
Delayed precise invalidation - a software cache
coherence scheme

T.-S. Hwang

C.-P.Chung
N.-I? LU

Indexing term: Cache coherence, Compilers, Invalidation

Abstract: Software cache coherence schemes are
very desirable in the design of scalable
multiprocessors and massively parallel processors.
The authors propose a software cache coherence
scheme named ‘delayed precise invalidation’
(DPI). DPI is based on compiler-time markings
of references and a hardware local invalidation of
stale data in parallel and selectively. With a small
amount of additional hardware and a small set of
cache management instructions, this scheme
provides more cacheability and allows
invalidation of partial elements in an array,
overcoming some inefficiencies and deficiencies of
previous software cache coherence schemes.

1 Introduction

To enforce data coherence among multiple private
caches in shared-memory multiprocessor systems, a
great number of schemes have been proposed. These
schemes may be classified as either hardware or
software cache coherence schemes [11. The hardware
cache coherence schemes [l-31 use shared resources
(bus or directory) to maintain cache coherence. The
software cache coherence schemes [4-91 maintain cache
coherence using information obtained in compiler-time
analysis.

The advantages of software cache coherence schemes
are two-fold: first, the scalability of the underlying net-
work architecture is not constrained, and secondly, the
runtime overhead is minimised. While bus-based cache
coherence schemes (21 have scalability difficulties for
large shared-memory multiprocessor systems, directory-
based cache coherence schemes [3] also suffer from dif-
ficulty extending to large-scale shared-memory multi-
processor systems, since the centralised or distributed
directory may become a serious performance bottle-
neck. On the other hand, by making each processor
responsible for maintaining data coherence in its own
cache via self-invalidation instructions, software cache
coherence schemes are not subject to network topolo-

0 IEE, 1996
ZEE Proceedings online no. 19960661
Paper first received 30th October 1995 and in revised form 20th May 1996
The authors are with the Department of Computer Science and Informa-
tion Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu, Taiwan 30050, Republic of China

gies and further eliminate runtime interprocessor cache
coherence traffic.

The performance of software cache coherence
schemes relies on precise compiler-time analysis that
can eliminate unnecessary invalidations and preserve
more cache localities. In this paper, we propose the
delayed precise invalidation (DPI) scheme to overcome
some inefficiencies and deficiencies of previous
schemes.

LO

L1

L2

L3

L4

U
Fig. 1 Example of task graph

2 Background

In studying software cache coherence schemes the exe-
cution of a program can be modelled with a task
graph, as illustrated in Fig. 1. A serial loop that can-
not be parallelised is a task. For a DoAll or DoAcross
loop, one iteration or a number of iterations can be
considered as a task. A directed edge from one task to
another represents all the dependencies between the
two tasks. Tasks independent of each other can be
scheduled for parallel execution. Dependent tasks will
be executed in the order defined by program semantics.
The execution order of dependent tasks is enforced
through synchronisation. To maintain data coherence
in the system, software cache coherence schemes use
compiler-time analysis to determine which cache items
may become stale, and insert special cache manage-
ment instructions to invalidate the stale entries when
processors cross task boundaries.

The simplest software cache coherence scheme is to
use indiscriminate invalidation of the data caches to
enforce coherence when processors cross task bounda-
ries [4]. The indiscriminate invalidation scheme main-
tains cache coherence at the sacrifice of data

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996 337

cacheability. The fast selective invalidation scheme [5]
enforces coherence at the point of a read reference so
that the data cacheability can be improved. Every read
reference to shared memory in a program will be classi-
fied and marked by the compiler as either memory-read
or cache-read. A cache controller treats a cache-read as
a read to a conventional uniprocessor cache. A mem-
ory-read implies that the data in the cache might be
stale, and up-to-date data should be loaded from the
main memory.

To exploit higher cacheability, two similar schemes,
the timestamp-based scheme [7] and the version control
scheme [6], have been proposed. Clock and timestamp
in the former scheme correspond to the current version
number (CVN) and birth version number (BVN) in the
latter one, respectively. In the version control scheme,
each processor maintains a CVN for each variable and
a BVN for each cache line. The CVN represents the
current version of the variable, while the BVN repre-
sents a particular version of the cache line. By compar-
ing the CVN and BVN, a stale cache copy can be
detected. The timestamp-based schemes use both com-
pile-time markings of references and a local coherence
detection mechanism to overcome the difficulty with
limited information about the stale data at compiler
time. In so doing, these two schemes are able to better
preserve temporal locality across the boundaries of
loops than previous schemes. However, these schemes
require substantial additional hardware to maintain the
time or version information. To reduce the hardware
cost, one-bit time stamping (TS1) has been proposed in - - .
[9]. TS1 only requires a valid bit and an epoch
cache line, but it requires a more sophisticated
date instruction to maintain cache coherence.

