and the important residues in the browser.

Example analysis

The mitochondrial ATP synthase couples energy of the
proton gradient across the mitochondrial membrane,
derived by respiration, to the phosphorylation of ADP
to ATP. The F, catalytic domain of ATP synthase has
3 catalytic sites formed by three pairs of «/B subunits,
which are arranged as a sphere forming the core of the
enzyme. The central stalk is in the center of the core of
F, and is physically coupled to Fy (26). If users want to
known how assembly of yeast ATP synthase, the sequence
of B subunits (ATP2) of yeast ATP synthase could be used
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Figure 3. Evaluation of the 3D-partner server in (A) binding affinities prediction and (B) interacting partners prediction. (A) The correlations
between experimental free energies (ddG) and the predicted values of the 3D-partner using four scoring functions, including E, (3D-partner, blue),
Econs (only Consensus, red), Eqy + Esp (only Matrices, green) and one matrix (black) proposed by Lu ef al., on 275 mutated residues in Alanine
Scanning Energetics database. (B) The ROC curves of the 3D-partner applying these four scoring functions on the data set NR-563. The predicted
accuracy of 3D-partner was superior when using both knowledge-based scoring matrices and consensus scores. The performance of using one matrix

is the worst among these four scoring functions.

to query 3D-partner server. Five proteins, including
P07251 (ATP1), P38077 (ATP3), P01098 (STF1), P16140
(VMA2) and P00830 (ATP2) (Figure 2A) in yeast,
are predicted to interact with the query protein. The
interactions between the query and ATPI, ATP3 and
ATP2 are recorded in the core subset in DIP database, but
no structural data is available in PDB. ATP1 and ATP3,
which are o and y subunits of ATP synthase, respectively,
bind to the query to form F; catalytic domain of ATP
synthase (27). ATP2 is the same protein of the query,
the aggregation of ATP2 occurred when the B-barrel
domain of ATPI is not expressed (28).

STF1 is the ATPase-stabilizing factor which involves in
ATP synthase regulation. Currently, no study has
demonstrated that the STFI1 binds ATP2 directly.
Hashimoto et al. (29) proved that STF1 binds to F;
domain of ATP synthase and inhibits ATP synthase
activity. In addition, a known structure of ATP synthase
with inhibitor protein (PDB entry 1ohh) from Bos taurus
(30) is able to be used as the template of the interacting
model between STF1 and ATP2. STF1 and lohh-H chain
share 33% sequence identity; and the important contact
residues (D6, E30 and R37), which forms special bonds
(i.e. hydrogen bonds and electrostatic interactions), are
conserved in these two proteins (Figures 2B and 2C).
These results suggest that the predicted interaction
between STF1 and ATP2 is reasonably reliable and
should be a novel interaction in yeast.

VMA2 may not interact to ATP2 based on the
subcellular locations and functions. VMA2 is non-
catalytic subunit of the peripheral V1 complex of vacuolar
ATPase and the subcellular locations of VMA2 and
ATP2 are vacuolar (GO:0016469) and mitochondria
(GO:0005739), respectively, according to the annotations
of Gene Ontology (31). In the future, our method will
integrate functional annotations (e.g. Gene Ontology)
to reduce the false-positive rate.

RESULTS

First, we evaluated our scoring function with different
combinations on 275 mutated residues selected
from the ASEdb database (18) to predict the binding
affinities (Figure 3A). In addition, a non-redundant set
(563 complexes) was used to evaluate the performance
of the 3D-partner server using various scoring methods
for interacting partner predictions (Figure 3B).

Binding affinity prediction

To determine the contribution of a residue to the binding
affinity, the alanine-scanning mutagenesis is frequently
used as an experimental probe. We selected 275 mutated
residues from the ASEdb (18) with 16 heterodimers whose
3D structures were known. Those mutated residues should
position at protein—protein interfaces and be the contact
residues which were shown in the 3D-partner web server.
ASEdb gives the corresponding delta G value representing
the change in free energy of binding upon mutation
to alanine for each experimentally mutated residue.
Residues that contribute a large amount of binding
energy are often labeled as hot spots of binding energy.
Based on the interacting characteristics, these 275
mutated residues can be divided into three types, including
the special-force residues forming hydrogen bonds or
electrostatic interactions; conserved residues if the con-
served score [i.e. C; defined in Equation (4)] exceeds zero,
and the other residues. The average and standard
deviation of experimental ddG values are 1.92 and 1.97
for 99 special-force residues, respectively. For 176 non-
special-force residues, the average and standard deviation
of ddG values are 0.8 and 1.06, respectively. Standard
two-sample z-test shows that the mean of ddG values
for special-force residues is significantly higher
(P-value<107°) than that of non-special-force residues.
At the same time, for 71 conserved residues, the average
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and standard deviation of experimental ddG values are
1.77 and 2.14, respectively, and these two values are 1.0
(average) and 1.23 (standard deviation) for 204 non-
conserved residues. The P-value of standard two-sample
t-test is 0.005 and shows that the mean of ddG values
for conserved residues is significantly higher than that
of non-conserved residues. These results suggest that
special-force and conserved residues should be more
important than the other residues in the interacting
surface, and the scoring matrix could be divided into
van der Waal’s energy (E,qy) and special energy (Esg).

