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摘要：在現今企業電子化的競爭環境中，利用供應鏈管理資訊系統處理客戶訂單和快速回應市

場變動，已是必要且不可或缺的，然而，供應鏈管理資訊系統是否能有效地協助上、中、下游

廠商安排最佳化的供應鏈排程，則完全取決於系統中供應鏈管理計量模式的有效性。尤其是當

上、中、下游協同過程中，任何部份些微的儲運或生產活動的改變，均會牽動整個供應鏈的行

程，因此，要能有效與迅速地安排最可行與最佳化的供應鏈排程，經理人除了溝通協調上的努

力外，一個能切實反應真實儲運現況的供應鏈管理計量模式，更扮演著舉足輕重的角色。有鑑

於目前市面上供應鏈管理資訊系統的計量模式，在處理成本函數時，不是將其簡化為固定的數

字或線性的函數、就是以啟發式或針對特定目地的演繹法來處理非線性成本函數，前者不符實

際產業的運作，後者則不易被撰寫於一般供應鏈管理資訊系統中，且所計算出來的解答也只是

局部最佳解。因此，本研究在於提出一些易於處理各色各樣非線性成本函數的方法，以便能讓

供應鏈管理計量模式在目前的資訊系統中，更能發揮其強大與有效地供應鏈排程最佳化能力。

一個小型的實例運算，則被用來展現所提出方法的實用性與廣泛性。 
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Abstract：In current e-business competitive climate, employing supply chain management (SCM) 

information systems to fulfill customer orders and quickly response the changing market is obligatory 

and crucial.  However, the effectiveness of computerized SCM system heavily depends on the 

availability of SCM quantitative formulation. Particularly, a simple change within the supply chain can 

lead to the complicated dynamics along the whole supply channels.  Consequently, to effectively and 

efficiently arranging the most feasible and promising supply chain schedule requires not only arduous 

managerial efforts, but also a practical SCM quantitative model.  Unfortunately, current mathematical 

models embedded in prevailing SCM systems either use fixed values or linear functions to replace 

real-world cost functions or employ heuristics or special purpose algorithms to treat nonlinear cost 

functions.  The former approach is out of the reality, while the latter is hard to be coded in general 

commercial SCM systems and can not guarantee the computed result is global optimal solution. 

Accordingly, this work attempts to present some easy-to-handle formulations of treating various types 

of cost functions such as nonlinear step cost functions, concave cost functions, and S-curve cost 

functions, and to make current computer-based SCM quantitative models more practical to enhance the 

execution of more elaborate coordination activities.  A small example is employed to demonstrate the 

practicality and applicability of the proposed methods. 

 

Keywords：Cost Functions, Logistics Costs, Supply Chain Management, Quantitative Model 

 
1. Introduction 

What is supply chain management (SCM)?  Supply Chain Management is to effectively 

integrate supply chain processes across companies into a cohesive and high-performing business model 

which can quick response and the fulfillment of orders.  Undoubtedly, without a computerized SCM 

system the coordination and collaboration among all partners within a supply chain cannot be executed. 

Since the effectiveness of a computerized SCM system strongly depends on the availability and 

effectiveness of mathematical formulation, a useful quantitative SCM model can help the management 

optimize logistics schedule and achieve reliable collaboration among partners.  According to the 

definition by the Council of Supply Chain Management Professionals (CSCMP) (2006), an effective 

coordination and collaboration among supply chain partners is vital for a successful SCM.  

Unfortunately, current SCM quantitative models frequently either use fixed values or linear 

functions to represent real-world cost functions (Anderson et al., 2004) or employ heuristics or special 
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purpose algorithms to treat nonlinear cost functions (Shapiro, 2005).  The former approach is out of 

the real-life situation, while the latter is hard to be solved in prevailing commercial SCM systems and 

can not guarantee the computed result is global optimal solution. Since lack of available and effective 

mathematical formulation to linearize nonlinear terms will weaken the advantages and effectiveness of 

SCM system, this work aims to propose some methods to make current computer-based quantitative 

models more practical and solvable by prevailing linear programming (LP) packages.  By doing so, 

the coordination and collaboration within supply chain partners can be carried out over the time subject 

to the optimal solution and sensitive analysis generated by a SCM system. 

The rest of this work is organized below.  Section 2 presents a generalized SCM quantitative 

model.  Section 3 introduces logistics cost functions from the simple format to complicated format.  

Section 4 proposes theorems and methods of treating separable linear objective functions with 

continuous decision variables step by step.  Section 5 describes the solution algorithm and numerical 

example to illustrate the practicality and applicability of the proposed methods.  Section 6 

summarizes the contribution and features of the proposed methods. 

2. A Generalized SCM Quantitative Model 

Although SCM has appeared as a hot management issue in last decade, its development can be 

traced back to the early twentieth century.  As the turn of the twentieth century, economists (Shaw, 

1915) considered distribution as the bridge between customer requirements and product availability, by 

which commodities move through the supply channel and determine the exchange process.  If a 

mathematical model covering procurement, production, inventory, and distribution is considered the 

framework of quantitative SCM, which is the foundation of global logistics, then much of the 

pioneering work can be found in the late 1950’s (Forrester, 1958; Hanssman, 1959).  Although 

Hanssmann (1959) only considered single company logistics, his work was perhaps the earliest attempt 

to solving material procurement, goods production, inventory, and distribution by a quantitative model. 

In 1960s, a multi-echelon distribution network was proposed (Clark and Scarf, 1960; Drucker, 1969) 

which is perhaps an origin of an arborescent supply chain network, although it is not a complete supply 

chain network.  The concept of global logistic management introduced by Ishii et al. (1988), Cohen et 

al. (1989), and Stevens (1989) in the late 1980’s, culminated in the emergence of the modern SCM 

development.  Since then, driven by global competitive pressures and information technology 

advances, numerous SCM quantitative models have been developed to coordinate and schedule the 
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entire supply chain activities.  Plentiful references exist in the books (Handfield and Nichols, 2005; 

Ross, 2005; Tayur et al., 2006) and the papers (Vidal and Goetschalckx, 2001; Sodhi, 2005; 

Holmström et al., 2006; Tan et al., 2006). 

In industry, a real-life SCM quantitative model should consider the entire supply chain activities 

including material procurement, production, distribution, inventory, etc. in optimizing (1) The total and 

separable purchased amounts for each raw item from each raw material’s original supplier to each 

upstream supplier; (2) The total and individual shipped amounts for each raw item from each raw 

material’s original supplier to each upstream supplier; (3) The total and separable procurement 

amounts for each intermediate product (or part) from each upstream supplier to each middle-stream 

manufacturer; (4) The total and individual transported amounts for each intermediate product (or part) 

from each upstream supplier to each middle-stream manufacturer; (5) The total and separable 

manufactured amounts for each product in each manufacturer as well as each product required 

inventory in each manufacturer; (6) The total and separable outsourcing amounts for each product in 

each manufacturer; and (7) The total and individual delivered amounts for each product from each 

manufacturer to each down stream warehouse and from there to each end market (or customer). 