Dimension X(8) (address encoding of X)
P-loop DoAll i = 0 to 7 X(0)->10110000

............. X(1)->10110001
s1 X(2) = ... X(2)->10110 010

............. X(3)->10110011

Serial X(5)->10110 101
............. X(6)->10110 110

s2 X(3) = ... X(7)->10110 111

END DoAll X(4)->10110 100

.............
Fig.2 Program example to illustrate PEI scheme

Timestamp-based schemes operate on the

bit per
invali-

whole
array level: they invalidate all elements in an array even
when only a small part of the array is modified,
because an array is associated with only one CVN and
one BVN. To correct this deficiency, the parallel
explicit invalidation (PEI) scheme [8] allows parallel
invalidation of all or partial array elements with the
assistance of a well-structured memory allocation
method and a store-and-invalidate instruction. We
show how the PE1 scheme works with the program
example shown in Fig. 2. Assume that eight processors
Pi (i = 0, 7) are involved in executing the program
and the processors are assigned such that the ith itera-
tion of the DoALL loop is executed by Pi and proces-
sor Po executes the serial region. The addresses of X(O),
X(l), X(7) are assigned 10110000, 10110001,
101 101 1 I , respectively. Then, in the DoAll loop, Pi will
use the store-and-invalidate instruction to modify X(i)
and invalidate all the cache copies of array X , except
the X(i), at the same time. In the serial region, Po will
modify X(5) while the other idle processors should also
invalidate the copies of X(5) in their caches, if they

338

exist. The PE1 scheme achieves cache coherence since
anything written on a different processor will be invali-
dated by the local processor before moving to the next
task.

DoAcross i = 1 to 4
..........

s1 X(i) = ...
s2

..........
X(i + 1) = ...
... = X(i + 1)
..........

END DoAcross
Fig. 3 Example of cross-iteration output dependence

However, a problem for DoAcross loops arises in the
PE1 scheme. The scheme may not flush the stale cache
copies for a cross-iteration output dependence in a
DoAcross loop. Consider the program segment in
Fig. 3 and assume that four processors, PI, P2, P3, P4,
are involved in executing the program. The processors
are assigned such that ith iteration is executed on Pi.
For a cross-iteration output dependence that exists in a
DoAcross loop, the Sink-Write must overwrite the
value produced by the Source-Write with proper syn-
chronisation. In such a case, the cache copy produced
by the Source-Write is stale, and the cache copy pro-
duced by the Sink-Write is up-to-date, in the subse-
quent task. In the PE1 scheme, when processor P1
executes iteration I1 and statement S1 is reached, it
modifies X(1) and invalidates cache copies of X(2),
X(3) , and 2441, if they exist. When statement S2 is
reached, processor Pl modifies X(2) and invalidates
cache copies of X(l), X(3), and X(4), if they exist. The
cache copy of X(2) is not invalidated by processor PI
and exists in the cache of processor PI. Since statement
S2 is the Source-Write in the cross-iteration output-
dependent DoAcross loop, the cache copy of X(2) is
stale in the subsequent task and must be invalidated by
processor P1. However, the PE1 scheme does not inval-
idate the cache copy of X(2) in the cache of processor
PI. To solve this PE1 scheme problem, the processors
should execute the invalidate instruction before moving
to the subsequent task, so that the stale data in the
cache will not persist for a cross-iteration output-
dependent DoAcross loop.

3 Delayed precise invalidation scheme

3. I Motivation
In addition to the error in the cross-iteration output-
dependent DoAcross loop, the PE1 scheme has another
drawback: its store-and-invalidate instruction will write
the datum and invalidate the other cache data at the
same time. Consequently it may invalidate the up-to-
date data and cause unnecessary cache misses. To solve
the deficiency of the PE1 scheme and provide more
cacheability, we propose the delayed precise
invalidation (DPI) scheme. The DPI scheme delays the
invalidate operations to only the necessary array
elements on the processors entering the subsequent
task: hence ‘delayed’. Furthermore, the DPI scheme
allocates shared data structures or scalars in a well
structured form to support precise invalidation of the
stale data in parallel and selectively: hence ‘precise’. As
a result, the DPI scheme avoids invalidating the up-to-
date cache copies, and preserves the intertask or
intratask temporal locality better than the PE1 scheme
does.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996

3.2 System model
In the DPI scheme, we assume a shared-memory multi-
processor system in which every processor has local
data cache with write-through policy. Write-through
policy is essential to the success of the scheme. A cache
line is the basic cache coherence unit, and we choose
the one-word line size in the scheme to avoid false
sharing. (Multiword line size is possible in the scheme.
To eliminate false sharing of multiword line size, allo-
cating memory must take the line size into account
carefully.) We also assume processor pre-emption and
processor migration are not allowed in the scheme.

