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Abstract: Software cache coherence schemes are 
very desirable in the design of scalable 
multiprocessors and massively parallel processors. 
The authors propose a software cache coherence 
scheme named ‘delayed precise invalidation’ 
(DPI). DPI is based on compiler-time markings 
of references and a hardware local invalidation of 
stale data in parallel and selectively. With a small 
amount of additional hardware and a small set of 
cache management instructions, this scheme 
provides more cacheability and allows 
invalidation of partial elements in an array, 
overcoming some inefficiencies and deficiencies of 
previous software cache coherence schemes. 

1 Introduction 

To enforce data coherence among multiple private 
caches in shared-memory multiprocessor systems, a 
great number of schemes have been proposed. These 
schemes may be classified as either hardware or 
software cache coherence schemes [ 11. The hardware 
cache coherence schemes [l-31 use shared resources 
(bus or directory) to maintain cache coherence. The 
software cache coherence schemes [4-91 maintain cache 
coherence using information obtained in compiler-time 
analysis. 

The advantages of software cache coherence schemes 
are two-fold: first, the scalability of the underlying net- 
work architecture is not constrained, and secondly, the 
runtime overhead is minimised. While bus-based cache 
coherence schemes (21 have scalability difficulties for 
large shared-memory multiprocessor systems, directory- 
based cache coherence schemes [3] also suffer from dif- 
ficulty extending to large-scale shared-memory multi- 
processor systems, since the centralised or distributed 
directory may become a serious performance bottle- 
neck. On the other hand, by making each processor 
responsible for maintaining data coherence in its own 
cache via self-invalidation instructions, software cache 
coherence schemes are not subject to network topolo- 
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gies and further eliminate runtime interprocessor cache 
coherence traffic. 

The performance of software cache coherence 
schemes relies on precise compiler-time analysis that 
can eliminate unnecessary invalidations and preserve 
more cache localities. In this paper, we propose the 
delayed precise invalidation (DPI) scheme to overcome 
some inefficiencies and deficiencies of previous 
schemes. 

LO 

L1 

L2 

L3 

L4 

U 
Fig. 1 Example of task graph 

2 Background 

In studying software cache coherence schemes the exe- 
cution of a program can be modelled with a task 
graph, as illustrated in Fig. 1. A serial loop that can- 
not be parallelised is a task. For a DoAll or DoAcross 
loop, one iteration or a number of iterations can be 
considered as a task. A directed edge from one task to 
another represents all the dependencies between the 
two tasks. Tasks independent of each other can be 
scheduled for parallel execution. Dependent tasks will 
be executed in the order defined by program semantics. 
The execution order of dependent tasks is enforced 
through synchronisation. To maintain data coherence 
in the system, software cache coherence schemes use 
compiler-time analysis to determine which cache items 
may become stale, and insert special cache manage- 
ment instructions to invalidate the stale entries when 
processors cross task boundaries. 

The simplest software cache coherence scheme is to 
use indiscriminate invalidation of the data caches to 
enforce coherence when processors cross task bounda- 
ries [4]. The indiscriminate invalidation scheme main- 
tains cache coherence at the sacrifice of data 
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cacheability. The fast selective invalidation scheme [5] 
enforces coherence at the point of a read reference so 
that the data cacheability can be improved. Every read 
reference to shared memory in a program will be classi- 
fied and marked by the compiler as either memory-read 
or cache-read. A cache controller treats a cache-read as 
a read to a conventional uniprocessor cache. A mem- 
ory-read implies that the data in the cache might be 
stale, and up-to-date data should be loaded from the 
main memory. 

To exploit higher cacheability, two similar schemes, 
the timestamp-based scheme [7] and the version control 
scheme [6],  have been proposed. Clock and timestamp 
in the former scheme correspond to the current version 
number (CVN) and birth version number (BVN) in the 
latter one, respectively. In the version control scheme, 
each processor maintains a CVN for each variable and 
a BVN for each cache line. The CVN represents the 
current version of the variable, while the BVN repre- 
sents a particular version of the cache line. By compar- 
ing the CVN and BVN, a stale cache copy can be 
detected. The timestamp-based schemes use both com- 
pile-time markings of references and a local coherence 
detection mechanism to overcome the difficulty with 
limited information about the stale data at compiler 
time. In so doing, these two schemes are able to better 
preserve temporal locality across the boundaries of 
loops than previous schemes. However, these schemes 
require substantial additional hardware to maintain the 
time or version information. To reduce the hardware 
cost, one-bit time stamping (TS1) has been proposed in - - .  
[9]. TS1 only requires a valid bit and an epoch 
cache line, but it requires a more sophisticated 
date instruction to maintain cache coherence. 