Accordingly, a practical and generalized SCM quantitative model is widely formulated as 

follows: 

Model 1 

Min ∑
i,s,b,t

_RM P_Costtbsi×RM_P_QTYtbsi+ ∑
i,s,b,t

_RM T_Costtbsi×RM_T_QTYtbsi+∑
i,s,t

_RM I_Costtsi×RM_I_QTYtsi+

∑
j,s,t

_PSFG M_Costtsj×PSFG_M_QTYtsj+ ∑
j,s,t

_PSFG I_Costtsj× PSFG_I_QTYtsj+ ∑
j,f,s,t

_PSFG P_Costtsfj× 

PSFG_P_QTYtsfj+ ∑
j,f,s,t

_PSFG T_Costtsfj×PSFG_T_QTYtsfj+ ∑
j,f,t

_PSFG I_Costtfj×PSFG_I_QTY’tfj+ 

∑
k,f,t

_G M_Costtfk×G_M_QTYtfk+ ∑
k,f,t

_G O_Costtfk×G_O_QTYtfk+ ∑
k,f,t

_G I_Costtfk×G_I_QTYtfk+ 

∑
k,w,f,t

_G T_Costtfwk×G_T_QTYtfwk+ ∑
k,w,t

_G I_Costtwk×G_I_QTY’twk+ ∑
k,c,w,t

_G T_Costtwck×G_T_QTY’twck 

s. t. RM_I_QTYt-1,si +∑
b

RM _ T_QTYtbsi ≥ PSFG_M_QTYtsj ×∑
Ij

BOM _QTYI->j, 

 RM_I_QTYtsi= RM_I_QTYt-1,si +∑
b

RM _ T_QTYtbsi - PSFG_M_QTYtsj ×∑
Ij

BOM _QTYI->j, 

 PSFG_I_QTYt-1,sj +PSFG_M_QTYtsj ≥ ∑
f

PSFG _ T_QTYtsfj, 

     PSFG_I_QTYtsj= PSFG_I_QTYt-1,sj +PSFG_M_QTYtsj -∑
f

PSFG _ T_QTYtsfj, 

PSFG_I_QTY’t-1,fj+∑
s

PSFG _ T_QTYtsfj ≥ G_M_QTYtfk ×∑
Jk

BOM _QTYJ->k, 
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   PSFG_I_QTY’tfj= PSFG_I_QTY’t-1,fj+∑
s

PSFG _ T_QTYtsfj -G_M_QTYtfk ×∑
Jk

BOM _QTYJ->k, 

  G_I_QTYt-1,fk+ G_M_QTYtfk+ G_O_QTYtfk≥∑
w

G _ T_QTYtfwk, 

G_I_QTYtfk= G_I_QTYt-1,fk+ G_M_QTYtfk+ G_O_QTYtfk-∑
w

G _ T_QTYtfwk, 

G_I_QTY’t-1,wk+∑
f

G _ T_QTYtfwk≥∑
c

G _ T_QTY’twck, 

G_I_QTY’twk= G_I_QTY’t-1,wk+∑
f

G _ T_QTYtfwk-∑
c

G _ T_QTY’twck, 

∑
w

G _ T_QTY’twck ≥ G_R_QTYtck, ∑
j

PSFG _ M_QTYtsj≤ M_Capts, ∑
k

G _ M_QTYtfk≤M_Captf, 

∑
i

RM _ I_QTYtsi≤ RM_I_Limitts, ∑
j

PSFG _ I_QTYtsj≤ PSFG_I_Limitts, 

∑
j

PSFG _ I_QTY’tfj≤ PSFG_I_Limittf, ∑
k

G _ I_QTYtfk≤ G_I_Limittf, ∑
k

G _ I_QTY’twk≤G_I_Limittw, 

where each capital letter denotes each variable’s set, lower case letters denote realization of particular 

variables, italic letters denote decision variables, and notations and parameters are defined as follows： 

T : the set of time, t : the t’th time period; 

I : the set of raw materials (RMs), i : the i’th RM; 

J : the set of parts or semi-finished goods (PSFGs), j : the j’th PSFG; 

K : the set of finished goods (FGs), k : the k’th FG; 

B : the set of beginning suppliers (BSs), b : the b’th BS; 

S : the set of intermediate suppliers (ISs), s : the s’th IS; 

F : the set of factories, f : the f’th factory; 

W : the set of warehouses, w : the w’th warehouse; and 

C : the set of end customers, c : the c’th end customer. 

In a certain time period t, the following notations are used.  

RM_P_Costtbsi : the cost of the s’th IS to purchase the i’th RM from the b’th BS, 

RM_T_Costtbsi : the transportation cost of the ith RM from the b’th BS to the s’th IS, 

RM_I_Costtsi : the inventory cost of the i’th RM in the s’th IS, 

PSFG_M_Costtsj : the manufacturing cost of the j’th PSFG in the s’th IS, 

PSFG_I_Costtsj : the inventory cost of the j’th PSFG in the s’th IS, 

PSFG_P_Costtsfj : the cost of the f’th factory to buy the j’th PSFG from the s’th IS, 

PSFG_T_Costtsfj : the transportation cost of the j’th part from the s’th IS to the f’th factory, 

PSFG_I_Costtfj : the inventory cost of the j’th PSFG in the f’th factory, 

G_M_Costtfk : the manufacturing cost of the k’th FG in the f’th factory, 
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G_O_Costtfk : the outsourcing cost of the k’th FG for the f’th factory, 

G_I_Costtfk : the inventory cost of the k’th FG in the f’th factory, 

G_T_Costtfwk : the transportation cost of the k’th FG from the f’th factory to the w’th warehouse, 

G_I_Costtwk : the inventory cost of the k’th goods in the w’th warehouse, 

G_T_Costtwck : the transportation cost of the k’th FG from the w’th warehouse to the c’th end customer, 

G_R_QTYtck : the requirement of the k’ th FG from the c’th end customer’s order, 

RM_P_QTYtbsi : the purchased quantity (QTY) of RM i between the b’th BS and the s’th IS, 

RM_T_QTYtbsi : the transported QTY of RM i from the b’th BS to the s’th IS, 

RM_I_ QTYtsi : the inventory QTY of the i’th RM in the s’th IS, 

PSFG_M_QTYtsj : the manufacturing QTY of the j’th PSFG in the s’th IS, 

PSFG_I_QTYtsj : the stock QTY of the j’th PSFG in the s’th IS, 

PSFG_P_QTYtsfj : the sold QTY of the j’th PSFG from the s’th IS to the f’th factory, 

PSFG_T_QTYtsfj : the shipped QTY of the j’th PSFG from the s’th IS to the f’th factory, 

PSFG_I_QTY’tfj : the inventory QTY of the j’th PSFG in the f’th factory, 

G_M_QTYtfk : the produced QTY of the k’th FG in the f’th factory, 

G_O_QTYtfk : the outsourcing QTY of the k’th FG for the f’th factory, 

G_I_QTYtfk : the inventory QTY of the k’th FG in the f’th factory, 

G_T_ QTYtfwk : the transported QTY of the k’th FG from the f’th factory to the w’th warehouse, 