Numerical programs with DoAll-type or DoAcross-
type loop-level parallelism are assumed to be executed
in the system. All the programs are constructed by a
parallelising compiler. The compiler inserts the neces-
sary synchronisation instructions into the parallel
codes. DoAll loops and DoAcross loops are called par-
allel loops. A parallel program can be viewed as a set
of coherence segments, classified as parallel coherence
segments and sequential coherence segments. A parallel
coherence segment consists of a parallel loop of the
DoAll or DoAcross type. A sequential coherence seg-
ment represents a serial region between parallel coher-
ence segments that has to be executed by one
processor.

3.3 Hardware mechanism
To support the DPI scheme, each private cache should
contain the following components (as illustrated in
Fig. 4):

search address ::;1 I + '9"
comparator

block

block

Fig.4 Cache configuration for DPI scheme

Search address register (S A R) : The search address reg-
ister is used to hold the address that is the operand of
the invalidate instruction.

Fig.5 Three$elds of address to access cache

Search address tug: The search address tag is used to be
compared with the address operand of the invalidate
instruction. Fig. 5 shows the three fields of an address
to access the cache. The block-offset field is used to
select the desired word from the block, the index field
is used to select the set, and the tag field is used to
determine whether the access is a hit or a miss. In the
DPI scheme, the tag field combined with the index field
forms the search address tag.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996

Selective compare register (SCR) : The selective com-
pare register is used to enable or disable the bit slices
involved in the comparison between the search address
register and the search address tag. With the SCR, the
invalidation of a partial array can be precise.
Vulid bit (V) : This bit functions in the same way as the
conventional valid bit in a cache line. The valid bit of a
cache line is used to indicate whether the cache line has
valid data.
Status bit (S) : The status bit is used to indicate
whether the cache line is the most up-to-date and
should be preserved when the processor proceeds to the
subsequent coherence segment. The status bit is set by
the Read-Set-Status and Write-Set-Status instructions
(defined subsequently). It is reset by the invalidate
instruction (also defined later). A set status bit indi-
cates that the cache line should be preserved when the
processor proceeds to the subsequent coherence seg-
ment. A reset status bit indicates that the cache line
should be invalidated when the processor proceeds to
the subsequent coherence segment.

3.4 Cache management instructions
In the DPI scheme, the following cache management
instructions need to be defined in the instruction set of
the processor:
Read: The Read instruction is the same as a conven-
tional memory read instruction
Read-Set-Status: The Read-Set-Status instruction is
the same as the Read instruction except it sets the sta-
tus bit S of the accessed cache line.
Write: The Write instruction is the same as a conven-
tional memory write instruction.
Write-Set-Status: The Write-Set-Status instruction is
the same as the Write instruction except it also sets the
status bit S of the accessed cache line.

SCR<-- MBP
SARc--address

t
activate

associative search

4
matching ? e

V C - - s
se-- 0 i'

Fig.6 Execution flow of invalidate instruction
MBP mask bit pattern
SAR search address register
SCR selective compare register
V valid bit
S status bit

Invalidate: The purpose of the Invalidate instruction is
to invalidate the cache lines which will become stale in
the subsequent coherence segment. The Invalidate
instruction is executed once by every processor at the

339

end of a coherence segment. Fig. 6 shows the execution
flow of this instruction. The invalidate instruction
shifts the values of the status bits into the correspond-
ing valid bits of those cache lines searched by SAR and
SCR. If the status bit of a matched cache line is reset,
the valid bit V and the status bit S will both be reset,
and the cache line is invalidated. If the status bit of a
matched cache line is set, the valid bit will not be
changed although the status bit will be reset.

3.5 Memory allocation and MBP generation
To explicitly invalidate the stale cache copies of the
data in parallel and selectively, the DPI scheme allo-
cates shared data structures or scalars in a well struc-
tured form, and generates a masking bit pattern (MBP)
for each invalidate instruction. The purpose of the
MBP is selective searching and invalidation of partial
array. The DPI scheme uses the same memory alloca-
tion and MBP generation methods as the PE1 scheme
to allocate memory for array and scalar variables and
generate an appropriate MBP [8]. The memory alloca-
tion and MBP generation methods are described in the
following.