Dimension X(8) (address encoding of X )  
P-loop DoAll i  = 0 to 7 X(0)->10110000 

............. X(1)->10110001 
s1 X(2) = ... X(2)->10110 010 

............. X(3)->10110011 

Serial ............. X(5)->10110 101 
............. X(6)->10110 110 

s2 X(3) = ... X(7)->10110 111 

END DoAll X(4)->10110 100 

............. 
Fig.2 Program example to illustrate PEI scheme 

Timestamp-based schemes operate on the 

bit per 
invali- 

whole 
array level: they invalidate all elements in an array even 
when only a small part of the array is modified, 
because an array is associated with only one CVN and 
one BVN. To correct this deficiency, the parallel 
explicit invalidation (PEI) scheme [8] allows parallel 
invalidation of all or partial array elements with the 
assistance of a well-structured memory allocation 
method and a store-and-invalidate instruction. We 
show how the PE1 scheme works with the program 
example shown in Fig. 2. Assume that eight processors 
Pi (i = 0, .... 7) are involved in executing the program 
and the processors are assigned such that the ith itera- 
tion of the DoALL loop is executed by Pi and proces- 
sor Po executes the serial region. The addresses of X(O), 
X(l), .... X(7)  are assigned 10110000, 10110001, .... 
101 101 1 I ,  respectively. Then, in the DoAll loop, Pi will 
use the store-and-invalidate instruction to modify X(i)  
and invalidate all the cache copies of array X ,  except 
the X(i),  at the same time. In the serial region, Po will 
modify X(5)  while the other idle processors should also 
invalidate the copies of X(5) in their caches, if they 
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exist. The PE1 scheme achieves cache coherence since 
anything written on a different processor will be invali- 
dated by the local processor before moving to the next 
task. 

DoAcross i  = 1 to 4 
.......... 

s1 X(i) = ... 
s2 

.......... 
X(i + 1) = ... 
... = X(i  + 1) 
.......... 

END DoAcross 
Fig. 3 Example of cross-iteration output dependence 

However, a problem for DoAcross loops arises in the 
PE1 scheme. The scheme may not flush the stale cache 
copies for a cross-iteration output dependence in a 
DoAcross loop. Consider the program segment in 
Fig. 3 and assume that four processors, PI, P2, P3, P4, 
are involved in executing the program. The processors 
are assigned such that ith iteration is executed on Pi. 
For a cross-iteration output dependence that exists in a 
DoAcross loop, the Sink-Write must overwrite the 
value produced by the Source-Write with proper syn- 
chronisation. In such a case, the cache copy produced 
by the Source-Write is stale, and the cache copy pro- 
duced by the Sink-Write is up-to-date, in the subse- 
quent task. In the PE1 scheme, when processor P1 
executes iteration I1 and statement S1 is reached, it 
modifies X(1) and invalidates cache copies of X(2),  
X(3) ,  and 2441, if they exist. When statement S2 is 
reached, processor Pl modifies X(2)  and invalidates 
cache copies of X(l), X(3), and X(4), if they exist. The 
cache copy of X(2) is not invalidated by processor PI 
and exists in the cache of processor PI. Since statement 
S2 is the Source-Write in the cross-iteration output- 
dependent DoAcross loop, the cache copy of X(2) is 
stale in the subsequent task and must be invalidated by 
processor P1. However, the PE1 scheme does not inval- 
idate the cache copy of X(2) in the cache of processor 
PI. To solve this PE1 scheme problem, the processors 
should execute the invalidate instruction before moving 
to the subsequent task, so that the stale data in the 
cache will not persist for a cross-iteration output- 
dependent DoAcross loop. 