G_I_ QTY’twk : the stock QTY of the k’th FG in the w’th warehouse, 

G_T_QTY’twck : the delivered QTY of the k’th FG from the w’th warehouse to the c’th end customer, 

M_Capts : the production capacity of the s’th IS for all PSFG, 

M_ Captf : the production capacity of the f’th factory for all FG, 

RM_I_Limitts : the stock limit of the s’th IS for all RM, 

PSFG_ I_Limitts : the stock limit of the s’th IS for all PSFG, 

PSFG_I_Limittf : the stock limit of the f’th factory for all PSFG 

G_I_Limittf : the stock limit of the f’th factory for all FG, 

G_I_ Limittw : the stock limit of the w’th warehouse for all FG, 

BOM_QTYI->j : the bill of material (BOM) for producing each unit of the j’th PSFG from the set of 

RMs, and 

BOM_QTYJ->k : the bill of material (BOM) for producing each unit of the k’th FG from the set of 

PSFGs. 
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3. Logistics Cost Functions 

In real-world logistics operations, a logistics cost is not a constant but a function (Oum and 

Waters, 1996), and a logistics cost function in SCM generally comprises fixed costs, variable costs, and 

unpredicted costs (Slats et al., 1995; Shapiro, 2005).  Accordingly, a SCM model can be simply 

formulated below: 

Model 2 

Minimize Total_Cost = Fixed_Cost + Variable_Cost + Unpredicted_Cost 

Subject to the constraints. 

Essentially, fixed costs are stable and do not vary with amount ordered, transported, or produced; 

for example, the weekly salary of employees, the monthly rent on factories/offices, and the periodic 

maintenance expenses for equipment. Variable costs are not fixed and depend on the number of 

ordered, transported, or produced units.  Unpredicted costs are costs that arise unexpectedly, for 

example, costs associated with the late delivery of products, the breakdown of machines in production 

lines or the loss of electrical power at a plant.  Consequently, fixed costs are fixed values, while 

unpredicted costs can be estimated by probabilistic distribution. Building the above discussion, Model 

2 can be reformulated as follows: 

Model 3 

Minimize Total_Cost = Fixed_Cost + Variable_Cost + ∑
=

N

1n
n dUnpredicte(P _Costn) 

Subject to the constraints, 
where Pn is the probability of the n’th scenario’s occurrence, Unpredicted_Costn is the unexpected cost 

occurred at the n’th scenario, n = 1, 2, .., N, and ∑
=

N

1n
nP = 1. 

Since this study aims to illustrate how various variable cost functions can be linearized by the 

presented methods, fixed and unpredicted costs are not included in Model 1.  The main reason is that 

adding fixed and unpredicted costs into this work only increase the reading complexity without giving 

extra contribution.  Therefore, to avoid complicating this work without changing the practicability 

and applicability of the proposed methods, this work highlights on variable costs. 

In reality, vendors frequently offer quantity discounts to encourage buyers to order more; 

producers typically like to reduce the average production costs by mass production, and wholesalers 

attempt to minimize the average distribution cost by delivering huge quantities at once.  However, 

few quantitative SCM models highlight on dealing with a wide range of logistic cost functions (Oum 
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and Waters, 1996; Yu, 2006), and the unit cost used in existing quantitative SCM models is frequently 

a constant or a linear function as shown in Figs. 1a and b, respectively.  Figures 1a and b separately 

reveal that the average cost is fixed at a specific value or has a gradient that is independent of the 

quantity.  This assumption is impractical and out of the real-life situation.  Consequently, this section 

introduces some means to treat widespread occurred cost functions encountered by logistics managers. 

3.1 Step cost functions 

One of the most commonly used discount cost functions is a step cost function as shown in Fig. 2, 

in which Q1, Q2, and Q3 are the incentive quantity levels and c1, c2, and c3 are the discount costs (or 

prices). The step cost function first defined by Love (1979) is widely expressed as 

Cost(Q) =  
⎪
⎩

⎪
⎨

⎧

≤<
≤<
≤<

433

322

211

Q  Q  Qfor  c
Q  Q  Qfor  c
Q Q  Qfor   c

 where Cost(Q) is shown in Fig. 2. 

 

Fixed average cost                     Linear average cost 

 

           c1                                  c1 

 

                                 Quantity                             Quantity 

            Fig. 1a A constant cost              Fig. 1b  A linear cost function 

 

    Cost(Q) (Unit Cost/Price) 

 

c1=0.025 

c2=0.024 

c3=0.023 

                                                                  Quantity 

                       Q1=0   Q2=1000   Q3=2000    Q4=3000       Q 

Fig. 2   A step cost function 
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3.2 Single change point cost functions 

A quantity discount schedule with a single price breakpoint is widely applied to calculate average 

procurement, production, inventory and transportation costs, etc.  Figure 3a reveals that the starting 

average cost is 1.8 and declines when the required quantity increases, which implies that the slope 

before the quantity reaches 150 is different from that after the quantity surpasses 150.  Figure 3a 

display a convex cost function, while figure 3b shows a concave cost function. 

3.3 Multiple change point cost functions 

Another much broadly employed cost function is a discount quantity schedule with a multiple 

change-point function.  The function is similar to the one with a single change point function except 

in the number of change points, as depicted in Figs. 4a, b, and c. 

 

             Cost(Q) (Unit Cost/Price) 

 

Cost(Q1)=c1=1.8   s1=-0.000667 

Cost(Q2)=c2=1.7            s2=-0.0004 

Cost(Q3)=c3=1.6 

                                          Quantity 

           Q1=0   Q2=150          Q3 = 400     Q 

Fig. 3a  A convex single change-point cost function 

 

      Cost(Q) (Unit Cost/Price) 

 

c1=2.0       s1=-0.001 

c2=1.8                    s2=-0.002 

c3=1.7 

                                                           Quantity 

                       Q1=0             Q2=200  Q3=250     Q 

Fig. 3b  A non-convex single change cost function 
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           Cost(Q) (Unit Cost/Price) 
 

       c1=0.55   s1=-0.002 
       c2=0.45           s2=-0.001 
       c3=0.35                     s3=-0.00067 
       c4=0.25                                    s4=-0.0005 
       c5=0.15 
                                                                Quantity 

                Q1=0  Q2=50    Q3=150        Q4=300        Q5=500  Q 

Fig. 4a A convex type of multiple change point function 

 

   Cost(Q) (Unit Cost/Price) 

 
Cost(Q1)=c1=0.25     s1=-0.000083 
Cost(Q2)=c2=0.24              s2=-0.000125 
Cost(Q3)=c3=0.23                      s3=-0.0002 
Cost(Q4)=c4=0.22                           s4=-0.00033 
Cost(Q5)=c5=0.21 

                                                               Quantity  
                    Q1=0    Q2=120     Q3=200 Q4=250 Q5=280        Q 

Fig. 4b  A concave type of multiple change point function 

 

  Cost(Q) (Unit Cost/Price) 

 
Cost(Q1)=c1=0.26   s1=-0.00025 
Cost(Q2)=c2=0.25       s2=-0.000167 
Cost(Q3)=c3=0.24                s3=-0.0001 
Cost(Q4)=c4=0.23                        s4=-0.0002 
Cost(Q5)=c5=0.22                            s5=-0.00033 
Cost(Q6)=c6=0.21 

                                                               Quantity  
                   Q1=0 Q2=40 Q3=100    Q4=200 Q5=250 Q6=280        Q 

                             

Fig. 4c  A convex-concave type of multiple change point function 
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4. Proposed Theorems and Methods 

To treat a step cost, as depicted in Fig. 2, the following theorem is introduced.  

