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Abstract : In current e-business competitive climate, employing supply chain management (SCM)
information systems to fulfill customer orders and quickly response the changing market is obligatory
and crucial. However, the effectiveness of computerized SCM system heavily depends on the
availability of SCM quantitative formulation. Particularly, a simple change within the supply chain can
lead to the complicated dynamics along the whole supply channels. Consequently, to effectively and
efficiently arranging the most feasible and promising supply chain schedule requires not only arduous
managerial efforts, but also a practical SCM quantitative model. Unfortunately, current mathematical
models embedded in prevailing SCM systems either use fixed values or linear functions to replace
real-world cost functions or employ heuristics or special purpose algorithms to treat nonlinear cost
functions. The former approach is out of the reality, while the latter is hard to be coded in general
commercial SCM systems and can not guarantee the computed result is global optimal solution.
Accordingly, this work attempts to present some easy-to-handle formulations of treating various types
of cost functions such as nonlinear step cost functions, concave cost functions, and S-curve cost
functions, and to make current computer-based SCM quantitative models more practical to enhance the
execution of more elaborate coordination activities. A small example is employed to demonstrate the

practicality and applicability of the proposed methods.

Keywords : Cost Functions, Logistics Costs, Supply Chain Management, Quantitative Model

1. Introduction

What is supply chain management (SCM)? Supply Chain Management is to effectively
integrate supply chain processes across companies into a cohesive and high-performing business model
which can quick response and the fulfillment of orders. Undoubtedly, without a computerized SCM
system the coordination and collaboration among all partners within a supply chain cannot be executed.
Since the effectiveness of a computerized SCM system strongly depends on the availability and
effectiveness of mathematical formulation, a useful quantitative SCM model can help the management
optimize logistics schedule and achieve reliable collaboration among partners. According to the
definition by the Council of Supply Chain Management Professionals (CSCMP) (2006), an effective
coordination and collaboration among supply chain partners is vital for a successful SCM.

Unfortunately, current SCM quantitative models frequently either use fixed values or linear

functions to represent real-world cost functions (Anderson et al., 2004) or employ heuristics or special
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purpose algorithms to treat nonlinear cost functions (Shapiro, 2005). The former approach is out of
the real-life situation, while the latter is hard to be solved in prevailing commercial SCM systems and
can not guarantee the computed result is global optimal solution. Since lack of available and effective
mathematical formulation to linearize nonlinear terms will weaken the advantages and effectiveness of
SCM system, this work aims to propose some methods to make current computer-based quantitative
models more practical and solvable by prevailing linear programming (LP) packages. By doing so,
the coordination and collaboration within supply chain partners can be carried out over the time subject
to the optimal solution and sensitive analysis generated by a SCM system.

The rest of this work is organized below. Section 2 presents a generalized SCM quantitative
model. Section 3 introduces logistics cost functions from the simple format to complicated format.
Section 4 proposes theorems and methods of treating separable linear objective functions with
continuous decision variables step by step. Section 5 describes the solution algorithm and numerical
example to illustrate the practicality and applicability of the proposed methods. Section 6

summarizes the contribution and features of the proposed methods.

2. A Generalized SCM Quantitative Model

Although SCM has appeared as a hot management issue in last decade, its development can be
traced back to the early twentieth century. As the turn of the twentieth century, economists (Shaw,
1915) considered distribution as the bridge between customer requirements and product availability, by
which commodities move through the supply channel and determine the exchange process. If a
mathematical model covering procurement, production, inventory, and distribution is considered the
framework of quantitative SCM, which is the foundation of global logistics, then much of the
pioneering work can be found in the late 1950°s (Forrester, 1958; Hanssman, 1959). Although
Hanssmann (1959) only considered single company logistics, his work was perhaps the earliest attempt
to solving material procurement, goods production, inventory, and distribution by a quantitative model.
In 1960s, a multi-echelon distribution network was proposed (Clark and Scarf, 1960; Drucker, 1969)
which is perhaps an origin of an arborescent supply chain network, although it is not a complete supply
chain network. The concept of global logistic management introduced by Ishii et al. (1988), Cohen et
al. (1989), and Stevens (1989) in the late 1980’s, culminated in the emergence of the modern SCM
development. Since then, driven by global competitive pressures and information technology

advances, numerous SCM quantitative models have been developed to coordinate and schedule the
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entire supply chain activities. Plentiful references exist in the books (Handfield and Nichols, 2005;
Ross, 2005; Tayur et al., 2006) and the papers (Vidal and Goetschalckx, 2001; Sodhi, 2005;
Holmstrém et al., 2006; Tan et al., 2006).

In industry, a real-life SCM quantitative model should consider the entire supply chain activities
including material procurement, production, distribution, inventory, etc. in optimizing (1) The total and
separable purchased amounts for each raw item from each raw material’s original supplier to each
upstream supplier; (2) The total and individual shipped amounts for each raw item from each raw
material’s original supplier to each upstream supplier; (3) The total and separable procurement
amounts for each intermediate product (or part) from each upstream supplier to each middle-stream
manufacturer; (4) The total and individual transported amounts for each intermediate product (or part)
from each upstream supplier to each middle-stream manufacturer; (5) The total and separable
manufactured amounts for each product in each manufacturer as well as each product required
inventory in each manufacturer; (6) The total and separable outsourcing amounts for each product in
each manufacturer; and (7) The total and individual delivered amounts for each product from each
manufacturer to each down stream warehouse and from there to each end market (or customer).