3 Delayed precise invalidation scheme 

3. I Motivation 
In addition to the error in the cross-iteration output- 
dependent DoAcross loop, the PE1 scheme has another 
drawback: its store-and-invalidate instruction will write 
the datum and invalidate the other cache data at the 
same time. Consequently it may invalidate the up-to- 
date data and cause unnecessary cache misses. To solve 
the deficiency of the PE1 scheme and provide more 
cacheability, we propose the delayed precise 
invalidation (DPI) scheme. The DPI scheme delays the 
invalidate operations to only the necessary array 
elements on the processors entering the subsequent 
task: hence ‘delayed’. Furthermore, the DPI scheme 
allocates shared data structures or scalars in a well 
structured form to support precise invalidation of the 
stale data in parallel and selectively: hence ‘precise’. As 
a result, the DPI scheme avoids invalidating the up-to- 
date cache copies, and preserves the intertask or 
intratask temporal locality better than the PE1 scheme 
does. 
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3.2 System model 
In the DPI scheme, we assume a shared-memory multi- 
processor system in which every processor has local 
data cache with write-through policy. Write-through 
policy is essential to the success of the scheme. A cache 
line is the basic cache coherence unit, and we choose 
the one-word line size in the scheme to avoid false 
sharing. (Multiword line size is possible in the scheme. 
To eliminate false sharing of multiword line size, allo- 
cating memory must take the line size into account 
carefully.) We also assume processor pre-emption and 
processor migration are not allowed in the scheme. 

Numerical programs with DoAll-type or DoAcross- 
type loop-level parallelism are assumed to be executed 
in the system. All the programs are constructed by a 
parallelising compiler. The compiler inserts the neces- 
sary synchronisation instructions into the parallel 
codes. DoAll loops and DoAcross loops are called par- 
allel loops. A parallel program can be viewed as a set 
of coherence segments, classified as parallel coherence 
segments and sequential coherence segments. A parallel 
coherence segment consists of a parallel loop of the 
DoAll or DoAcross type. A sequential coherence seg- 
ment represents a serial region between parallel coher- 
ence segments that has to be executed by one 
processor. 

3.3 Hardware mechanism 
To support the DPI scheme, each private cache should 
contain the following components (as illustrated in 
Fig. 4): 

search address ::;1 I + '9" 
comparator 

block 

block 

Fig.4 Cache configuration for DPI scheme 

Search address register ( S A R ) :  The search address reg- 
ister is used to hold the address that is the operand of 
the invalidate instruction. 

Fig.5 Three$elds of address to access cache 

Search address tug: The search address tag is used to be 
compared with the address operand of the invalidate 
instruction. Fig. 5 shows the three fields of an address 
to access the cache. The block-offset field is used to 
select the desired word from the block, the index field 
is used to select the set, and the tag field is used to 
determine whether the access is a hit or a miss. In the 
DPI scheme, the tag field combined with the index field 
forms the search address tag. 

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996 

Selective compare register (SCR) : The selective com- 
pare register is used to enable or disable the bit slices 
involved in the comparison between the search address 
register and the search address tag. With the SCR, the 
invalidation of a partial array can be precise. 
Vulid bit ( V ) :  This bit functions in the same way as the 
conventional valid bit in a cache line. The valid bit of a 
cache line is used to indicate whether the cache line has 
valid data. 
Status bit (S ) :  The status bit is used to indicate 
whether the cache line is the most up-to-date and 
should be preserved when the processor proceeds to the 
subsequent coherence segment. The status bit is set by 
the Read-Set-Status and Write-Set-Status instructions 
(defined subsequently). It is reset by the invalidate 
instruction (also defined later). A set status bit indi- 
cates that the cache line should be preserved when the 
processor proceeds to the subsequent coherence seg- 
ment. A reset status bit indicates that the cache line 
should be invalidated when the processor proceeds to 
the subsequent coherence segment. 

3.4 Cache management instructions 
In the DPI scheme, the following cache management 
instructions need to be defined in the instruction set of 
the processor: 
Read: The Read instruction is the same as a conven- 
tional memory read instruction 
Read-Set-Status: The Read-Set-Status instruction is 
the same as the Read instruction except it sets the sta- 
tus bit S of the accessed cache line. 
Write: The Write instruction is the same as a conven- 
tional memory write instruction. 
Write-Set-Status: The Write-Set-Status instruction is 
the same as the Write instruction except it also sets the 
status bit S of the accessed cache line. 

SCR<-- MBP 
SARc--address 

t 
activate 

associative search 

4 
matching ? e 

V C - - s  
se-- 0 i' 

Fig.6 Execution flow of invalidate instruction 
MBP mask bit pattern 
SAR search address register 
SCR selective compare register 
V valid bit 
S status bit 

Invalidate: The purpose of the Invalidate instruction is 
to invalidate the cache lines which will become stale in 
the subsequent coherence segment. The Invalidate 
instruction is executed once by every processor at the 
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end of a coherence segment. Fig. 6 shows the execution 
flow of this instruction. The invalidate instruction 
shifts the values of the status bits into the correspond- 
ing valid bits of those cache lines searched by SAR and 
SCR. If the status bit of a matched cache line is reset, 
the valid bit V and the status bit S will both be reset, 
and the cache line is invalidated. If the status bit of a 
matched cache line is set, the valid bit will not be 
changed although the status bit will be reset. 