3.5. I Memory allocation method: Assume that a
parallel program consists of n shared one-dimensional
arrays of sizes sl, s2, ..., s, and shared scalar variables
of a total size of so. Let S be a list of the sizes of the
arrays and scalar variables, and let S‘ be an ordered list
of S, S‘ = {so‘, sl’, s2‘, ..., snl, where si) 5 si if and only
if i 5 j } . A list B is derived from S’ by replacing si) with
bi, where b, = [log2si)], i.e. the number of bits required
to encode si). Huffman’s optimal coding method is then
applied to B, by considering bi as the probability of the
occurrence, to obtain a list C 1 {e0, cl, ..., e,, where ci
is the Huffman’s code of s;} . Let lcil be the length of
the code, and w = max(lq + bi), for all i, 0 I i I n.
Then, the base address of the array of size sL’ is con-
structed as ciO*, where O* is a sequence of Os whose
length is (w ~ Icil). Multidimensional arrays can also be
encoded in the same way by treating them as multiples
of one-dimensional arrays. The purpose of the applica-
tion of Huffman’s method to the memory allocation
method is to uniquely identify an array using some of
its most significant bits, i.e. ci. An array of size si is
allocated addresses from ciO* to (ciO* + si - I). The
addresses from (ciO* + si) up to the next base address
C ~ + ~ O * , are not used.

Consider an example of a shared memory of size 1
Kbyte and assume that the program accesses arrays XI,
X2 and X 3 , of sizes 25, 450 and 75 bytes, and a group
of scalar variables Y of a total size of five bytes.
According to the memory allocation method, S = (5,
25, 450, 75}, S’ = { 5 , 25, 75, 450}, and B = 13, 5, 7, 9}.
Now, if we apply Huffman’s optimal coding method,
we obtain C = {llO, 111, IO, O}. Then w = max(jcil +
bi) = 10, and we append trailing Os to make every code
in C 10 bits long. As a result, Xl = 1110000000, X 2 =
0000000000, X3 = 1000000000, and Y = 1100000000 are
the base addresses of the arrays and scalar variables. It
is clear that arrays XI, X,, and X , are all addressed
uniquely by the leading most significant bits.

3.5.2 MBP generation method: In the DPI
scheme, each invalidate instruction requires an MBP to
selectively invalidate the cache lines. Let MBP = @,, p2 ,
..., p,). When p i = 0, the corresponding bit slice of the
address tag is disabled from matching. The MBP for

340

scalar variables or array outside the parallel loop is (1,
I , ..., I), that is, they are to be matched with full
addresses. Let A be a set of addresses of n elements
modified in a parallel loop A = A , , A,, ..., A,, where Aj
is represented as a binary number, that is, Ai = ujl uj2 _ _ _
ajT. MBPs of arrays inside the parallel loop are deter-
mined by the following equation:
pi = (al i A a2i A . . . A ani) v (al i v a2i v . . . v ani)
(fori = 1,. . . ,m)

This equation will find the address bit positions that
have the same values for all A,i, 1 = J I n.

3.6 Reference marking rules
In addition to the hardware support and cache man-
agement instructions, the DPI scheme must rely on a
set of reference marking rules to maintain the cache
coherence. Our reference marking rules are based on
the data-dependence analysis of a parallel program.
Data dependencies between read and write references
are obtained in the compiler-time analysis.

/7 Readset -statusi
Write-Set- Status q)

invalidate
I / Set-Status/
I

/ / Write-Set-Status miss
invalidatel

d- Set -Status /
e-Set -Status

Read I Wr I te Read I W ri te miss

Fig. 7
S: status bit
V: valid bit

State transition diugmm of cache line

Fig. 7 shows the state transition diagram of a cache
line in the DPI scheme. If a cache copy becomes stale
in the subsequent coherence segment, its status bit S
should be reset. When the processor proceeds to the
subsequent coherence segment it executes the invalidate
instruction, and the cache line state is changed to
(S = 0 and V = 0). If a cache copy will be an up-to-
date copy in the subsequent coherence segment, the sta-
tus bit S should be set. When the processor proceeds to
the subsequent coherence segment, it executes the inval-
idate instruction, and the cache line state is changed to
(S = 0 and V = 1). Therefore if the cache copy is stale
and should be invalidated in the subsequent coherence
segment, the associated read and write references
should be marked Read and Write. If the cache copy is
up-to-date in the subsequent coherence segment, the
associated read and write references should be marked
Read-Set-Status and Write-Set-Status.

The only situation that can cause cache copies of a
variable to become stale is to have a write to the varia-
ble in another processor in a coherence segment. There-
fore the reference marking method needs to identify a
write to a variable, and insert an invalidate instruction
before the subsequent coherence segment boundary.
After the invalidate instructions are correctly inserted
and the different types of references are identified and
marked, it should be straightforward for the compiler
backend to generate appropriate parallel code. In the
following, we describe the reference marking rules to

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996

properly insert the invalidate instructions and mark the
different kinds of references.