Accordingly, a practical and generalized SCM quantitative model is widely formulated as
follows:

Model 1

Min Z RM _ PﬁCOSttbsiXRM_P_QTYtbSﬁ‘ z RM _ TiCost‘bsixRM_T_QTYtbsﬁ z RM _ 17Costtsi><RM_|_QTYtsi+
t,b,s,i t,b,s,i t,8,1
S PSFG _ M_CostyxPSFG_M_QTY+ 3 PSFG _ 1 Costyx PSFG_I_QTY,+ > PSFG _P_Costigx
t,8,] .5, t,s,f,]
PSFG_P_QTY s+ Z PSFG _ T_CostzxPSFG_T_QTY s+ Z PSFG 1 CostgxPSFG_I_QTY’+
t,s,f,] t,f,]
Z G _M_CostipxG_M_QT Y+ Z G _O_CostypxG_O_QTYy+ Z G I CostipxG_1_QTYet

t,f .k t,f,k t,fk
>G_ T_CostixG_T_QTVyguct 3G _1_CostuyxG_IQTY "yt 3G _ T_CostiyaxG_T_QTY e
t.f,w,k t,w,k t,w,c,k

s.t.  RM_I_QTYi1q+ Z RM _ T_QTYsi > PSFG_M_QTY x > BOM _QTYy,
b i
RM_I_QTYi= RM_I_QTYyq 6 + Z RM _ T_QTYyi - PSFG_M_QTY, x > BOM _QTY s,
b I
PSFG_I_QTY14 +PSFG_M_QTYy; > Z PSFG _T_QTY,
f

PSFG_I_QTYj= PSFG_I_QTY¢15 +PSFG_M_QTY,; - Z PSFG _T_QTYs,
f

PSFG_I_QTY w4+ Z PSFG _T_QTYy= G_M_QT Yy x Z BOM _QTYj -k
S k;
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PSFG_I_QTY = PSFG_I_QTY .y 5+ Z PSFG _ T_QTYs-G_M_QTY g x > BOM _QTY -,
s

ky

G_I_QTYr 14+ G_M_QTY e+ G_O_QT Yy z G T_QTYwk

w

G_I_QTY=G_1_QTYp1 G_M_QTYi+ G_O_QTV5- DG _ T_QTVipui
w
G_IQTY Lyt ; G_ T QWw& )G _ T QT wu
C
G_IQTY = G_IQTY it 2.G _ T_QTVqw- 2.G _ T_QTY ek
f c

> G_TQTVwa=G R QTY,y, Y PSFG_M_QTY<M Capy, > .G_ M_QTYy<M Capy
w j k

> RM _I_QTYi<RM_I Limit,, Y PSFG _1_QTY<PSFG I Limit,,
i i

D PSFG _I_QTY’<PSFG_I Limity, » .G _ 1 QTYy<G_I Limity, » G _ 1_QTY’y<G_I Limit,,
j

k k
where each capital letter denotes each variable’s set, lower case letters denote realization of particular
variables, italic letters denote decision variables, and notations and parameters are defined as follows :
T : the set of time, t : the t’th time period;

I : the set of raw materials (RMS), i : the i’th RM;
J : the set of parts or semi-finished goods (PSFGS), j : the j’th PSFG;
K : the set of finished goods (FGS), k : the k’th FG;
B : the set of beginning suppliers (BSS), b : the b’th BS;
S : the set of intermediate suppliers (I1Ss), s : the s’th IS;
F : the set of factories, f : the f’th factory;
W : the set of warehouses, w : the w’th warehouse; and
C : the set of end customers, ¢ : the ¢’th end customer.
In a certain time period t, the following notations are used.
RM_P_Costy; : the cost of the s’th IS to purchase the i’th RM from the b’th BS,
RM T Costy, : the transportation cost of the ith RM from the b’th BS to the s’th IS,
RM I Costy; : the inventory cost of the i’th RM in the s’th IS,
PSFG_M_Costy; : the manufacturing cost of the j’th PSFG in the s’th IS,
PSFG_I_Costy; : the inventory cost of the j’th PSFG in the s’th IS,
PSFG_P_Cost, : the cost of the f’th factory to buy the j’th PSFG from the s’th IS,
PSFG_T_Costyy; : the transportation cost of the j’th part from the s’th IS to the f’th factory,
PSFG_I_Costy; : the inventory cost of the j’th PSFG in the f’th factory,
G_M_Costyy : the manufacturing cost of the k’th FG in the f’th factory,
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G_O_Costy : the outsourcing cost of the k’th FG for the f’th factory,

G _I Costyy : the inventory cost of the k’th FG in the ’th factory,

G T Costysyy : the transportation cost of the k’th FG from the f’th factory to the w’th warehouse,
G_I Costyy : the inventory cost of the k’th goods in the w’th warehouse,

G_T Costyyek : the transportation cost of the k’th FG from the w’th warehouse to the c’th end customer,
G R _QTYy : the requirement of the k’ th FG from the ¢’th end customer’s order,

RM_P_QTYys : the purchased quantity (QTY) of RM i between the b’th BS and the s’th IS,
RM_T_QTVYyys : the transported QTY of RM i from the b’th BS to the s’th IS,

RM_I_ QTYy; : the inventory QTY of the i’th RM in the s’th IS,

PSFG_M_QTY; : the manufacturing QTY of the j’th PSFG in the s’th IS,

PSFG_I_QTY; : the stock QTY of the j’th PSFG in the s’th IS,

PSFG_P_QTY s : the sold QTY of the j’th PSFG from the s’th IS to the f’th factory,
PSFG_T_QTYyy : the shipped QTY of the j’th PSFG from the s’th IS to the f’th factory,
PSFG_I_QTY’y; : the inventory QTY of the j’th PSFG in the f’th factory,

G_M_QTYyy : the produced QTY of the k’th FG in the {’th factory,

G_O_QTY : the outsourcing QTY of the k’th FG for the f’th factory,

G_I_QTY : the inventory QTY of the k’th FG in the f’th factory,

G_T_ QTYywk : the transported QTY of the k’th FG from the f’th factory to the w’th warehouse,
G_I_QTY’y : the stock QTY of the k’th FG in the w’th warchouse,

G_T_QTY ek : the delivered QTY of the k’th FG from the w’th warehouse to the ¢’th end customer,
M_Capy : the production capacity of the s’th IS for all PSFG,

M_ Capy; : the production capacity of the f’th factory for all FG,

RM I Limit : the stock limit of the s’th IS for all RM,

PSFG_ I Limit, : the stock limit of the s’th IS for all PSFG,

PSFG_I Limit : the stock limit of the f’th factory for all PSFG

G_I Limity : the stock limit of the f’th factory for all FG,

G I Limit,, : the stock limit of the w’th warehouse for all FG,

BOM_QTY/; : the bill of material (BOM) for producing each unit of the j’th PSFG from the set of
RMs, and

BOM_QTY . : the bill of material (BOM) for producing each unit of the k’th FG from the set of
PSFGs.
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3. Logistics Cost Functions

In real-world logistics operations, a logistics cost is not a constant but a function (Oum and
Waters, 1996), and a logistics cost function in SCM generally comprises fixed costs, variable costs, and
unpredicted costs (Slats et al., 1995; Shapiro, 2005). Accordingly, a SCM model can be simply
formulated below:

Model 2

Minimize Total Cost = Fixed Cost + Variable Cost + Unpredicted Cost
Subject to the constraints.