Figure 3A illustrates the correlations between ddG
values and predicted energies of the 3D-partner server
applying four different scoring functions, including E,,,
(3D-partner using both consensus and matrices), Econs
(only consensus), E,qw+ Esg (only matrices), and one
matrix proposed by Lu, er al. (15), on 275 mutated
residues, where E.o, FEconss Fvaw and Egg are defined
in Equation (1). Among these four scoring functions,
the 3D-partner server applying both consensus and
matrices is the best (0.91) and one matrix is the worst
(0.54). The correlations are 0.91 and 0.84 for using only
matrices and consensus, respectively.

Interacting partner prediction

Several metrics were utilized to assess the predicted quality
of the 3D-partner server. Precision is defined as 4,,/7}, and
recall is defined as A4;/A4, where Ay, is the number of true
hits in the hit list, 7}, is the total number of hits in the hit
list, and A is total number of true hits in the database.
The ROC curve plots the sensitivity (i.e. recall) against
the ‘1.0-specificity’ (i.e. false-positive rate). The average
precision is defined as (Y1, i/T%)/A, where T’ is the
number of compounds in a hit list containing i correct hits.

As the interactions in Saccharomyces cerevisiae are the
most extensive, reliable and well studied, we measured
the quality of our predicted interactions in S. cerevisiae.
In order to evaluate performance of the 3D-partner
server using various scoring methods, we selected a
non-redundant set, called NR-563. This set consists of
563 dimer complexes from the 3D-dimer library according
to their SCOP interacting-domain pairs. At least one chain
of these complexes has different SCOP family. Protein—
protein interactions to the tune of 5882 recorded as the
core subset in the DIP database were used as the positive
cases and 2 708 746 non-interacting protein pairs defined
by Jansen et al. (5) were selected as the negative cases. The
3D-domain sequence profiles (i.e. 1026 sequences) of
563 complexes were used as the queries to search on the
yeast proteome (6714 sequences) selected from SGD (32)
by using PSI-BLAST. Based on this set, the 3D-partner
can yield 4206 protein—protein interaction candidates by
setting three criteria, including the sequence identity is
>15%, CR exceeds 50%, and E-value is <0.05. Among
these 4206 candidates, 226 (CR>80% and sequence
identity >25%) and 3980 protein—protein candidates
were recoded in the positive and negative sets, respectively
(Figure S2 in Supplementary Data).

The 3D-partner server tested these four different scoring
functions (i.e. Eior, Only Econs, only Eygw+ Esp and one

matrix) on these 4206 candidates. The average precisions
of these four methods are 0.49 (one matrix), 0.65
(only Eyqw+ Esp), 0.70 (only Econs) and 0.72 (Ei).
The ROC curve (Figure 3B) provides an estimation of
the likely number of true-positive and false-positive
predictions. The 3D-partner server using both scoring
matrices (Eyqw + Esp) and consensus scores (Egqns) yields
much better predictions than one matrix (black).
The performance of using only scoring matrices and
only consensus scores are also much better than that
of one matrix.

The 3D-partner provides a threshold Z-score to identify
interacting partners with the query. The Z-score reveals
that the proportion of true positives rises when a higher
Z-score is utilized (Figure S2 in Supplementary Data).
If the sequence identity is restricted to over 25%, the
sensitivity is 0.29 and precision is 0.79 (Z-score>5);
the sensitivity is 0.37 and precision is 0.70 (Z-score >4);
and the sensitivity and precision are 0.41 and 0.61,
respectively (Z-score>3). If the sequence identity is
restricted to over 30%, the sensitivity is 0.20 and precision
is 0.83 (Z-score>5); the sensitivity is 0.25 and precision
is 0.81 (Z-score>4); and the sensitivity and precision are
0.27 and 0.76, respectively (Z-score > 3).

Although the query and partner proteins can be
potential interactors based on reasoning that they are
homologous to interacting domains of the template, they
might be not structurally similar to the template structure.
The 3D-partner server is able to reduce the ill-effect if the
sequence identity and the Z-score are restricted to over
30% and 3.5, respectively (Figure S2 in Supplementary
Data). This result is consistent with the previous results,
pairs of interacting proteins can be considered structurally
similar if their sequence identity is >30%, proposed by
Aloy et al. (33).

CONCLUSION

This study demonstrates the robustness and feasibility of
the 3D-partner server to infer interacting partners and
binding models. The key novelty of the present work is the
cooperative integration of the 3D-domain interologs and
a new scoring function; the former uses interacting-
domain sequence profile to search candidates for many
species efficiently and the latter evaluates candidates
reliably. Our scoring function achieves good agreement
for the binding affinity in protein—protein interactions and
provides the statistic significance (Z-value) for predicting
protein—protein interactions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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