Theorem 1  A program expressed as 

{Minimize Q(c1u1+c2u2+c3u3) subject to Qk+M(uk-1)≤Q≤Qk+1+M(1-uk) for k=1,2,3, u1+u2+u3=1, 

where u1, u2, u3 are 0-1 variables used to indicate which cost level will be adopted based on the 

required quantity}  (1) 

can be linearized as 

{Minimize c1z1+c2z2+c3z3 

 subject to Qk+M(uk-1)≤Q≤Qk+1+M(1-uk) for k=1,2,3, 

zk≥Q+M(uk-1), zk ≥ 0, for k=1,2,3, 

u1+u2+u3=1, u1, u2, u3 ∈ {0,1}, 

where M is a big constant and can be set as  

M = Max{Q1,Q2,Q3,Q4} } (2) 

Proof   To treat the product terms u1Q, u2Q, and u3Q in Program (1), the program (2) first uses z1, z2, 

and z3 to replace them respectively. Consider the following Lemma. 

Lemma 1 

PP1: Minimize ukQ subject to uk is an 0-1 variable, Q ≥ 0. 

is equivalent to  

PP2: Minimize zk = ukQ 

subject to zk≥Q+M(uk-1), zk ≥ 0, (3) 

where M is a big value and can be set as the upper bound of Q, Q ≥ 0,  

and uk ∈ {0-1}. 

Lemma 1 can be verified as follows: 

(i) if at optimal solution uk = 1, then equations of (3) result in zk = Q; 

(ii) if at optimal solution uk = 0, then equations of (3) result in zk = 0. 

Based on the Lemma 1, the program (2) can then be examined as follows: 

(i) In case of the cost level c1 is selected 
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At the optimal solution, u1+u2+u3=1 will force u1=1, u2= u3= 0, which results in Q1 ≤ Q ≤ Q2. 

(ii) In case of the cost level c2 is selected 

At the optimal solution, u1+u2+u3=1 will force u2=1, u1= u3= 0, which results in Q2 ≤ Q ≤ Q3. 

(iii) In case of the cost level c3 is selected 

At the optimal solution, u1+u2+u3=1 will force u3=1, u1= u2= 0, which results in Q3 ≤ Q ≤ Q4. 

The theorem is then verified. 

Take Fig. 2 as an instance, the model of optimizing this step cost function is formulated as  

Minimize 0.025z1+0.024z2+0.023z3 

subject to Qk+M(uk-1)≤Q≤Qk+1+M(1-uk) for k =1, 2, 3, 

zk≥Q+M(uk-1), zk ≥ 0 for k =1, 2, 3, u1+u2+u3=1, u1, u2, u3 ∈ {0,1}, 

where Q1=0, Q2=1000, Q3=2000, Q4=3000, and M = Max{Q1,Q2,Q3,Q4} = 3000. 

After inserting the constraint Q ≥ 1500 for the illustrative purpose and then executing this 

program in the LINGO or Excel, the obtained solution is (u2=1, u1= u3= z1 = z3 =0, z2 = Q = 1500, the 

objective value is 36, and the average cost Cost(Q) is 0.024). Building on Theorem 1 and the above 

demonstration, Method 1 capable of representing a general step cost function is presented below: 

Method 1 A SCM model of optimizing a step cost function Cost(Q), depicted in Fig. 5, can be 

formulated as follows: 

Minimize Cost(Q) = ∑
−

=

1n

1k
kk zc  

 

Cost(Q) (Unit Cost/Price) 

 

        c1 

        c2 

               c3 

               :                         

               cn-1 

                                                                   Quantity 

                 Q1     Q2     Q3       Q4   ……………      Qn-1   Qn      Q 

Fig. 5  A generalized step function 
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subject to ∑
−

=

1n

1k
ku =1, uk ∈ {0,1}, 

Qk+M(uk-1)≤Q≤Qk+1+M(1-uk) for k =1, 2, .., n-1, 

zk≥Q+M(uk-1), zk ≥ 0 for k =1, 2, .., n-1, 

where M is a big constant and set as M = Max{Q1,Q2, ….,Qn}, and zk stands for ukQ. 

To treating single point change functions of Figs. 3a and b, the following lemmas of 2 - 4 are 

introduced. In following Lemmas 2-4, Q is ordered quantity and Q1 and Q2 are the incentive quantity 

levels. 

Lemma 2 Based on Proposition 1 in the literature (Li and Yu, 1999, 2000), any separable linear 

functions Cost(Q), shown in Figs. 3a and 3b where sk (k = 1, 2) are the slopes of line segments 

between Qk and Qk+1, can be represented by 

Cost(Q) = Cost(Q1)+ s1(Q-Q1)+((s2-s1)÷2))(|Q-Q2|+Q-Q2)      (4) 

where Q≥ 0, Q2 ≥ Q1. 

Take Figs. 3a and b as illustration, by using Equation (4) we have 

Cost(Q) = 1.8-0.000667Q+ (0.000267÷2) (|Q-150|+Q-150) (in Fig. 3a)         (5) 

Cost(Q) = 2.0 – 0.001Q+(-0.001÷2) (|Q-200|+Q-200) (in Fig. 3b)              (6) 

where 0.000267 and -0.001 were calculated by the formula of (s2-s1) as shown in Equation (4).  When 

s2> s1, the break point is convex point as depicted in Fig. 3(a). Conversely, if s2< s1, the break point is 

concave point as depicted in Fig. 3(b).  

To linearize absolute terms with the positive coefficient in Equation (5), Lemma 3 is introduced. 

Lemma 3 

PP3:  Minimize C = (s÷2) (|Q-g|+Q-g) subject to Q, g, s ≥ 0, 

is equivalent to  

PP4:  Minimize C’ = s(Q-g+d) subject to Q - g + d≥ 0, Q, g, d, s ≥ 0. 

This lemma can be confirmed as follows: 

(i) if Q–g≥ 0 then at the optimal solution d = 0, which results in C’ = s(Q-g) = C; 

(ii) if Q – g < 0 then at the optimal solution d = g – Q, which results in C’ = 0 = C. 

Take Fig. 3a as a demonstration. The model of optimizing Equation (5) is programmed as: 

Minimize Cost(Q)=1.8-0.000667Q+0.000267(Q-150+d)=-0.0004Q+0.000267d+1.75995 

subject to Q – 150 + d ≥ 0, Q, d ≥ 0. 
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To linearize absolute terms with the negative coefficient in Equation (6), Lemma 4 is introduced. 