Essentially, fixed costs are stable and do not vary with amount ordered, transported, or produced;
for example, the weekly salary of employees, the monthly rent on factories/offices, and the periodic
maintenance expenses for equipment. Variable costs are not fixed and depend on the number of
ordered, transported, or produced units. Unpredicted costs are costs that arise unexpectedly, for
example, costs associated with the late delivery of products, the breakdown of machines in production
lines or the loss of electrical power at a plant. Consequently, fixed costs are fixed values, while
unpredicted costs can be estimated by probabilistic distribution. Building the above discussion, Model
2 can be reformulated as follows:

Model 3

N
Minimize Total Cost = Fixed Cost + Variable Cost + Z P, (Unpredicted _Cost,)

n=1
Subject to the constraints,
where P, is the probability of the n’th scenario’s occurrence, Unpredicted Cost, is the unexpected cost

N
occurred at the n’th scenario,n=1, 2, .., N, and z P =1

n=l1

Since this study aims to illustrate how various variable cost functions can be linearized by the
presented methods, fixed and unpredicted costs are not included in Model 1. The main reason is that
adding fixed and unpredicted costs into this work only increase the reading complexity without giving
extra contribution. Therefore, to avoid complicating this work without changing the practicability
and applicability of the proposed methods, this work highlights on variable costs.

In reality, vendors frequently offer quantity discounts to encourage buyers to order more;
producers typically like to reduce the average production costs by mass production, and wholesalers
attempt to minimize the average distribution cost by delivering huge quantities at once. However,

few quantitative SCM models highlight on dealing with a wide range of logistic cost functions (Oum
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and Waters, 1996; Yu, 2006), and the unit cost used in existing quantitative SCM models is frequently
a constant or a linear function as shown in Figs. la and b, respectively. Figures la and b separately
reveal that the average cost is fixed at a specific value or has a gradient that is independent of the
quantity. This assumption is impractical and out of the real-life situation. Consequently, this section

introduces some means to treat widespread occurred cost functions encountered by logistics managers.

3.1 Step cost functions

One of the most commonly used discount cost functions is a step cost function as shown in Fig. 2,
in which Q,, Q,, and Q; are the incentive quantity levels and cy, c,, and c; are the discount costs (or

prices). The step cost function first defined by Love (1979) is widely expressed as

¢, forQ, <Q<Q,
Cost(Q) = <c, forQ, <Q<Q, where Cost(Q) is shown in Fig. 2.

¢, forQ, <Q=<Q,

Fixed average cost Linear average cost
A
Cp Ci
» Quantity » Quantity
Fig. 1la A constant cost Fig. 1b Alinear cost function

Cost(Q) (Unit Cost/Price)

A

¢;=0.025 F——

¢,=0.024 '—:
¢:=0.023 e
i i i R Quantity
Q=0 Q=1000 Q,=2000 Q3000  Q

Fig. 2 Astep cost function



LAY A e R (R 269

3.2 Single change point cost functions

A quantity discount schedule with a single price breakpoint is widely applied to calculate average
procurement, production, inventory and transportation costs, etc. Figure 3a reveals that the starting
average cost is 1.8 and declines when the required quantity increases, which implies that the slope
before the quantity reaches 150 is different from that after the quantity surpasses 150. Figure 3a

display a convex cost function, while figure 3b shows a concave cost function.

3.3 Multiple change point cost functions

Another much broadly employed cost function is a discount quantity schedule with a multiple
change-point function. The function is similar to the one with a single change point function except

in the number of change points, as depicted in Figs. 4a, b, and c.

Cost(Q) (Unit Cost/Price)
A
Cost(Q)=c;=1.8 (~.5=-0.000667
Cost(Qy)=c,=1.7
Cost(Q3)=c;=1.6

1
1
' R Quantity

»

Q=0 Q=150 Q; =400 Q

Fig. 3a A convex single change-point cost function

Cost(Q) (Unit Cost/Price)
A

61=2.0 5,=-0.001
0p=1.8f--=---=---moT= ~5=-0.002
c=1.7f-====--=-------- % —————— .
i i - Quantity
Q=0 Q=200 Q=250  Q

Fig. 3b A non-convex single change cost function
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Cost(Q) (Unit Cost/Price)

A
¢1=0.55 _5:=-0.002
c,=0.45]-----= »=-0.001
c3=0.35}------ Fo----oT —5:=-0.00067
c~0.25f------ % ———————— e . $4=-0.0005
cs=0.15}F------ S .
: : : —>  Quantity
Q=0 Q,=50 Q=150 Q=300 Qs=500 Q
Fig. 4a A convex type of multiple change point function
Cost(Q) (Uni‘t Cost/Price)
A
Cost(Q)=¢;=0.25 $;=-0.000083
Cost(Q)=c,=0.24[ "~ """7~ 0.000125
Cost(Q;)=c5=0.23 -------+ i :S\:—O .0002
Cost(Q4)=c4=0.22-------1 E ---------- i ----- % -0.00033
Cost(Qs)=cs=0.21f------- Nt mo--- i— -
i i L . Quantity
Q=0 Q=120 Q;=200 Q,=250 Qs=280 g Q
Fig. 4b A concave type of multiple change point function
Cost(Q) (Unit‘(Eost/Price)
Cost(Q)=c;=0.26 [\s;=-0.00025
Cost(Qy)=c,=0.25 xk—-o.ooom
Cost(Q3)=c;=0.24[ "~ ’: T $3=-0.0001
Cost(Qa)=cq=023[ 71777V N s:=-0.0002
Cost(Qs)=cs=0.22[ "~ :i T :E """"" i """ N=-0.00033
Cost(Qg)=cs=0.21 ! ! ' Lo
: : : - » Quantity

Q=

0 Q,=40 Q5=100 Q4=200 Qs=250 Q=280 Q

Fig. 4c A convex-concave type of multiple change point function
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4. Proposed Theorems and Methods

To treat a step cost, as depicted in Fig. 2, the following theorem is introduced.