3.5 Memory allocation and MBP generation 
To explicitly invalidate the stale cache copies of the 
data in parallel and selectively, the DPI scheme allo- 
cates shared data structures or scalars in a well struc- 
tured form, and generates a masking bit pattern (MBP) 
for each invalidate instruction. The purpose of the 
MBP is selective searching and invalidation of partial 
array. The DPI scheme uses the same memory alloca- 
tion and MBP generation methods as the PE1 scheme 
to allocate memory for array and scalar variables and 
generate an appropriate MBP [8]. The memory alloca- 
tion and MBP generation methods are described in the 
following. 

3.5. I Memory allocation method: Assume that a 
parallel program consists of n shared one-dimensional 
arrays of sizes sl, s2, ..., s, and shared scalar variables 
of a total size of so. Let S be a list of the sizes of the 
arrays and scalar variables, and let S‘ be an ordered list 
of S, S‘ = {so‘, sl’, s2‘, ..., snl, where si) 5 si if and only 
if i 5 j } .  A list B is derived from S’ by replacing si) with 
bi, where b, = [log2si)], i.e. the number of bits required 
to encode si). Huffman’s optimal coding method is then 
applied to B, by considering bi as the probability of the 
occurrence, to obtain a list C 1 {e0, cl, ..., e,, where ci 
is the Huffman’s code of s;} . Let lcil be the length of 
the code, and w = max(lq + bi), for all i, 0 I i I n. 
Then, the base address of the array of size sL’ is con- 
structed as ciO*, where O* is a sequence of Os whose 
length is (w ~ Icil). Multidimensional arrays can also be 
encoded in the same way by treating them as multiples 
of one-dimensional arrays. The purpose of the applica- 
tion of Huffman’s method to the memory allocation 
method is to uniquely identify an array using some of 
its most significant bits, i.e. ci. An array of size si is 
allocated addresses from ciO* to (ciO* + si - I). The 
addresses from (ciO* + si) up to the next base address 
C ~ + ~ O * ,  are not used. 

Consider an example of a shared memory of size 1 
Kbyte and assume that the program accesses arrays XI, 
X2 and X 3 ,  of sizes 25, 450 and 75 bytes, and a group 
of scalar variables Y of a total size of five bytes. 
According to the memory allocation method, S = (5,  
25, 450, 75}, S’ = { 5 ,  25, 75, 450}, and B = 13, 5, 7, 9}. 
Now, if we apply Huffman’s optimal coding method, 
we obtain C = {llO, 111, IO,  O}. Then w = max(jcil + 
bi) = 10, and we append trailing Os to make every code 
in C 10 bits long. As a result, Xl = 1110000000, X 2  = 
0000000000, X3 = 1000000000, and Y = 1100000000 are 
the base addresses of the arrays and scalar variables. It 
is clear that arrays XI, X,, and X ,  are all addressed 
uniquely by the leading most significant bits. 

3.5.2 MBP generation method: In the DPI 
scheme, each invalidate instruction requires an MBP to 
selectively invalidate the cache lines. Let MBP = @,, p2 ,  
..., p,). When p i  = 0, the corresponding bit slice of the 
address tag is disabled from matching. The MBP for 
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scalar variables or array outside the parallel loop is (1, 
I ,  ..., I), that is, they are to be matched with full 
addresses. Let A be a set of addresses of n elements 
modified in a parallel loop A = A , ,  A,, ..., A,, where Aj 
is represented as a binary number, that is, Ai = ujl uj2 _ _ _  
ajT. MBPs of arrays inside the parallel loop are deter- 
mined by the following equation: 
pi = (al i  A a2i A . .  . A ani) v (al i  v a2i v . . . v ani) 
(fori  = 1,. . . ,m)  

This equation will find the address bit positions that 
have the same values for all A,i, 1 = J  I n. 

3.6 Reference marking rules 
In addition to the hardware support and cache man- 
agement instructions, the DPI scheme must rely on a 
set of reference marking rules to maintain the cache 
coherence. Our reference marking rules are based on 
the data-dependence analysis of a parallel program. 
Data dependencies between read and write references 
are obtained in the compiler-time analysis. 