1 1

1 1

110 111

3.6.1 Rule 1: If a DoAll loop or a serial portion of a
program has a write reference to a variable, then the
write reference should be marked Write-Set-Status. A
read reference to the same variable after the write refer-
ence should be marked Read-Set-Status.

In a DoAll loop or a serial portion of a program, a
write reference to a variable produces an up-to-date
cache copy. Therefore the status bit S should be set
when this cache copy is written, and such a write refer-
ence should be marked Write-Set-Status. A read refer-
ence to the same variable after the write reads an up-
to-date cache copy produced by the write. Therefore
the status bit S should be set when this cache copy is
read, and such a read reference should be marked
Read-Set-Status.

DoAcross loops incur data dependence across paral-
lel loop iterations. The read and write references of the
DoAcross loop that are either the source or the sink of
a dependence arc across iterations are of concern. For
a read (write) reference that is both a sink and a
source, it is seen as a Source-Read (Source-Write) in
the following rules. Before marking references, all
dependencies of a DoAcross loop must be enforced by
proper synchronisations between loop iterations.

3.6.2 Rule 2: If a DoAcross loop has a cross-itera-
tion anti-dependence, then the Sink-Write should be
marked Write-Set-Status and the Source-Read should
be marked Read.

For an antidependence (write-after-read), the
dependence is a Source-Read with a Sink-Write in a
later iteration in the original DoAcross loop. The con-
cerned array element of the cache copy referenced by
the Source-Read will be written later by another proc-
essor in the same coherence segment. In such a case,
the cache copy used by the Source-Read is made stale
by this later write and should not be used beyond the
current coherence segment. Therefore the status bit S
should be reset when this cache copy is read, and it
should be set when this cache copy is written. For this
reason, such a read reference should be marked Read
and such a write reference should be marked Write--
Set-Status.

3.6.3 Rule 3: If a DoAcross loop incurs a cross-itera-
tion flow-dependence, then the Sink-Read should be
marked Read-Set-Status and the Source-Write should
be marked Write-Set-Status. The required invalidate
instruction should be inserted at the entrance point to
the DoAcross loop to invalidate the Sink-Read oper-
and.

For a flow-dependence (read-after-write), the
dependence involves a Sink-Read and a Source-Write
in a previous iteration in the original DoAcross loop.
The Sink-Read must read a value produced by another
processor in the same coherence segment, and this
value can stay up-to-date beyond the current coherence
segment boundary. However, because the cache copy
used by the Sink-Read must be produced by another
processor in the same coherence segment, the cache
copy that existed at the beginning of the current coher-
ence segment is stale. This necessitates that all existing
cache copies of the same variable must be invalidated
at the beginning of such a coherence segment. There-
fore, invalidate instructions should be inserted at the

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996

0 1 0 I Write(X(1)) 3

0 1 0 1 Read(X(1)) 4

010 110 010 110 Invalidate X 5

entrance point to the current coherence segment to
invalidate the existing cache copy of the same variable
accessed by the Sink-Read.

With the extra invalidate instructions inserted at the
entrance points to the current coherence segment, a
Sink-Read to a variable is guaranteed to obtain the up-
to-date value produced in the same coherence segment
by another processor. The status bit S should be set
when such a copy is read. For this reason, the Sink-
Read should be marked Read-Set-Status. For the
Source-Write, it produces the up-to-date copy in the
cache. The status bit S should be set when such a copy
is written. For this reason, the Source-Write should be
marked Write-Set-Status.

3.6.4 Rule 4: If a DoAcross loop incurs a cross-itera-
tion output-dependence, then the Sink-Write should be
marked Write-Set-Status and the Source-Write should
be marked Write.

For an output-dependence (write-after-write), the
dependence involves a Source-Write and a Sink-Write
in a later iteration in the original DoAcross loop. With
proper synchronisation, the Sink-Write must overwrite
the value produced by the Source-Write. In such a
case, the cache copy produced by the Source-Write
must not be used in the subsequent coherence segment,
while the cache copy produced by the Sink-Write must
be preserved beyond the current coherence segment
boundary. Therefore, the status bit S should be reset
when such a cache copy is produced by the Source-
Write, while it should be set when such a cache copy is
produced by the Sink-Write. For this reason, the
Source-Write should be marked Write and the Sink-
Write should be marked Write-Set-Status.