Theorem 1 A program expressed as

{Minimize Q(Clu1+CQUQ+C3U3) subject to QﬁM(uk-l)SQSQkHJrM(l-uk) for k:1,2,3, u1+u2+u3=1,
where uy, u,, uy are 0-1 variables used to indicate which cost level will be adopted based on the

required quantity} (1
can be linearized as

{Minimize c,z;+c,Z,+¢37;3
subject to QM (u-1)<Q<LQy+M(1-uy) for k=1,2,3,
7z>Q+M(u-1), z¢ > 0, for k=1,2,3,

urtutus=1, ug, U, us € 10,1},
where M is a big constant and can be set as

M = Max{Q;,Q,,Q3,Q4} } 2

Proof To treat the product terms u;Q, u,Q, and u3Q in Program (1), the program (2) first uses z;, z,,
and z; to replace them respectively. Consider the following Lemma.

Lemma 1

PP1: Minimize u,Q subject to uy is an 0-1 variable, Q > 0.

is equivalent to

PP2: Minimize z = uQ

subject to >Q+M(u,-1), z, > 0, 3)
where M is a big value and can be set as the upper bound of Q, Q > 0,

and u, € {0-1}.

Lemma 1 can be verified as follows:
(1) if at optimal solution uy = 1, then equations of (3) result in z, = Q;
(i1) if at optimal solution uy = 0, then equations of (3) result in z, = 0.
Based on the Lemma 1, the program (2) can then be examined as follows:

(i) In case of the cost level ¢, is selected
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At the optimal solution, u;+u,+uz=1 will force u;=1, u,= us= 0, which results in Q; < Q < Q,.
(i1) In case of the cost level c, is selected
At the optimal solution, u;+u,+uz=1 will force u,=1, u;=us= 0, which results in Q, < Q £ Q;.
(iii) In case of the cost level c; is selected
At the optimal solution, u;+u,+uz=1 will force us=1, u;=u,= 0, which results in Q; < Q < Q.
The theorem is then verified.

Take Fig. 2 as an instance, the model of optimizing this step cost function is formulated as

Minimize 0.025z,+0.0242,+0.023z;
subject to QM (uy-1)<Q<LQys+M(1-uy) fork =1, 2, 3,

7 >Q+M(u-1), z > 0 for k =1, 2, 3, u+u,+us=1, uy, up, u3 € {0,1},

where Q;=0, Q,=1000, Q;=2000, Q,=3000, and M = Max{Q;,Q,Q3,Q4} = 3000.

After inserting the constraint Q > 1500 for the illustrative purpose and then executing this
program in the LINGO or Excel, the obtained solution is (uy=1, u;= u3= z; = z3 =0, z, = Q = 1500, the
objective value is 36, and the average cost Cost(Q) is 0.024). Building on Theorem 1 and the above
demonstration, Method 1 capable of representing a general step cost function is presented below:
Method1 A SCM model of optimizing a step cost function Cost(Q), depicted in Fig. 5, can be

formulated as follows:

Minimize Cost(Q) = HZE CLZ,
k=1
Cost(Q) (Unit Cost/Price)
A
Cq —:
C E—:
Cnl_._._._._i ........ i __________ 15_ .......... T‘i—:
i i i E i R Quantity
Q Q@ Qs o Qu Q@  Q

Fig. 5 Ageneralized step function
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n-1
subject to Zuk =1,u € {0,1},
k=1

Qi rtM(u-1)<QLQy tM(1-uy) for k =1, 2, .., n-1,
7>Q+M(u-1), z, > 0 fork =1, 2, .., n-1,

where M is a big constant and set as M = Max{Q1,Qy, ....,Qu}, and 7 stands for u,Q.

To treating single point change functions of Figs. 3a and b, the following lemmas of 2 - 4 are
introduced. In following Lemmas 2-4, Q is ordered quantity and Q; and Q,are the incentive quantity
levels.

Lemma2 Based on Proposition 1 in the literature (Li and Yu, 1999, 2000), any separable linear
functions Cost(Q), shown in Figs. 3a and 3b where s, (k = 1, 2) are the slopes of line segments

between Qi and Qy.1, can be represented by

Cost(Q) = Cost(Qy)+ 51(Q-Q)+((52-51)72))(|1Q-Qa[+Q-Q2) “4)

where Q> 0, Q, > Q.

Take Figs. 3a and b as illustration, by using Equation (4) we have

Cost(Q) = 1.8-0.000667Q+ (0.000267+2) (|Q-150/+Q-150) (in Fig. 3a) )

Cost(Q) = 2.0 — 0.001Q+(-0.001+2) (|Q-200[+Q-200) (in Fig. 3b) (©)

where 0.000267 and -0.001 were calculated by the formula of (s;-s;) as shown in Equation (4). When
s> sy, the break point is convex point as depicted in Fig. 3(a). Conversely, if s,< s;, the break point is
concave point as depicted in Fig. 3(b).
To linearize absolute terms with the positive coefficient in Equation (5), Lemma 3 is introduced.
Lemma 3
PP3: Minimize C = (s+2) (|Q-g[+Q-g) subject to Q, g, s > 0,
is equivalent to
PP4. Minimize C’ = s(Q-g+d) subjectto Q-g+d=0,Q, g, d, s >0.
This lemma can be confirmed as follows:
(1) if Q—g=0 then at the optimal solution d = 0, which results in C’ = s(Q-g) = C;
(i1) if Q — g <0 then at the optimal solution d = g — Q, which results in C’=0 = C.
Take Fig. 3a as a demonstration. The model of optimizing Equation (5) is programmed as:
Minimize Cost(Q)=1.8-0.000667Q+0.000267(Q-150+d)=-0.0004Q-+0.000267d+1.75995
subjectto Q — 150 +d >0,Q,d > 0.
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To linearize absolute terms with the negative coefficient in Equation (6), Lemma 4 is introduced.
Lemma4
PP5:  Minimize C=(s+2)(|Q-g|+Q-g) subject to Q, g> 0, s <0,
is equivalent to
PP6: Minimize C’ = s(Q-w+gu-g) subject to Q+6(u—1)£ w,Q,w>0,s<0,ue {0,1}, and 6 is
the upper bound of Q (Take Fig. 4b as instance,a = 250).
Lemma 4 can be examined as follows:
(1) if Q—g =20 then at the optimal solution u=0 and w=0, which results in C’=s(Q-g)= C;
(i) if Q — g <0 then at the optimal solution u=1 and w=Q, which results in C’=0 =C.