/7 Readset -statusi 
Write-Set- Status q) 

invalidate 
I / Set-Status/ 
I 

/ / Write-Set-Status miss 
invalidatel 

d- Set -Status / 
e-Set -Status 

Read I Wr I te Read I W ri  te miss 

Fig. 7 
S: status bit 
V: valid bit 

State transition diugmm of cache line 

Fig. 7 shows the state transition diagram of a cache 
line in the DPI scheme. If a cache copy becomes stale 
in the subsequent coherence segment, its status bit S 
should be reset. When the processor proceeds to the 
subsequent coherence segment it executes the invalidate 
instruction, and the cache line state is changed to 
( S  = 0 and V = 0). If a cache copy will be an up-to- 
date copy in the subsequent coherence segment, the sta- 
tus bit S should be set. When the processor proceeds to 
the subsequent coherence segment, it executes the inval- 
idate instruction, and the cache line state is changed to 
(S  = 0 and V = 1). Therefore if the cache copy is stale 
and should be invalidated in the subsequent coherence 
segment, the associated read and write references 
should be marked Read and Write. If the cache copy is 
up-to-date in the subsequent coherence segment, the 
associated read and write references should be marked 
Read-Set-Status and Write-Set-Status. 

The only situation that can cause cache copies of a 
variable to become stale is to have a write to the varia- 
ble in another processor in a coherence segment. There- 
fore the reference marking method needs to identify a 
write to a variable, and insert an invalidate instruction 
before the subsequent coherence segment boundary. 
After the invalidate instructions are correctly inserted 
and the different types of references are identified and 
marked, it should be straightforward for the compiler 
backend to generate appropriate parallel code. In the 
following, we describe the reference marking rules to 
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properly insert the invalidate instructions and mark the 
different kinds of references. 

1 1 

1 1 

110 111 

3.6.1 Rule 1: If a DoAll loop or a serial portion of a 
program has a write reference to a variable, then the 
write reference should be marked Write-Set-Status. A 
read reference to the same variable after the write refer- 
ence should be marked Read-Set-Status. 

In a DoAll loop or a serial portion of a program, a 
write reference to a variable produces an up-to-date 
cache copy. Therefore the status bit S should be set 
when this cache copy is written, and such a write refer- 
ence should be marked Write-Set-Status. A read refer- 
ence to the same variable after the write reads an up- 
to-date cache copy produced by the write. Therefore 
the status bit S should be set when this cache copy is 
read, and such a read reference should be marked 
Read-Set-Status. 

DoAcross loops incur data dependence across paral- 
lel loop iterations. The read and write references of the 
DoAcross loop that are either the source or the sink of 
a dependence arc across iterations are of concern. For 
a read (write) reference that is both a sink and a 
source, it is seen as a Source-Read (Source-Write) in 
the following rules. Before marking references, all 
dependencies of a DoAcross loop must be enforced by 
proper synchronisations between loop iterations. 

3.6.2 Rule 2: If a DoAcross loop has a cross-itera- 
tion anti-dependence, then the Sink-Write should be 
marked Write-Set-Status and the Source-Read should 
be marked Read. 

For an antidependence (write-after-read), the 
dependence is a Source-Read with a Sink-Write in a 
later iteration in the original DoAcross loop. The con- 
cerned array element of the cache copy referenced by 
the Source-Read will be written later by another proc- 
essor in the same coherence segment. In such a case, 
the cache copy used by the Source-Read is made stale 
by this later write and should not be used beyond the 
current coherence segment. Therefore the status bit S 
should be reset when this cache copy is read, and it 
should be set when this cache copy is written. For this 
reason, such a read reference should be marked Read 
and such a write reference should be marked Write-- 
Set-Status. 

3.6.3 Rule 3: If a DoAcross loop incurs a cross-itera- 
tion flow-dependence, then the Sink-Read should be 
marked Read-Set-Status and the Source-Write should 
be marked Write-Set-Status. The required invalidate 
instruction should be inserted at the entrance point to 
the DoAcross loop to invalidate the Sink-Read oper- 
and. 