Lemma 4 

PP5:  Minimize C=(s÷2)(|Q-g|+Q-g) subject to Q, g ≥ 0, s < 0, 

is equivalent to  

PP6:  Minimize C’ = s(Q-w+gu-g) subject to Q+ Q (u-1)≤ w, Q, w ≥ 0, s < 0, u ∈ {0,1}, and Q  is 

the upper bound of Q (Take Fig. 4b as instance, Q = 250). 

Lemma 4 can be examined as follows: 

(i) if Q – g ≥ 0 then at the optimal solution u=0 and w=0, which results in C’=s(Q-g)= C; 

(ii) if Q – g <0 then at the optimal solution u=1 and w=Q, which results in C’=0 =C. 

Based on Lemma 4, the model of optimizing Equation (6) can be programmed as 

Minimize Cost(Q) = 2–0.001Q–0.001(Q-w+200u-200) =-0.002Q+0.001w-0.2u+2.2 

subject to Q + 250 (u-1) ≤ w, Q, w ≥ 0, u ∈ {0,1}, and Q ≤ 250. 

Building on Lemmas 2 - 4, Remark 1 and Methods 2 and 3 are presented as the following: 

Remark 1 A single change cost function Cost(Q) where s2 > s1 as displayed in Fig. 3a is a convex 

function, while Cost(Q) as displayed in Fig. 3b is a concave function where s2 < s1. 

Method 2 A SCM model of optimizing a convex type of single change cost function, depicted in Fig. 

3a, can be formulated as follows: 

Minimize Cost(Q) 

subject to Cost(Q) = Cost(Q1)+ s1(Q-Q1)+(s2-s1)(Q-Q2+d2), Q-Q1+d≥ 0, and Q ≥ 0, 

where s2 > s1, Q1 ≥ Q2.  

Method 3 A SCM model of optimizing a concave type of single change cost function, depicted in Fig. 

3b, can be formulated as follows: 

Minimize Cost(Q) 

subject to Cost(Q) = Cost(Q1)+ s1(Q-Q1)+(s2-s1)(Q-w+uQ2-Q2), 

w≥Q+ Q (u-1), Q, w ≥0, u∈{0-1}, 0≤ Q≤Q , 

where s2 < s1, and Q  is the upper bound of Q. 

To treating multiple change point functions, Remark 2, Method 4, and Theorem 2 are presented as 

follows. 

Remark 2  Based on Proposition 1 in Li and Yu (1999, 2000), a separable linear function Cost(Q), as 
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depicted in Figs. 4a, 4b, or 4c where ck= Cost(Qk), Qk are change points, and sk are slopes of line 

segments between Qk and Qk+1, can be expressed as 

Cost(Q) = Cost(Q1)+ s1(Q-Q1)+∑
−

=

−−1n

2k

1kk

2
ss

(|Q-Qk|+Q-Qk) (7) 

where  Q ≥ 0, 0 < Q1 < Q2< ... < Qn, and sk+1 > sk for k =1, 2, …, n-1. 

To treat Equation (7) with all positive coefficients, Method 4 is introduced. 

Method 4 Based on Proposition 4 in Li and Yu (2000), a SCM model of optimizing Equation (7) with 

all positive coefficients can be programmed as follows: 

Minimize Cost(Q) 

Subject to Cost(Q) = Cost(Q1)+ s1(Q-Q1)+∑
−

=

−
1n

2k
k((s sk-1)(Q-Qk+∑

−

=

1k

1j
jd )) 

     Q + d1 + d2 + ... + dn-1 ≥ Qn-1, Qk+1 - Qk≥dk, and dk ≥ 0 for k =1, 2, …, n-1. 

where Q ≥ 0, 0 < Q1 < Q2< ... < Qn, and sk+1 > sk for all k. 

Consider the following illustration. 

Example 1 

Minimize Cost(Q) 

subject to Q ≤ 500, 

where Cost(Q) is depicted in Fig. 4a. 

By employing Method 4, Example 1 is linearized as follows: 

Minimize  Cost(Q)=0.55-0.002Q+0.001(Q-50+d1)+0.00033(Q-150+d1+d2)+ 

0.00017(Q-300+d1+d2+d3) = -0.0005Q +0.0015d1+0.0005d2+0.00017d3+0.39999 

subject to Q+d1+d2+d3 ≥ 300, 0≤d1≤150, 0≤d2≤100, 0≤d3≤50, Q ≥ 0 and Q ≤ 500. 

After executing this program in the LINGO, the obtained solution is (d1 = d2 = d3 = 0, Q = 500, 

and the average cost Cost(Q) = 0.15).  As noted, one merit of Method 4 is that it contains only one 

inequality constraint and all the other constraints are bounded constraints, which could speed the 

computational efficiency.  Although Li and Yu’s methods (1999, 2000) is quite promising to linearize 

a convex function, their methods either has to use k 0-1 variables to linearize a concave function with k 

line segment (Li and Yu, 1999) or cannot directly treat a concave function (Li and Yu, 2000).  As a 

result, to treat Equation (7) with all negative coefficients, Theorem 2 is introduced to lessen the 

computational burden on treating the concave cost function. 
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Theorem 2  A cost(Q) shown in Fig. 6 can be expressed as 

Cost(Qk)+sk(Q-Qk)-M )u1)2b(b(
r

1j
j

r

1j
kjkj∑ ∑

= =

+−+ ≤Cost(Q) 

Cost(Q)≤Cost(Qk)+sk(Q-Qk)+M )u1)2b(b(
r

1j
j

r

1j
kjkj∑ ∑

= =

+−+  (8) 

Qk-M )u1)2b(b(
r

1j
j

r

1j
kjkj∑ ∑

= =

+−+ ≤Q≤Qk+1+M )u1)2b(b(
r

1j
j

r

1j
kjkj∑ ∑

= =

+−+  

where Qk are change points, k=1, 2, …, m-1, sk are slopes of line segments between Qk and Qk+1, r is 

the smallest value for 2r ≧ m-1, bkj (j=1, 2, …,r) are assigned parameters which are derived by 

1kb2
r

1j
kj

1j −=∑
=

− , uj are zero-one variables, and M is a large constant. 

Proof 

If uj = bpj for j = 1, 2, …, r and 1≤p≤m-1 (which means the p’th cost level will be adopted based on 

the required quantity Q), then∑
=

r

1j
pjb + j

r

1j
pj u1)2b(∑

=

+− = 0 and ∑ ∑
= =

>+−+
r

1j
j

r

1j
kjkj 0u1)2b(b  for all k 

except for k=p (i.e., k =1, 2, …, p-1, p+1, …, m-1). Consequently, all equations in (8) can be replaced 

as follows: 

Cost(Qp)+sp(Q-Qp)≤Cost(Q)           (9) 

Cost(Q)≤Cost(Qp)+sp(Q-Qp)          (10) 

 

Cost(Q) (Unit Cost/Price) 
 

     Cost(Q1)      s1 
     Cost(Q2)               s2 
     Cost(Q3) 
        : 
        : 
        : 
     Cost(Qk)                                          sk 
     Cost(Qk+1)                                         

             Quantity 
                 Q1         Q2   Q3     ……………             Qk    Qk+1      Q 

Fig. 6  A general concave type of multiple change point function 
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Qp≤Q≤Qp+1             (11) 

Cost(Qk)+sk(Q-Qk)-M≤Cost(Q) for all k except for k = p      (12) 

Cost(Q)≤Cost(Qk)+sk(Q-Qk)+M for all k except for k = p     (13) 

Qk≤Q≤Qk+1 for all k except for k = p        (14) 

where M is a large constant. 