Based on Lemma 4, the model of optimizing Equation (6) can be programmed as

Minimize Cost(Q) = 2-0.001Q-0.001(Q-w+200u-200) =-0.002Q+0.001w-0.2u+2.2
subject to Q + 250 (u-1) <w, Q,w>0,u € {0,1}, and Q <250.

Building on Lemmas 2 - 4, Remark 1 and Methods 2 and 3 are presented as the following:
Remark 1 A single change cost function Cost(Q) where s, > s; as displayed in Fig. 3a is a convex
function, while Cost(Q) as displayed in Fig. 3b is a concave function where s, < s;.

Method 2 A SCM model of optimizing a convex type of single change cost function, depicted in Fig.

3a, can be formulated as follows:

Minimize Cost(Q)
subjectto  Cost(Q) = Cost(Qy)+ $1(Q-Q1)+(s2-51)(Q-Qx+d2), Q-Q;+d 20, and Q > 0,

where s, > 51, Q; > Q..
Method 3 A SCM model of optimizing a concave type of single change cost function, depicted in Fig.
3b, can be formulated as follows:

Minimize Cost(Q)

subjectto  Cost(Q) = Cost(Q;)+ s1(Q-Q1)+(s2-51)(Q-w+uQ,-Q,),
w2Q+ Q (u-1), Q, w20, u €{0-1},0< Q< Q,

where s, <s;, and 6 is the upper bound of Q.
To treating multiple change point functions, Remark 2, Method 4, and Theorem 2 are presented as
follows.

Remark 2 Based on Proposition 1 in Li and Yu (1999, 2000), a separable linear function Cost(Q), as
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depicted in Figs. 4a, 4b, or 4c where c,= Cost(Qy), Qx are change points, and s are slopes of line

segments between Qy and Qy.;, can be expressed as

n-1 _
Cost(Q) = Cost(Qu)* 5:(Q-Q))+ Z% (10-Qu+Q-Qy) ™)
k=2

where Q2>0,0<Q;<Qy<...<Q,,and s4; > s fork=1,2, ..., n-1.

To treat Equation (7) with all positive coefficients, Method 4 is introduced.
Method 4 Based on Proposition 4 in Li and Yu (2000), a SCM model of optimizing Equation (7) with
all positive coefficients can be programmed as follows:

Minimize Cost(Q)

n-1 k-1
Subject to Cost(Q) = Cost(Q))+ s:1(Q-Q)+ Y (8, —s@Q-Qi+ Y d;))
k=2

j=1
Q + d] + d2 + ...+ dn-l > Qn-h Qk+1 - Qkde, and de 0 fork :1, 2, ey n-1.

where Q >0, 0<Q;<Q,<...<Q,, and s > s, for all k.

Consider the following illustration.

Example 1

Minimize Cost(Q)
subject to Q <500,

where Cost(Q) is depicted in Fig. 4a.
By employing Method 4, Example 1 is linearized as follows:

Minimize Cost(Q)=0.55-0.002Q+0.001(Q-50+d,)+0.00033(Q-150+d,+d,)+
0.00017(Q-300+d,+dy+d3) = -0.0005Q +0.0015d,+0.0005d,+0.00017d5+0.39999

subject to Q+d;+d,+d; > 300, 0<d;<150, 0<d,<100, 0<d;<50, Q > 0 and Q < 500.

After executing this program in the LINGO, the obtained solution is (d, = d, = d; = 0, Q = 500,
and the average cost Cost(Q) = 0.15). As noted, one merit of Method 4 is that it contains only one
inequality constraint and all the other constraints are bounded constraints, which could speed the
computational efficiency. Although Li and Yu’s methods (1999, 2000) is quite promising to linearize
a convex function, their methods either has to use k 0-1 variables to linearize a concave function with k
line segment (Li and Yu, 1999) or cannot directly treat a concave function (Li and Yu, 2000). As a
result, to treat Equation (7) with all negative coefficients, Theorem 2 is introduced to lessen the

computational burden on treating the concave cost function.
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Theorem 2 A cost(Q) shown in Fig. 6 can be expressed as
Cost(Qu)+s(Q-Qu)-M(Q_by; + D (=2b,, +1)u;) < Cost(Q)
j=1 j=1

Cost(Q) < Cost(Qu+si(Q-QuM (Y by + D" (=2by; +1)u;) (®)

= J=l

QeM(Y by + Y (<2, +1u) SQEQutM(Y by + Y (-2b, + hu))

J=l i=l j=1 j=1

where Qy are change points, k=1, 2, ..., m-1, sy are slopes of line segments between Qy and Qy., r is
the smallest value for 2" = m-1, b =1, 2, ...,r) are assigned parameters which are derived by

r . .
Z 27'b,, = k — 1, Uj are zero-one variables, and M is a large constant.

=

Proof

Ifuj=byforj=1,2,...,rand 1 <p<m-1 (which means the p’th cost level will be adopted based on

the required quantity Q), then) b, +Z(—2bpj +1)u;= 0 and zbkj + Z(—2bkj +1u; >0 for all k
j=1

= =1 =l

except for k=p (i.e., k=1, 2, ..., p-1, p*1, ..., m-1). Consequently, all equations in (8) can be replaced

as follows:
Cost(Q,)+s,(Q-Q,) < Cost(Q) )
Cost(Q) < Cost(Q,)+s,(Q-Q,) (10)
Cost(Q) (Unit Cost/Price)
A
Cost(Q) sl
Cost(Qy) === .
COSt(Q3) _____________ i ..... 1.
COSt(Qk) _____________ E ...... .i _________________________ ; Sk
COSt(Qk+1) _____________ i ...... .i _________________________ E\_I
: : i | > Quantity
Qi Q Q Qe Qun Q

Fig. 6 A general concave type of multiple change point function
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Q=Q=Qy (11)
Cost(Q)+si(Q-Qi)-M < Cost(Q) for all k except for k =p (12)
Cost(Q) < Cost(Q)+si(Q-Q)+M for all k except for k=p (13)
Q<L Q= Qyy for all k except for k=p (14)

where M is a large constant.
Since only the p’th cost level is adopted based on the required quantity Q, constraints (12)-(14)

are inactive. Hence, (9)-(11) force Cost(Q)= Cost(Q,)+s,(Q-Q,) and Q,<Q<=<Q,:;. In doing so,
Theorem 2 is then proved.