For a flow-dependence (read-after-write), the 
dependence involves a Sink-Read and a Source-Write 
in a previous iteration in the original DoAcross loop. 
The Sink-Read must read a value produced by another 
processor in the same coherence segment, and this 
value can stay up-to-date beyond the current coherence 
segment boundary. However, because the cache copy 
used by the Sink-Read must be produced by another 
processor in the same coherence segment, the cache 
copy that existed at the beginning of the current coher- 
ence segment is stale. This necessitates that all existing 
cache copies of the same variable must be invalidated 
at the beginning of such a coherence segment. There- 
fore, invalidate instructions should be inserted at the 
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0 1 0 I Write( X(1) ) 3 

0 1 0 1 Read( X(1)) 4 

010 110 010 110 Invalidate X 5 

entrance point to the current coherence segment to 
invalidate the existing cache copy of the same variable 
accessed by the Sink-Read. 

With the extra invalidate instructions inserted at the 
entrance points to the current coherence segment, a 
Sink-Read to a variable is guaranteed to obtain the up- 
to-date value produced in the same coherence segment 
by another processor. The status bit S should be set 
when such a copy is read. For this reason, the Sink- 
Read should be marked Read-Set-Status. For the 
Source-Write, it produces the up-to-date copy in the 
cache. The status bit S should be set when such a copy 
is written. For this reason, the Source-Write should be 
marked Write-Set-Status. 

3.6.4 Rule 4: If a DoAcross loop incurs a cross-itera- 
tion output-dependence, then the Sink-Write should be 
marked Write-Set-Status and the Source-Write should 
be marked Write. 

For an output-dependence (write-after-write), the 
dependence involves a Source-Write and a Sink-Write 
in a later iteration in the original DoAcross loop. With 
proper synchronisation, the Sink-Write must overwrite 
the value produced by the Source-Write. In such a 
case, the cache copy produced by the Source-Write 
must not be used in the subsequent coherence segment, 
while the cache copy produced by the Sink-Write must 
be preserved beyond the current coherence segment 
boundary. Therefore, the status bit S should be reset 
when such a cache copy is produced by the Source- 
Write, while it should be set when such a cache copy is 
produced by the Sink-Write. For this reason, the 
Source-Write should be marked Write and the Sink- 
Write should be marked Write-Set-Status. 

P_loop DoAcross i = 0 to 6 

O/I 1 

110 1/1 

s1 X(1) = ... ; Write-Set-Status 
............. 

s2 X(i + 1) = ... ; Write 

0 1 0 0 0 0  6 

0 0 0 0 Write_Set-Status( X ( 0 ) )  7 

0 0 0 0 Invalidate X(0) 8 

............. 
s3 .... = X(i + 1) ; Read 

............. 
END DoAcross 
Invalidate X 

Serial ............. 
s4 X(0) = ... ; Write-Set-Status 

............. 
Invalidate X(0) 

X(0) X(1) X(2)  Operations affecting 1 S V I S V 1 S V I status bits and valid bits I Row I 

(b)  
kJ.8 Example to illustrate DPI scheme 
a Program segment 
b Cache status transitions of Po 

3.7 Example 
We use Fig. 8 to show how the DPI scheme maintains 
cache coherence. According to the reference marking 
rules, statements SI ,  S2, S3, and S4 will be marked as 
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Write-Set-Status, Write, Read, and Write-Set-Status, 
respectively. Assume that eight processors Po, PI, ..., P, 
are involved in executing the program, and the proces- 
sors are assigned such that ith iteration is executed by 
Pi in p-loop and Po executes the serial segment. 
According to the memory allocation method, the 
addresses of X(O), X(l), ..., X(7)  are 10110000, 
10110001, ..., 10110111, respectively. Fig. 8b shows the 
status bits and valid bits of X(O), X(1) and X(2) in Po 
cache. The initial states of X(O), X(1) and X(2)  in Po 
cache are shown in row 1 of Fig. 86. The status bits 
and valid bits affected by the readlwrite operations are 
represented by two values separated by a slash (original 
valuehew value), and the unaffected status bits and 
valid bits are represented by a single value. 

Consider the program segment in Fig. 8a. In the 
DPI scheme, when processor Po executes iteration I, 
and statement SI is reached, it modifies X(0) and sets 
the status bit of X(0) (row 2 of Fig. Sb) since statement 
S1 is a Write-Set-Status. When statement S2 is 
reached, processor Po modifies X(1) and does not set its 
status bit (row 3 of Fig. 8b) since statement S2 is a 
Write. When statement S3 is reached, processor Po 
reads X(1) and does not set its status bit (row 4 of 
Fig. 86) since statement S3 is a Read. Because 
statement S2 is the Source-Write in the cross-iteration 
output dependence of the DoAcross loop, the cache 
copy of X(1) will be stale in the subsequent coherence 
segment and must be invalidated when processor Po 
moves to the subsequent coherence segment. Moreover, 
the cache copies of X(2), ..., X(7) must also be 
invalidated when processor Po moves to the subsequent 
coherence segment since they are modified by other 
processors. Similar considerations are true for P,, P,, 
...) P7. 