Since only the p’th cost level is adopted based on the required quantity Q, constraints (12)-(14) 

are inactive. Hence, (9)-(11) force Cost(Q)= Cost(Qp)+sp(Q-Qp) and Qp≤Q≤Qp+1. In doing so, 

Theorem 2 is then proved. 

Consider the following illustration. 

Example 2 

Minimize Cost(Q)  

subject to Q ≤ 260, 

where Cost(Q) is depicted in Fig. 4b. 

Figure 4b displays that the break points of Cost(Q) are 0, 120, 200, 250, and 280. Hence, 

referring to Theorem 2, 2r =  is the smallest value for 2r ≥  m-1 = 4, and each bkj is derived by 

1kb2
r

1j
kj

1j −=∑
=

−  as listed in Table 1. 

By employing Theorem 2, Example 2 is linearized as follows: 

Minimize Cost(Q)  

subject to Q ≤ 260, 

0.25-0.000083Q-M(u1+u2)≤Cost(Q)≤ 0.25-0.000083Q+M(u1+u2), 

0.24-0.000125(Q-120)-M(1-u1+u2)≤Cost(Q)≤ 0.24-0.000125(Q-120)+M(1-u1+u2), 

0.23-0.0002(Q-200)-M(1+u1-u2)≤Cost(Q)≤ 0.23-0.0002(Q-200)+M(1+u1-u2), 

0.22-0.00033(Q-250)-M(2-u1-u2)≤Cost(Q)≤ 0.22-0.00033(Q-250)+M(2-u1-u2), 

 

Table 1  The derived values of kjb  

the k’th line segment j = 1 j = 2 
1k = 0 0 
2k = 1 0 
3k =  0 1 
4k = 1 1 
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-M(u1+u2)≤Q≤ 120+M(u1+u2), 

120-M(1-u1+u2)≤Q≤ 200+M(1-u1+u2), 

200- M(1+u1-u2)≤Q≤ 250+ M(1+u1-u2), 

250-M(2-u1-u2)≤Q≤ 280+M(2-u1-u2), 

where u1 and u2 are 0-1 variables, and M is a big number. 

After running this program in LINGO, the obtained solution is (u1 = u2 = 1, Q = 260, and the 

average cost Cost(Q) = 0.2167). The comparison between Li and Yu’s linearization techniques and the 

proposed method is summarized in Table 2, which displays that to linearize a multiple change point 

concave function the proposed method needs much less number of 0-1 variables than Li and Yu’s 

method (1999) does.  

As discussed in Introduction Section, the heuristic approach is also widely used to treat SCM 

problems with nonlinear cost functions (Shapiro, 2005). Actually, the heuristic algorithm and the 

mathematical model (i.e., the proposed method) have specific pros and cons, and serve different 

purposes. In reality, the heuristic is to generate a feasible solution to a problem at every iteration step, 

retain the best feasible solution between iteration steps, and the solution hold at the termination of the 

algorithm is deemed as the best solution.  Therefore, the heuristic algorithm is appropriate to solve 

NP-complete (or called NP-hard) problem because its purpose is to find a best feasible solution when 

finishing the pre-set iteration procedures.  In contrast, the proposed method is a mathematical model 

used to find a global optimal solution for a deterministic problem.  Nevertheless, the heuristic 

algorithm is unsuitable to optimize a SCM problem with variable cost functions shown in Figs. 2-4, 

while the presented methods can linearize various types of cost functions as demonstrated in the above. 

Moreover, building on Method 4 and Theorem 2, a SCM model with a convex-concave type cost 

function as depicted in Fig 4c can also be transformed into a linear mixed integer programming 

program that is solvable to obtain a global optimal solution by many commercialized LP packages and 

SCM systems. 

 
Table 2  Comparison between Li and Yu’s methods and the proposed method 

 Li and Yu’s method 
(1999)  

Li and Yu’s method 
(2000) 

Proposed method 

Number of extra 0-1 
variables 

m Cannot directly treat 
this type of function 

)(log2 m  

Number of extra 
continuous variables 

m 1 

m: number of separable line segments 
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5. Solution Algorithm and Numerical Example 

Notably, when unit costs are not constants, the Cost(Q) × Q (such as RM_P_Costtbsi × 

RM_P_QTYtbsi,, RM_ T_Costtbsi × RM_T_QTYtbsi, etc.) in the objective function of Model 1 will be a 

product term. Accordingly, Remark 3 is introduced as follows: 

Remark 3 After the necessary variables transformation (Charnes and Cooper, 1962), the objective 

function with product terms in the proposed SCM quantitative model can be straightly solved by a 

linear programming. 

Consider the following illustration. 

Example 3 

Minimize Cost(Q) × Q              (15) 

subject to Cost(Q) = -0.002Q+0.001w-0.2u+2.2,  

Q + 250 (u-1) ≤ w, 0≤ Q ≤ 250, w ≥ 0, u is a zero-one variable, 

where Cost(Q) is depicted in Fig. 3b. 

The objective function of Cost(Q) × Q involves three product terms of Q×Q, Q×w, and Q×u. 

Based on Remark 2 and using the variable transformation, Q×Q, Q×w, and Q×u can be replaced by Q’, 

w’, and u’, respectively. In doing so, Q×Q + 250 (u-1) ×Q ≤ w×Q and 0≤ Q×Q ≤ 250Q are incurred. As 

a result, Program (15) can be reformulated as follows: 

Minimize Cost(Q)’                  (16) 

subject to Cost(Q)’ = -0.002Q’ +0.001w’ - 0.2u’+ 2.2Q , 

        Q+250(u-1)≤w, 0≤ Q ≤ 250, w ≥ 0, u is a zero-one variable, 

        Q’+250u’-250Q ≤ w’, 0 ≤ Q’ ≤ 250Q, 

where Cost(Q)’, Q’, w’, and u’ denote Cost(Q) × Q, Q×Q, Q×w, and Q×u, respectively. 

Noteworthy, since u is a zero-one variable in Programs (15) and (16), the product term Q×u 

cannot be simply represented by u’ without other constraints. Accordingly, based on Lemma 1, 

Program (16) is then re-programmed as follows: 

Minimize Cost(Q)’             (17) 

subject to Cost(Q)’ = -0.002Q’ +0.001w’ - 0.2u’+ 2.2Q,  

        Q+250(u-1)≤w, 0≤ Q ≤ 250, w ≥ 0, u is a zero-one variable, 

        Q’+250u’-250Q ≤ w’, 0 ≤ Q’ ≤ 250Q, u’ ≥ Q + M (u-1), u’ ≥ 0, 



280   管理與系統 

 

where M can be specified as 250 (the upper bound of Q). 