Consider the following illustration.

Example 2

Minimize Cost(Q)
subject to Q <260,

where Cost(Q) is depicted in Fig. 4b.

Figure 4b displays that the break points of Cost(Q) are 0, 120, 200, 250, and 280. Hence,

referring to Theorem 2, T =2 is the smallest value for 2" > m-1 = 4, and each by is derived by

Z“2Hbkj =k —1 as listed in Table 1.

J=l

By employing Theorem 2, Example 2 is linearized as follows:

Minimize Cost(Q)
subject to Q <260,

0.25-0.000083Q-M(u;+u,) < Cost(Q) < 0.25-0.000083Q+M(u;+u,),
0.24-0.000125(Q-120)-M(1-u;+u,) < Cost(Q) < 0.24-0.000125(Q-120)+M(1-u+u,),
0.23-0.0002(Q-200)-M(1+u;-u5) < Cost(Q) < 0.23-0.0002(Q-200)+M(1+u;-uy),
0.22-0.00033(Q-250)-M(2-u;-,) < Cost(Q) < 0.22-0.00033(Q-250)+M(2-u;-u,),

Table 1 The derived values of bkj

the k’th line segment j=1 j=2
k=1 0 0
k=2 1 0
k=3 0 1
k=4 1 1
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-M(u;+u,) £ Q < 120+M(u;+uy),
120-M(1-u;+uy) £ Q < 200+M(1-u;+uy),
200- M(1+u;-uy) £ Q <250+ M(1+u;-uy),
250-M(2-u;-u,) £ Q < 280+M(2-u;-uy),

where u; and u, are 0-1 variables, and M is a big number.

After running this program in LINGO, the obtained solution is (u; = u; = 1, Q = 260, and the
average cost Cost(Q) = 0.2167). The comparison between Li and Yu’s linearization techniques and the
proposed method is summarized in Table 2, which displays that to linearize a multiple change point
concave function the proposed method needs much less number of 0-1 variables than Li and Yu’s
method (1999) does.

As discussed in Introduction Section, the heuristic approach is also widely used to treat SCM
problems with nonlinear cost functions (Shapiro, 2005). Actually, the heuristic algorithm and the
mathematical model (i.e., the proposed method) have specific pros and cons, and serve different
purposes. In reality, the heuristic is to generate a feasible solution to a problem at every iteration step,
retain the best feasible solution between iteration steps, and the solution hold at the termination of the
algorithm is deemed as the best solution. Therefore, the heuristic algorithm is appropriate to solve
NP-complete (or called NP-hard) problem because its purpose is to find a best feasible solution when
finishing the pre-set iteration procedures. In contrast, the proposed method is a mathematical model
used to find a global optimal solution for a deterministic problem. Nevertheless, the heuristic
algorithm is unsuitable to optimize a SCM problem with variable cost functions shown in Figs. 2-4,
while the presented methods can linearize various types of cost functions as demonstrated in the above.
Moreover, building on Method 4 and Theorem 2, a SCM model with a convex-concave type cost
function as depicted in Fig 4c can also be transformed into a linear mixed integer programming
program that is solvable to obtain a global optimal solution by many commercialized LP packages and

SCM systems.

Table 2 Comparison between Li and Yu’s methods and the proposed method

Li and Yu’s method Li and Yu’s method Proposed method

(1999) (2000)
Number of extra 0-1 m Cannot directly treat log, (M)
variables this type of function
Number of extra m 1

continuous variables
m: number of separable line segments
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5. Solution Algorithm and Numerical Example

Notably, when unit costs are not constants, the Cost(Q) x Q (such as RM P Costys %
RM_P_QTYysi,, RM_ T Costysix RM_T_QTVYysi, etc.) in the objective function of Model 1 will be a
product term. Accordingly, Remark 3 is introduced as follows:

Remark 3 After the necessary variables transformation (Charnes and Cooper, 1962), the objective
function with product terms in the proposed SCM quantitative model can be straightly solved by a
linear programming.

Consider the following illustration.

Example 3

Minimize Cost(Q) x Q (15)
subject to Cost(Q) =-0.002Q+0.001w-0.2u+2.2,

Q+250 (u-1)<w, 0£Q <250, w >0, uis a zero-one variable,

where Cost(Q) is depicted in Fig. 3b.

The objective function of Cost(Q) x Q involves three product terms of QxQ, Qxw, and Qxu.
Based on Remark 2 and using the variable transformation, QxQ, Qxw, and Qxu can be replaced by Q’,
w’, and u’, respectively. In doing so, QxQ + 250 (u-1) xQ < wxQ and 0< QxQ < 250Q are incurred. As

a result, Program (15) can be reformulated as follows:

Minimize Cost(Q)’ (16)
subject to Cost(Q)’ =-0.002Q* +0.001w’ - 0.2u’+ 2.2Q ,
Q+250(u-1)<w, 0< Q £250, w > 0, u is a zero-one variable,

Q’+250u’-250Q < w’, 0 < Q’ < 250Q,

where Cost(Q)’, Q’, w’, and u’ denote Cost(Q) x Q, QxQ, Qxw, and Qxu, respectively.
Noteworthy, since u is a zero-one variable in Programs (15) and (16), the product term Qxu
cannot be simply represented by u’ without other constraints. Accordingly, based on Lemma 1,

Program (16) is then re-programmed as follows:

Minimize Cost(Q)’ (17)
subject to Cost(Q)’ =-0.002Q’ +0.001w’ - 0.2u’+ 2.2Q,
Q+250(u-1)<w, 0< Q <250, w > 0, u is a zero-one variable,

Q+250u’-250Q < w’, 0 < Q* < 250Q, u’ = Q + M (u-1), u’ > 0,
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where M can be specified as 250 (the upper bound of Q).

The constraint Q > 165 is added into Example 3 for the illustration. After executing the
program (17) in LINGO or Excel, the computed solution is (u = w = 0, Q = 165, the average cost of
Cost(Q) = 1.87, and the total cost of Cost(Q)xQ = 280.5) which is the optimal solution as obtained in

Program (15). Consider another demonstration.