Next we explain how stale cache copies are invali- 
dated. When Po moves to the subsequent coherence 
segment, it executes the invalidate instruction to invali- 
date those stale copies in parallel. By loading the selec- 
tive compare register (SCR) with an MBP of 11 11 1000, 
and loading the search address register (SAR) with the 
address of 101 10000, Po activates the associative search 
to its local cache. Since only the bit slices whose corre- 
sponding bits in the SCR are set are examined in the 
search, the most significant five bits of 10110000 are 
compared. Therefore the cache copies whose most sig- 
nificant five address bits are 10110, i.e. all elements of 
array X are matched, and their valid bits are assigned 
the current status bit values and the status bits are reset 
(row 5 of Fig. Sb). In row 6 of Fig. 8b, one can see 
that the valid bits of X(1) and X(2)  are reset since X(1) 
and X(2)  will contain stale data in the subsequent 
coherence segment, while the valid bit of X(0) is set 
since X(0) is up-to-date in the subsequent coherence 
segment. 

Finally, in the serial region, Po modifies X(0) and sets 
it status bit while the other processors are idle (row 7 
of Fig. 8b). Later, when all processors except Po move 
to the subsequent coherence segment, they need to exe- 
cute the invalidate instruction to invalidate the copies 
of X(0) in their caches, since these copies are no longer 
up-to-date. To invalidate these copies, all processors 
load the SCR with an MBP of 11 11 11 11, and the SAR 
with the address of X(O), i.e. 10110000. The copies of 
X(0) will be found in the associative search, and its 
valid bit will be assigned the value of its status bit and 
the status bit will be reset (row 8 of Fig. S(b)). 
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4 Performance comparison 

This Section compares the performance of the delayed 
precise invalidation (DPI) scheme and the parallel 
explicit invalidation (PEI) scheme. 

4. I Overhead of invalidate instruction 
The PE1 scheme explicitly invalidates the stale copies in 
the caches when a write instruction to sharable data is 
to be executed. In so doing, both the write and invali- 
date operations can be executed in parallel, but it 
causes extra cache misses. On the other hand, the DPI 
scheme executes the invalidate operations when the 
processors enter the subsequent coherence segment. 
Therefore the DPI scheme requires extra time and 
instruction to invalidate the stale copies in the cache, 
but it provides more cacheability than the PE1 scheme. 
In the following, we analyse the miss ratio change and 
the overhead of invalidate instructions. 

DoAll j = 1 to m 

... = Xb) 
X(j] = ... 

END DoAll 

Fig. 9 Program segment to evaluate overhead of invalidate instruction 

Consider the program segment in Fig. 9, and assume 
that the cold start miss is not accounted for and n 
(n 5 m) processors are involved in executing the pro- 
gram. Assume also that the cache miss penalty is Mp 
and the invalidate instruction penalty is Ip. Since the 
invalidate instruction uses associative search to invali- 
date the cache copies, its penalty is much less than the 
cache miss penalty, i.e. Ip << Mp. For simplicity, we 
look only at processor P Since in the DPI scheme the 
processors execute the invalidate instructions when they 
enter the subsequent coherence segment, there is no 
any extra cache miss. On the other hand, in the PE1 
scheme produce the inter-iteration misses, and the 
number of misses per processor is estimated to be 
(mln-1). Therefore the extra cache miss penalty per 
processor of the PE1 scheme is (mln-l)*Mp, whereas the 
invalidate instruction penalty of the DPI scheme is Ip. 

We use an example to show the invalidate instruction 
penalty and the cache miss penalty numerically. 
Assume that the value of Ip is 2 cycles, the number of 
loop iterations L is 64 and the value of Mp is 20 cycles. 
Fig. 10 shows the invalidate instruction penalty against 
the cache miss penalty. One can see that the invalidate 
instruction penalty is a small constant, whereas the 
cache miss penalty increases when the number of proc- 
essors decreases. Furthermore, one can see that the 
total invalidate instruction penalty decreases and the 
total cache miss penalty increases when the number of 
processors decreases. 