The constraint Q ≥ 165 is added into Example 3 for the illustration.  After executing the 

program (17) in LINGO or Excel, the computed solution is (u = w = 0, Q = 165, the average cost of 

Cost(Q) = 1.87, and the total cost of Cost(Q)×Q = 280.5) which is the optimal solution as obtained in 

Program (15).  Consider another demonstration. 

Example 4 

Minimize Cost(Q) × Q               (18) 

subject to Cost(Q) =-0.0005Q +0.0015d1 +0.0005d2+0.00017d3+0.39999,  

    Q+d1+d2+d3 ≥ 300, 0≤d1≤150, 0≤d2≤100, 0≤d3≤50, 0≤ Q ≤ 500, 

where Cost(Q) is depicted in Fig. 4a. 

Suppose the average cost of Cost(Q) is a multiple change cost function as depicted in Fig. 4a.  

By using the variable transformation, Q×Q, Q×d1, Q×d2, and Q×d3 can be replaced by Q’, d’1, d’2, and 

d’3, respectively. In doing so, Q’+d’1+d’2+d’3 ≥ 300Q, 0 ≤ d’1≤150Q, 0 ≤ d’2 ≤100Q, 0 ≤ d’3 ≤ 50Q, and 

0≤ Q’≤ 500Q are incurred.  Due to no 0-1 variable existing in Model (16), therefore, Example 4 can 

be straightly reformulated as 

Minimize Cost(Q)’                (19) 

subject to Cost(Q)’= -0.0005Q’ +0.0015d’1 +0.0005d’2+0.00017d’3+0.39999Q, 

Q+d1+d2+d3 ≥ 300, 0≤d1≤150, 0≤d2≤100, 0≤d3≤50, 0≤ Q ≤ 500, 

Q’+d’1+d’2+d’3 ≥ 300Q, 0≤d’1≤150×Q, 0≤d’2≤100×Q, 0≤d’3≤50×Q, 0≤ Q’ ≤ 500Q. 

For the illustrative purpose, the constraint Q ≥ 265 is added into Example 4. After executing the 

program (19) in LINGO, the computed solution is (d1 = d2 = 0, d3 = 35, Q = 265, the average cost 

Cost(Q) = 0.27344, the total cost Cost(Q) × Q = 39.747345) which is the optimal solution as found in 

Program (18). 

Based on the above illustration, a solution algorithm is described as follows to solving a general 

SCM problem. 

Solution Algorithm 

Step 1. Use Model 1 to formulate a generalized SCM problem. 

Step 2. Use Methods 1 - 4 and Theorem 2 to treat various types of cost functions such as nonlinear 

step functions, nonlinear concave functions, and nonlinear S-curve functions. 

Step 3. Transform product terms into single variables. Since the rule of variables transformation is 

simple and distinct, a computer program is easily coded to handle variables transformation. 
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Step 4. Solve the problem by available commercialized packages such as LINGO or EXCEL. 

Step 5. Execute sensitive analysis and coordination and negotiation among supply chain partners. 

Thereafter, the most feasible and promising supply chain plan is scheduled. 

Example 5 

In the consumer electronics industry, semi-products j1 and j2 are composed of (three units i1, one 

unit i2, and two units i3) and (two units i2 and two units i4), respectively.  The finished product k1 

consists of one j1 and two j2 units.  The bill of material (BOM) and the entire supply chain of the 

product k1 are displayed in Figs. 6 and 7, separately. According to customer orders from (c1, c2, c3, c4), 

they require the k1 goods (300, 355, 320, 340), (360, 370, 350, 280) and (350, 375, 275, 360) at times 

t2, t3, and t4, respectively. 

According to procurement contracts in this example, the purchasing costs between BSs and ISs 

and between ISs and factories involve transportation costs.  To simplify this illustration, assume all 

raw materials i1, i2, i3, and i4 hold the same unit purchasing and transportation cost. Unit purchasing & 

 
                                  k1 
                      × 1                        × 2 
                    j1                             j2 
         × 3      × 1         × 2            × 2          × 2 
         i1         i2          i3             i2           i4 

 

Fig. 7  The bill of material (BOM) of the product k1 

                     
                                                               C1 
                                  F1           W1 
     B1             S1                                                             C2 
                                  F2           W2 
     B2               S2                                         C3 
                                  F3           W3    
Beginning        Intermediate                                    C4     
Suppliers         Suppliers       Factories     Warehouses         End  

Customers 
 

       Fig. 8  The entire supply chain of the goods k1 
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transportation costs for (b1 to s1, b2 to s1, b1 to s2, b2 to s2) are (0.023, 0.02, 0.02, Cost(Q)), (0.024, 

0.021, 0.021, Cost(Q)), (0.025, 0.022, 0.022, Cost(Q)), and (0.024, 0.021, 0.021, Cost(Q)) for all raw 

materials at the t1, t2, t3 and t4 time separately, where the Cost(Q) is depicted in Fig. 2.  Assume all 

semi products have the same purchasing and transportation cost.  Unit procurement and transportation 

costs for (s1 to f1, s1 to f2, s1 to f3, s2 to f1, s2 to f2, s2 to f3) at the t1, t2, t3 and t4 time are (0.2, 0.5, 0.1, 0.3, 

0.2, 0.4), (0.15, 0.45, 0.15, 0.35, 0.25, 0.45), (0.1, 0.45, 0.2, 0.25, 0.2, 0.35), and (0.15, 0.4, 0.1, 0.3, 

0.15, 0.3), respectively.  

To simplify the calculation, over the time, unit transportation costs from f1 to w1, f1 to w2, f1 to w3, 

f2 to w1, f2 to w2, f2 to w3, f3 to w1, f3 to w2, and f3 to w3 are 0.6, 0.4, 0.3, 0.3, 0.5, 0.4, 0.55, 0.4, and 0.4, 

separately.  Unit transportation costs from each w1, w2, and w3 to each c1, c2, c3, and c4 are 0.04, 0.03, 

0.03, 0.04, 0.02, 0.03, 0.04, 0.03, 0.04, 0.03, 0.02, and 0.03 separately, for all time. Average production 

costs for k1 in (f1, f2, f3) are (1.75, 1.8, G_M_Cost), (1.77, 1.79, G_M_Cost), (1.76, 1.78, G_M_Cost), 

and (1.75, 1.8, G_M_Cost) at t1, t2, t3 and t4 time, respectively, where G_M_Cost is specified in Fig. 3a.  

Average outsourcing costs of k1 for f1, f2, and f3 are all same as specified in Fig. 3b over the entire 

period. Unit production costs for (j1, j2) in s1 and s2 are (1.7, 1.75) and (1.75, 1.65) for all time. 