Example 4

Minimize Cost(Q) x Q (18)
subject to Cost(Q) =-0.0005Q +0.0015d, +0.0005d,+0.00017d5+0.39999,
Q+d;+d,+d; > 300, 0=d;<150, 0=d,<100, 0<d;<50, 0< Q < 500,

where Cost(Q) is depicted in Fig. 4a.

Suppose the average cost of Cost(Q) is a multiple change cost function as depicted in Fig. 4a.
By using the variable transformation, QxQ, Qxd;, Qxd,, and Qxd; can be replaced by Q’, d’|, d’,, and
d’;, respectively. In doing so, Q’+d’;+d’,+d’; > 300Q, 0 < d’;<150Q, 0 < d’,<100Q, 0 £ d’;<50Q, and
0< Q’<500Q are incurred. Due to no 0-1 variable existing in Model (16), therefore, Example 4 can
be straightly reformulated as

Minimize Cost(Q)’ (19)
subject to Cost(Q)’=-0.0005Q’ +0.0015d’, +0.0005d’,+0.00017d’3+0.39999Q,
Q+d,+dy+d; > 300, 0<d;<150, 0<d,<100, 0<d;<50, 0< Q < 500,
Q’+d’+d’,+d’; 2 300Q, 0<d’,£150xQ, 0<d’,<100xQ, 0<d’;<50xQ, 0< Q’ < 500Q.

For the illustrative purpose, the constraint Q > 265 is added into Example 4. After executing the
program (19) in LINGO, the computed solution is (d; = d, = 0, d; = 35, Q = 265, the average cost
Cost(Q) = 0.27344, the total cost Cost(Q) x Q = 39.747345) which is the optimal solution as found in
Program (18).

Based on the above illustration, a solution algorithm is described as follows to solving a general
SCM problem.
Solution Algorithm

Step 1. Use Model 1 to formulate a generalized SCM problem.

Step 2. Use Methods 1 - 4 and Theorem 2 to treat various types of cost functions such as nonlinear
step functions, nonlinear concave functions, and nonlinear S-curve functions.

Step 3. Transform product terms into single variables. Since the rule of variables transformation is

simple and distinct, a computer program is easily coded to handle variables transformation.
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Step 4. Solve the problem by available commercialized packages such as LINGO or EXCEL.
Step 5. Execute sensitive analysis and coordination and negotiation among supply chain partners.
Thereafter, the most feasible and promising supply chain plan is scheduled.

Example 5

In the consumer electronics industry, semi-products j; and j, are composed of (three units i;, one
unit iy, and two units i) and (two units i, and two units i), respectively. The finished product k;
consists of one j; and two j, units. The bill of material (BOM) and the entire supply chain of the
product k; are displayed in Figs. 6 and 7, separately. According to customer orders from (cy, ¢,, C3, C4),
they require the k; goods (300, 355, 320, 340), (360, 370, 350, 280) and (350, 375, 275, 360) at times
ty, t3, and ty, respectively.

According to procurement contracts in this example, the purchasing costs between BSs and ISs
and between ISs and factories involve transportation costs. To simplify this illustration, assume all

raw materials iy, 1, 13, and i4 hold the same unit purchasing and transportation cost. Unit purchasing &

ki
x 1 x 2
Ji 2
x 3 x 1 x 2 x 2 x 2
1 12 13 12 1a

Fig. 7 The bill of material (BOM) of the product k;

F; W,
B, S
F, W,
B, S>
F; W;
Beginning Intermediate
Suppliers Suppliers Factories Warehouses End

Customers

Fig. 8 The entire supply chain of the goods k;
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transportation costs for (b; to sy, by to sy, b to s,, by to s,) are (0.023, 0.02, 0.02, Cost(Q)), (0.024,
0.021, 0.021, Cost(Q)), (0.025, 0.022, 0.022, Cost(Q)), and (0.024, 0.021, 0.021, Cost(Q)) for all raw
materials at the t;, t, t; and t4 time separately, where the Cost(Q) is depicted in Fig. 2. Assume all
semi products have the same purchasing and transportation cost. Unit procurement and transportation
costs for (s; to f}, s; to f5, s; to f3, s, to £}, s, to £, s, to £3) at the ty, t,, t3 and t, time are (0.2, 0.5, 0.1, 0.3,
0.2, 0.4), (0.15, 0.45, 0.15, 0.35, 0.25, 0.45), (0.1, 0.45, 0.2, 0.25, 0.2, 0.35), and (0.15, 0.4, 0.1, 0.3,
0.15, 0.3), respectively.

To simplify the calculation, over the time, unit transportation costs from f| to wy, f; to w,, f] to ws,
f, to wy, f, to w,, f5 to w3, f3 to wy, f3 to w,, and f5 to ws are 0.6, 0.4, 0.3, 0.3, 0.5, 0.4, 0.55, 0.4, and 0.4,
separately. Unit transportation costs from each w;, w,, and w; to each cy, c,, c;, and c4 are 0.04, 0.03,
0.03, 0.04, 0.02, 0.03, 0.04, 0.03, 0.04, 0.03, 0.02, and 0.03 separately, for all time. Average production
costs for ky in (fy, f;, f3) are (1.75, 1.8, G_M_Cost), (1.77, 1.79, G_M_Cost), (1.76, 1.78, G M_Cost),
and (1.75, 1.8, G_M_Cost) at t;, t,, t; and t, time, respectively, where G_ M_Cost is specified in Fig. 3a.
Average outsourcing costs of k; for f}, f;, and f; are all same as specified in Fig. 3b over the entire
period. Unit production costs for (jy, j,) in s; and s, are (1.7, 1.75) and (1.75, 1.65) for all time.