4.2 Simulation results 
We also use trace-driven simulation to compare the 
performance of the DPI scheme and the PE1 scheme 
quantitatively. Since we are only interested in the hit 
ratios of globally shared data, we assume that each 
processor has a data cache used exclusively for shared 
data and another local memory to accommodate 
instructions and local data. The coherence of data 
caches may be maintained by one of two software 
cache coherence schemes, the DPI and the PEI, and the 
local memories are free from cache coherence problem. 
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To eliminate conflict misses, every data cache is fully 
associative. The cache replacement policy is LRU (least 
recently used). To avoid false sharing, the cache line 
size is assumed to be one word. 
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In all simulation runs, the sequential code is always 
executed by processor Po. When a parallel loop is 
encountered, each processor creates a parallel loop exe- 
cution environment, obtains the value of the loop 
index, and executes the corresponding iterations inde- 
pendently. When one parallel loop finishes, another 
parallel loop will start or processor Po will resume its 
execution for the succeeding sequential code. To exe- 
cute a parallel loop, a scheduling policy is needed to 
assign a processor to each iteration. Two dlifferent 
scheduling policies are used: prescheduling and self- 
scheduling. With the prescheduling policy, the ith itera- 
tion of a parallel loop is executed on processor P(imodn), 
where n is the number of processors available. With the 
self-scheduling policy, whenever there is an iteration of 
a parallel loop for execution, a free processor is ran- 
domly selected to execute it. 

Two numerical FORTRAN programs are used to 
generate the traces. The first program, Gauss, uses the 
Gaussian elimination technique to solve a linear system 
of equations. It does not contain any DoAcross loop. 
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The second program, Adi, uses the alternating direc- 
tion implicit method to solve ordinary differential 
equations. It contains many dynamic occurrences of 
partial array modifications. 
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-U- DPI scheme, P = 64 
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Hit ratio of Gauss application with self-scheduling 
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Fig. 12 Hit ratio of Adi application with self-scheduling 
-H- DPI scheme, P = 32 
-0- PE1 scheme, P = 32 
-e- DPI scheme, P = 16 
-0- PE1 scheme, P = 16 
-A- DPI scheme, P = 8 
-A- PE1 scheme, P = 8 

Figs. 11-14 show the hit ratios of the two schemes 
for various cache sizes with two different scheduling 
policies, the prescheduling and self-scheduling, 
respectively. It is obvious that the DPI scheme 
outperforms the PE1 scheme in the simulations as 
predicated. Given that one iteration is executed by one 
processor, the DPI scheme performs at least as well as 
the PE1 scheme. This is because the PE1 scheme does 
not cause unnecessary interiteration misses and inter- 
coherence-segment misses. When a processor executes 
more than one iteration, the DPI scheme is definitely 
superior to the PE1 scheme. This is because the PE1 
scheme explicitly invalidates the stale copies in the 
caches when a write operation to sharable data is to be 
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executed, whereas the DPI scheme executes the 
invalidate operations only when the processors are 
entering the subsequent coherence segments. From the 
simulation results, it is also found that the hit ratios of 
the prescheduling policy are higher than those of the 
self-scheduling policy. This is the virtue of the 
prescheduling policy that favours the reuse of cache 
contents across different coherence segments. 
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5 Conclusion 

Software cache coherence schemes are very desirable in 
the design of scalable high-performance multiproces- 
sors. This is because they are not constrained by net- 
work topologies, and they can eliminate runtime 
coherence traffic. However, there are some inefficien- 
cies and deficiencies in the previous schemes. The ver- 
sion control scheme [6] unnecessarily invalidates all 
elements in an array even when only a part of the array 
is modified. Though the parallel explicit invalidation 
(PEI) scheme [8] solves this problem, it incurs incorrect 
result for a crossiteration output dependence in a DoA- 
cross loop. 

In this paper, we thus propose the delayed precise 
invalidation (DPI) scheme to remedy the problems of 
the previous schemes. Based on compiler-time mark- 
ings of references and local explicit invalidations of 
stale data, the DPI scheme offers more cacheability by 
supporting delayed invalidation and selective invalida- 
tion of partial array. Simulation results show that the 
DPL scheme preserves more cacheability than the PE1 
scheme. In the simulation, we also found that it is more 
efficient to schedule an iteration on a particular proces- 
sor than randomly, since reuse of data can improve 
cache performance. This fact suggests that processor/ 
cache affinity should be considered in designing soft- 
ware cache coherence schemes. Good scheduling poli- 
cies that consider both processorlcache affinity and 
cache coherence penalty will increase the effectiveness 
of caches and balance the loads of processors. 
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