P_loop DoAcross i = 0 to 6

O/I 1

110 1/1

s1 X(1) = ... ; Write-Set-Status
.............

s2 X(i + 1) = ... ; Write

0 1 0 0 0 0 6

0 0 0 0 Write_Set-Status(X (0)) 7

0 0 0 0 Invalidate X(0) 8

.............
s3 = X(i + 1) ; Read

.............
END DoAcross
Invalidate X

Serial
s4 X(0) = ... ; Write-Set-Status

.............
Invalidate X(0)

X(0) X(1) X(2) Operations affecting 1 S V I S V 1 S V I status bits and valid bits I Row I

(b)
kJ.8 Example to illustrate DPI scheme
a Program segment
b Cache status transitions of Po

3.7 Example
We use Fig. 8 to show how the DPI scheme maintains
cache coherence. According to the reference marking
rules, statements SI , S2, S3, and S4 will be marked as

341

Write-Set-Status, Write, Read, and Write-Set-Status,
respectively. Assume that eight processors Po, PI, ..., P,
are involved in executing the program, and the proces-
sors are assigned such that ith iteration is executed by
Pi in p-loop and Po executes the serial segment.
According to the memory allocation method, the
addresses of X(O), X(l), ..., X(7) are 10110000,
10110001, ..., 10110111, respectively. Fig. 8b shows the
status bits and valid bits of X(O), X(1) and X(2) in Po
cache. The initial states of X(O), X(1) and X(2) in Po
cache are shown in row 1 of Fig. 86. The status bits
and valid bits affected by the readlwrite operations are
represented by two values separated by a slash (original
valuehew value), and the unaffected status bits and
valid bits are represented by a single value.

Consider the program segment in Fig. 8a. In the
DPI scheme, when processor Po executes iteration I,
and statement SI is reached, it modifies X(0) and sets
the status bit of X(0) (row 2 of Fig. Sb) since statement
S1 is a Write-Set-Status. When statement S2 is
reached, processor Po modifies X(1) and does not set its
status bit (row 3 of Fig. 8b) since statement S2 is a
Write. When statement S3 is reached, processor Po
reads X(1) and does not set its status bit (row 4 of
Fig. 86) since statement S3 is a Read. Because
statement S2 is the Source-Write in the cross-iteration
output dependence of the DoAcross loop, the cache
copy of X(1) will be stale in the subsequent coherence
segment and must be invalidated when processor Po
moves to the subsequent coherence segment. Moreover,
the cache copies of X(2), ..., X(7) must also be
invalidated when processor Po moves to the subsequent
coherence segment since they are modified by other
processors. Similar considerations are true for P,, P,,
...) P7.

Next we explain how stale cache copies are invali-
dated. When Po moves to the subsequent coherence
segment, it executes the invalidate instruction to invali-
date those stale copies in parallel. By loading the selec-
tive compare register (SCR) with an MBP of 11 11 1000,
and loading the search address register (SAR) with the
address of 101 10000, Po activates the associative search
to its local cache. Since only the bit slices whose corre-
sponding bits in the SCR are set are examined in the
search, the most significant five bits of 10110000 are
compared. Therefore the cache copies whose most sig-
nificant five address bits are 10110, i.e. all elements of
array X are matched, and their valid bits are assigned
the current status bit values and the status bits are reset
(row 5 of Fig. Sb). In row 6 of Fig. 8b, one can see
that the valid bits of X(1) and X(2) are reset since X(1)
and X(2) will contain stale data in the subsequent
coherence segment, while the valid bit of X(0) is set
since X(0) is up-to-date in the subsequent coherence
segment.

Finally, in the serial region, Po modifies X(0) and sets
it status bit while the other processors are idle (row 7
of Fig. 8b). Later, when all processors except Po move
to the subsequent coherence segment, they need to exe-
cute the invalidate instruction to invalidate the copies
of X(0) in their caches, since these copies are no longer
up-to-date. To invalidate these copies, all processors
load the SCR with an MBP of 11 11 11 11, and the SAR
with the address of X(O), i.e. 10110000. The copies of
X(0) will be found in the associative search, and its
valid bit will be assigned the value of its status bit and
the status bit will be reset (row 8 of Fig. S(b)).

342

4 Performance comparison

This Section compares the performance of the delayed
precise invalidation (DPI) scheme and the parallel
explicit invalidation (PEI) scheme.

4. I Overhead of invalidate instruction
The PE1 scheme explicitly invalidates the stale copies in
the caches when a write instruction to sharable data is
to be executed. In so doing, both the write and invali-
date operations can be executed in parallel, but it
causes extra cache misses. On the other hand, the DPI
scheme executes the invalidate operations when the
processors enter the subsequent coherence segment.
Therefore the DPI scheme requires extra time and
instruction to invalidate the stale copies in the cache,
but it provides more cacheability than the PE1 scheme.
In the following, we analyse the miss ratio change and
the overhead of invalidate instructions.