Inventory capacities of (raw materials, semi-products), (semi-products, finished goods) and
(finished goods) for all suppliers, factories, and warehouses separately are (50, 50), (150, 150) and (30)
for all period. The maximal capacity of each factory to produce k is no more than 250 and
manufacturing capacities in s; and s, are not restricted in this example. The total outsourcing amount of
k; cannot exceed 600 units for each factory. Unit inventory costs for (i, i, 13, 1, j1, j2) in §; and s, are
separately (RM_I Cost, 0.3, 0.2, 0.3, 0.4, 0.45) and (RM_I Cost, 0.3, 0.3, 0.2, 0.43, 0.4) for all time,
where RM 1 Cost is specified in Fig. 4c. Unit inventory costs for (j;, j», ki) in fj, f; and f; separately
are (0.2, PSFG I Cost, 0.6) (0.3, PSFG_I Cost, 0.55) and (0.3, PSFG_I Cost, 0.5) for all time where
PSFG _1 Cost is displayed in Fig. 4a. Unit inventory costs for k; in wy, w,, and w3 are respectively 0.3,
0.35, and 0.35 over the time.

After finished Steps 1 — 4 in Solution Algorithm, the computed supply chain schedule by running
LINGO is summarized in Table 3. By employing the presented techniques, logistical managers along
intersecting supply channels can negotiate and mutually cooperate to optimize supply chain schedule
throughout the entire supply chain (since the solution generated by the global optimal solution can
conveniently perform sensitivity analysis). In Step 5, by exploiting the computer’s powerful
capability of computing and exchanging information, the management can adjust and coordinate the

entire supply chain schedule until partners within the supply chain have committed the schedule.
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Table 3 The generated solution for Example 5

283

T=1 I1Ss Factories Warehouses End customers
BSs RM_T_QTY1211=1200
RM_T QTY ,;,=2400
RM_T QTY ;5=800
RM T QTY ,,=1600
1Ss PSFG M_QTY,;;=400  PSFG T QTY,;;,=200,
PSFG M _QTY,;,=800  PSFG_T QTY3,=200,
PSFG M _QTY,;5=267  PSFG T QTY,,,=400,
PSFG M QTY,;4=533  PSFG T QTY,;5,=400,
Factories G_M_QTY;;=G_M_QTY 5= G_T_QTY;3=150
200,G I QTY,;;=50,G I_ G T QTY,3,;=50
QTY 3,=150
T=2 I1Ss Factories Warehouses End customers
BSs RM_T QTY ,;=1485
RM_T QTY51,=2970
RM_T QTY2,3=990
RM T QTY,,=1980
1Ss PSFG M _QTY,;,;=495  PSFG_T QTY;;;=200,
PSFG M_QTY,,=990  PSFG T QTY ,,,=400,
PSFG M _QTY,;5=330  PSFG T QTYa=45,
PSFG_ M _QTY,,=660  PSFG_T QTY,,=90,
PSFG_T_QTY2;3=250,
PSFG T QTY23,=500
Factories G_M_QTY,=G_O_QTYy;= G_T QTYy3=290
200, G_M_QTYq =45, G T QTYyp =245
G_M_QTY,;,=250, G T QTY23,,=580
G_0_QTY;,=40,
G O QTY.; =180
Warehouses T _QTY’211=295,G_T_QTY 211=
G T QTY’22,=355,G
T QTY’23=220,G_T QTY’
2331=100, G T _QTY’,34,=340
T=3 I1Ss Factories Warehouses End customers
BSs RM_T QTYj3,;,=2010
RM_T QTY3,;,=4020
RM_T QTY3,5=1340
RM T QTY;,,,=2680
1Ss PSFG M _QTY3,=670  PSFG_T QTY3,;,=200,
PSFG M_QTY;,=1340 PSFG T QTY 3,,,=400,
PSFG M _QTY;;=477  PSFG_T QTY33=250,
PSFG M _QTY;,=893  PSFG_T QTY33,=500,
PSFG T_QTY;5,=220,
PSFG T QTY3,,=440
Factories G_M_QTY;3,=G_O_QTYz;  G_T QTY;33=480
=200, G_M_QTYs3y =220, G T _QTY3;,=420
G M _QTY33,=250,G_ O QTY G T QTY;33,=460
31=280,G_O_QTY;3=210
Warehouses G_T_QTY’3131=350,G_T_QTY 3141
=70,G_T_QTY’33,,=90,
G T QTY’32=370,G_T QTY’33,,=
270,G T QTY’334,=210
T=4 ISs Factories Warehouses End customers
1Ss PSFG_T_QTY4;,=400,
PSFG_T_QTY 4,,=220,
PSFG_T_QTY42,=440,
PSFG_T_QTY3, =250,
PSFG T QTY 43=500
Factories G_M_QTYq= G_T_QTY43,=480
G_0O_QTY4,=200, G T QTY4=420
G_M_QTY4,;=220, G_T_QTY.33,=460
G_M_QTY4;,=250,
G_O_QTY4,=280,
G 0 QTY=210
Warehouses G_T_QTY’4121=375, G_T_QTY 4131

=45G_T_QTY’43,,=350,

G_T_QTY’451=230,G_T_QTY s341=

360
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6. Concluding Remarks

Although the importance of computer based quantitative models for coordinating supply chain
activities is undoubted, their successful power depends heavily on the effectiveness and availability of
mathematical formulation. Therefore, the establishment of a mathematical model to interpreting
practical supply chain behavior and thus helping enterprises perform complex, laborious, and even
trivial analysis has been a challenging and difficult task for a long time (Holmstrom and Hameri, 1999).
Although Lemmas 2-4 presented by Li and Yu (1999, 2000) can be efficiently employed to tackle a
convex cost function, their methods have some deficiencies in treating a concave function.
Consequently, compared to current SCM quantitative models, the proposed methods have the
following features:

(1) The proposed techniques can straightforward treat widespread logistic cost functions. For
example, Method 1 is presented to treat a step function with Theorem 1 and Lemma 1, Methods 2
and 3 are presented to treat a single change point cost function with Lemmas 2-4, and Method 4 is
proposed to treat a concave type of multiple change point function.

(2) Logistical managers can easily arrange and adjusting an entire SCM schedule via negotiation and
cooperation with supply chain partners, since the yielded solution is optimal and sensitivity
analysis can be performed conveniently.

(3) The presented model can be easily coded in current computer program to aid the management in
handling SCM, because of the simple and distinct methods developed herein.

(4) The formulated SCM model can also be executed using many available commercialized packages,
such as LINGO and Excel.

(5) The proposed model offers available-to-promise and handles the fulfillment of orders with the total
cost minimization, due to synchronization of the capacitated supply, production, outsourcing,

inventory, and distribution along intersecting supply chains.
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