Inventory capacities of (raw materials, semi-products), (semi-products, finished goods) and 

(finished goods) for all suppliers, factories, and warehouses separately are (50, 50), (150, 150) and (30) 

for all period. The maximal capacity of each factory to produce k is no more than 250 and 

manufacturing capacities in s1 and s2 are not restricted in this example. The total outsourcing amount of 

k1 cannot exceed 600 units for each factory. Unit inventory costs for (i1, i2, i3, i4, j1, j2) in s1 and s2 are 

separately (RM_I_Cost, 0.3, 0.2, 0.3, 0.4, 0.45) and (RM_I_Cost, 0.3, 0.3, 0.2, 0.43, 0.4) for all time, 

where RM_I_Cost is specified in Fig. 4c. Unit inventory costs for (j1, j2, k1) in f1, f2 and f3 separately 

are (0.2, PSFG_I_Cost, 0.6) (0.3, PSFG_I_Cost, 0.55) and (0.3, PSFG_I_Cost, 0.5) for all time where 

PSFG_I_Cost is displayed in Fig. 4a. Unit inventory costs for k1 in w1, w2, and w3 are respectively 0.3, 

0.35, and 0.35 over the time. 

After finished Steps 1 – 4 in Solution Algorithm, the computed supply chain schedule by running 

LINGO is summarized in Table 3.  By employing the presented techniques, logistical managers along 

intersecting supply channels can negotiate and mutually cooperate to optimize supply chain schedule 

throughout the entire supply chain (since the solution generated by the global optimal solution can 

conveniently perform sensitivity analysis).  In Step 5, by exploiting the computer’s powerful 

capability of computing and exchanging information, the management can adjust and coordinate the 

entire supply chain schedule until partners within the supply chain have committed the schedule.   
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Table 3  The generated solution for Example 5 

T = 1 ISs Factories Warehouses End customers 
BSs RM_T_QTY1211=1200 

RM_T_QTY1212=2400 
RM_T_QTY1213=800 
RM_T_QTY1214=1600 

   

ISs PSFG_M_QTY111=400 
PSFG_M_QTY112=800 
PSFG_M_QTY113=267 
PSFG_M_QTY114=533 

PSFG_T_QTY1111=200, 
PSFG_T_QTY1131=200, 
PSFG_T_QTY1112=400, 
PSFG_T_QTY1132=400, 

  

Factories  G_M_QTY111=G_M_QTY131=
200,G_I_QTY111=50,G_I_ 
QTY131=150 

G_T_QTY1131=150 
G_T_QTY1311=50 

 

T = 2 ISs Factories Warehouses End customers 
BSs RM_T_QTY1211=1485 

RM_T_QTY1212=2970 
RM_T_QTY1213=990 
RM_T_QTY1214=1980 

   

ISs PSFG_M_QTY211=495 
PSFG_M_QTY212=990 
PSFG_M_QTY213=330 
PSFG_M_QTY214=660 

PSFG_T_QTY2111=200, 
PSFG_T_QTY 2112=400, 
PSFG_T_QTY2121=45,  
PSFG_ T_QTY2122=90, 
PSFG_T_QTY2131=250, 
PSFG_T_QTY2132=500 

  

Factories  G_M_QTY211=G_O_QTY221=
200, G_M_QTY221=45, 
G_M_QTY231=250, 
G_O_QTY211= 40, 
G_O_QTY231 =180 

G_T_QTY2131=290 
G_T_QTY2211=245 
G_T_QTY2321=580 

 

Warehouses    G_T_QTY’2111=295,G_T_QTY’2211=
5, G_T_QTY’2221=355,G 
_T_QTY’2231=220, G_T_QTY’ 
2331=100, G_T_QTY’2341=340 

T = 3 ISs Factories Warehouses End customers 
BSs RM_T_QTY3211=2010 

RM_T_QTY3212=4020 
RM_T_QTY3213=1340 
RM_T_QTY3214=2680 

   

ISs PSFG_M_QTY311=670 
PSFG_M_QTY312=1340 
PSFG_M_QTY313=477 
PSFG_M_QTY314=893 

PSFG_T_QTY3111=200, 
PSFG_T_QTY 3112=400, 
PSFG_T_QTY3131=250, 
PSFG_T_QTY3132=500, 
PSFG_T_ QTY3121= 220, 
PSFG_T_QTY3122=440 

  

Factories  G_M_QTY311=G_O_QTY321 
=200, G_ M_QTY321 =220, 
G_M_QTY331=250, G_O_QTY 
311=280, G_O_QTY331=210 

G_T_QTY3131=480 
G_T_QTY3211=420 
G_T_QTY3321=460 

 

Warehouses    G_T_QTY’3131 =350,G_T_QTY’3141 
=70,G_T_QTY’3211=90, 
G_T_QTY’3221=370,G_T_QTY’3311= 
270, G_T_QTY’3341=210 

T = 4 ISs Factories Warehouses End customers 
ISs  PSFG_T_QTY4112=400, 

PSFG_T_QTY 4121=220, 
PSFG_T_QTY4122=440, 
PSFG_T_QTY4131 =250, 
PSFG_T_QTY 4132=500 

  

Factories  G_M_QTY411= 
G_O_QTY421=200, 
G_ M_QTY421=220, 
G_M_QTY431=250, 
G_O_QTY411=280, 
G_O_QTY431=210 

G_T_QTY4131=480 
G_T_QTY4211=420  
G_T_QTY4331=460 

 

Warehouses    G_T_QTY’4121=375, G_T_QTY’4131 
=45,G_T_QTY’4311=350, 
G_T_QTY’4331=230,G_T_QTY’4341=
360 
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6. Concluding Remarks 

Although the importance of computer based quantitative models for coordinating supply chain 

activities is undoubted, their successful power depends heavily on the effectiveness and availability of 

mathematical formulation.  Therefore, the establishment of a mathematical model to interpreting 

practical supply chain behavior and thus helping enterprises perform complex, laborious, and even 

trivial analysis has been a challenging and difficult task for a long time (Holmstrom and Hameri, 1999). 

Although Lemmas 2-4 presented by Li and Yu (1999, 2000) can be efficiently employed to tackle a 

convex cost function, their methods have some deficiencies in treating a concave function. 

Consequently, compared to current SCM quantitative models, the proposed methods have the 

following features: 

(1) The proposed techniques can straightforward treat widespread logistic cost functions.  For 

example, Method 1 is presented to treat a step function with Theorem 1 and Lemma 1, Methods 2 

and 3 are presented to treat a single change point cost function with Lemmas 2-4, and Method 4 is 

proposed to treat a concave type of multiple change point function. 

(2) Logistical managers can easily arrange and adjusting an entire SCM schedule via negotiation and 

cooperation with supply chain partners, since the yielded solution is optimal and sensitivity 

analysis can be performed conveniently. 

(3) The presented model can be easily coded in current computer program to aid the management in 

handling SCM, because of the simple and distinct methods developed herein. 

(4) The formulated SCM model can also be executed using many available commercialized packages, 

such as LINGO and Excel. 

(5) The proposed model offers available-to-promise and handles the fulfillment of orders with the total 

cost minimization, due to synchronization of the capacitated supply, production, outsourcing, 

inventory, and distribution along intersecting supply chains. 
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