DoAll j = 1 to m

... = Xb)
X(j] = ...

END DoAll

Fig. 9 Program segment to evaluate overhead of invalidate instruction

Consider the program segment in Fig. 9, and assume
that the cold start miss is not accounted for and n
(n 5 m) processors are involved in executing the pro-
gram. Assume also that the cache miss penalty is Mp
and the invalidate instruction penalty is Ip. Since the
invalidate instruction uses associative search to invali-
date the cache copies, its penalty is much less than the
cache miss penalty, i.e. Ip << Mp. For simplicity, we
look only at processor P Since in the DPI scheme the
processors execute the invalidate instructions when they
enter the subsequent coherence segment, there is no
any extra cache miss. On the other hand, in the PE1
scheme produce the inter-iteration misses, and the
number of misses per processor is estimated to be
(mln-1). Therefore the extra cache miss penalty per
processor of the PE1 scheme is (mln-l)*Mp, whereas the
invalidate instruction penalty of the DPI scheme is Ip.

We use an example to show the invalidate instruction
penalty and the cache miss penalty numerically.
Assume that the value of Ip is 2 cycles, the number of
loop iterations L is 64 and the value of Mp is 20 cycles.
Fig. 10 shows the invalidate instruction penalty against
the cache miss penalty. One can see that the invalidate
instruction penalty is a small constant, whereas the
cache miss penalty increases when the number of proc-
essors decreases. Furthermore, one can see that the
total invalidate instruction penalty decreases and the
total cache miss penalty increases when the number of
processors decreases.

4.2 Simulation results
We also use trace-driven simulation to compare the
performance of the DPI scheme and the PE1 scheme
quantitatively. Since we are only interested in the hit
ratios of globally shared data, we assume that each
processor has a data cache used exclusively for shared
data and another local memory to accommodate
instructions and local data. The coherence of data
caches may be maintained by one of two software
cache coherence schemes, the DPI and the PEI, and the
local memories are free from cache coherence problem.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5, September 1996

To eliminate conflict misses, every data cache is fully
associative. The cache replacement policy is LRU (least
recently used). To avoid false sharing, the cache line
size is assumed to be one word.

64 32 16 8 4

a
number of processors

Fig.

h Ag

a Per
penal

tion 1

M i
I 2 O 0 T

64 32 16 8 4
number of processors

b
0
lties for each processor (i) invalidate instruction penalty, (ii) cache miss

Cache miss penalty against invalidate instruction penalty

egate penalties (i) total cache miss penalty, (ii) total invalidate instruc-
nalty

In all simulation runs, the sequential code is always
executed by processor Po. When a parallel loop is
encountered, each processor creates a parallel loop exe-
cution environment, obtains the value of the loop
index, and executes the corresponding iterations inde-
pendently. When one parallel loop finishes, another
parallel loop will start or processor Po will resume its
execution for the succeeding sequential code. To exe-
cute a parallel loop, a scheduling policy is needed to
assign a processor to each iteration. Two dlifferent
scheduling policies are used: prescheduling and self-
scheduling. With the prescheduling policy, the ith itera-
tion of a parallel loop is executed on processor P(imodn),
where n is the number of processors available. With the
self-scheduling policy, whenever there is an iteration of
a parallel loop for execution, a free processor is ran-
domly selected to execute it.

Two numerical FORTRAN programs are used to
generate the traces. The first program, Gauss, uses the
Gaussian elimination technique to solve a linear system
of equations. It does not contain any DoAcross loop.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 5. September 1996

The second program, Adi, uses the alternating direc-
tion implicit method to solve ordinary differential
equations. It contains many dynamic occurrences of
partial array modifications.

""T
0

g o
E!

L O

c

c .-

0

/
-.-.-.

1-1

./

O ! I
64 128 256 512 1K 2K

cache size, words
Fig. 11
-U- DPI scheme, P = 64
-0- PE1 scheme, P = 64 -*- DPI scheme, P = 32
-0- PE1 scheme, P = 32
-A- DPI scheme, P = 16
-A- PE1 scheme, P = 16

Hit ratio of Gauss application with self-scheduling

0

0
.-
c e
c
E o

i I I I I
64 128 256 512 1K 2K

cache size, words
Fig. 12 Hit ratio of Adi application with self-scheduling
-H- DPI scheme, P = 32
-0- PE1 scheme, P = 32
-e- DPI scheme, P = 16
-0- PE1 scheme, P = 16
-A- DPI scheme, P = 8
-A- PE1 scheme, P = 8

Figs. 11-14 show the hit ratios of the two schemes
for various cache sizes with two different scheduling
policies, the prescheduling and self-scheduling,
respectively. It is obvious that the DPI scheme
outperforms the PE1 scheme in the simulations as
predicated. Given that one iteration is executed by one
processor, the DPI scheme performs at least as well as
the PE1 scheme. This is because the PE1 scheme does
not cause unnecessary interiteration misses and inter-
coherence-segment misses. When a processor executes
more than one iteration, the DPI scheme is definitely
superior to the PE1 scheme. This is because the PE1
scheme explicitly invalidates the stale copies in the
caches when a write operation to sharable data is to be

343

executed, whereas the DPI scheme executes the
invalidate operations only when the processors are
entering the subsequent coherence segments. From the
simulation results, it is also found that the hit ratios of
the prescheduling policy are higher than those of the
self-scheduling policy. This is the virtue of the
prescheduling policy that favours the reuse of cache
contents across different coherence segments.

t
0 1 I I

64 128 256 512 1K 2K
cache size, words

Fig. 13

-0- PE1 scheme, P = 64 -+- DPI scheme, P = 32
-0- PE1 scheme, P = 32
-A- DPI scheme, P = 16
-A- PE1 scheme. P = 16

Hit ratio of Gauss application with prescheduling

1 . o r

0
64 128 256

cache size, words
application with prescheduling

-& PE1 scheme, P = 32 -*- DPI scheme, P = 16
-0- PE1 scheme, P = 16
-A- DPI scheme, P = 8
-A- PE1 scheme, P = 8

5 Conclusion

Software cache coherence schemes are very desirable in
the design of scalable high-performance multiproces-
sors. This is because they are not constrained by net-
work topologies, and they can eliminate runtime
coherence traffic. However, there are some inefficien-
cies and deficiencies in the previous schemes. The ver-
sion control scheme [6] unnecessarily invalidates all
elements in an array even when only a part of the array
is modified. Though the parallel explicit invalidation
(PEI) scheme [8] solves this problem, it incurs incorrect
result for a crossiteration output dependence in a DoA-
cross loop.

In this paper, we thus propose the delayed precise
invalidation (DPI) scheme to remedy the problems of
the previous schemes. Based on compiler-time mark-
ings of references and local explicit invalidations of
stale data, the DPI scheme offers more cacheability by
supporting delayed invalidation and selective invalida-
tion of partial array. Simulation results show that the
DPL scheme preserves more cacheability than the PE1
scheme. In the simulation, we also found that it is more
efficient to schedule an iteration on a particular proces-
sor than randomly, since reuse of data can improve
cache performance. This fact suggests that processor/
cache affinity should be considered in designing soft-
ware cache coherence schemes. Good scheduling poli-
cies that consider both processorlcache affinity and
cache coherence penalty will increase the effectiveness
of caches and balance the loads of processors.

6

I

2

3

4

5

6

7

8

9

References

STENSTROM, P.: ‘A survey of cache coherence schemes for
multiprocessors’, Computer, 1990, 23, (6), pp. 12-24
ARCHIBALD, J., and BAER, J.-L.: ‘Cache coherence protocols:
evaluation using a multiprocessor simulation model’, A CM Trans.
Comput. Syst., 1986, 4, (4), pp. 273-298
CENSIER, L.M., and FEAUTRIER, P.: ‘A new solution to
coherence problems in multicache systems’, ZEEE Trans. Comput.,

VEIDENBAUM, A.V.: ‘A compiler-assisted cache coherence
solution for multiprocessors’. Proceedings of the 1986 interna-
tional conference on Parallel processing, August 1986, pp. 1029-
1036
CHEONG, H., and VEIDENBAUM, A.V.: ‘A cache coherence
scheme with fast selective invalidation’. Proceedings of the 15th
annual international symposium on Computer architecture, June
1988, pp. 299-307
CHEONG, H., and VEIDENBAUM, A.V.: ‘A version control
approach to cache coherence’. Proceedings of the 1989 interna-
tional conference on Supercomputing, June 1989, pp. 322-330
MIN, S.L., and BAER, J.-L.: ‘Design and analysis of a scalable
cache coherence scheme based on clocks and time stamps’, IEEE
Trans. Parallel Distrib. Syst., 1992, 3, (l), pp. 2544
LOURI, A., and SUNG, H.: ‘A compiler directed cache coher-
ence scheme with fast and parallel explicit invalidation’. Proceed-
ings of the 1992 international conference on Parallel processing,
August 1992, Vol. 1, pp. 2-9
DARNELL, E., and KENNEDY, K.: ‘Cache coherence using
local knowledge’. Proceedings of Supercomputing 1993, 1993, pp.
720-729

1978, C-27, (12), pp. 1112-1118

344 IEE Proc.-Comput. Digit. Tech, Vol 143, No. 5, Sepfember I996

