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Abstract. The influence of the surrounding semiconducting matrix upon the optical response of embedded
nano-objects (quantum dots) has been investigated. This system can be described by means of a hybrid
model, where the full response is a combination of a macroscopic electrostatic response term and a dynamic
response term, obtained quantum mechanically. The result is a modified discrete dipole model, where
excess discrete dipoles having an excess polarizability with respect to a uniform background identical
to the dielectric host material represent the response. In this model all electrodynamic interactions are
screened by the host material. The electrostatic response is obtained by approximating the quantum dots by
embedded dielectric oblate ellipsoids. Closed expressions for the electrostatic response of these ellipsoids
have been derived. The electrodynamic nature of the dynamic quantum mechanical polarizability term
however is unclear. It is not certain whether this polarizability is dressed or bare. Therefore we have
investigated in detail the consequences of both options. Although there is no real qualitative difference
between them, the difference is so large that experiment can easily discriminate between both. Results
should be easily measurable anyhow.

PACS. 41.20.Cv Electrostatics; Poisson and Laplace equations, boundary-value problems – 78.30.Fs III-V
and II-VI semiconductors – 78.67.-n Optical properties of low-dimensional, mesoscopic, and nanoscale
materials and structures

1 Introduction

When devices are made out from semiconductors it is es-
sential to know whether these semiconductors are direct
or indirect gap ones. Only direct gap semiconductors al-
low for direct interaction between light and the charges
(electrons/holes) of the semiconductor. This property in
turn determines what kind of devices or construction ele-
ments can be made from these semiconductors. The most
recent class of semiconductor building blocks are nano-
objects like quantum dots and nano-rings. They are most
promising in the field of new optical applications, but as
yet there are not really usable models to describe their
linear collective optical behavior. Optics in combination
with nano-objects relies either upon expressions for opti-
cal absorption [1] or upon oscillator strengths [2,3], be-
ing the squared modulus of the optical transition matrix
element [4]. Here we investigate how the hybrid model
(introduced by us before [5–7] to treat the linear optical
properties of free floating semiconducting nanosized ob-
jects) has to be extended to account for the influence of
embedding in a foreign semiconducting host material. We
consider a metamaterial built from nano-objects of charac-
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teristic size a, occupying a rectangular lattice with lattice
constant aL. The hybrid character of the model relates to
the fact that it describes the electrodynamic response as a
combination of a local macroscopic continuum description
for the static and a nonlocal discrete description for the
dynamic part of the response.

In this paper we investigate two aspects of this hybrid
model, both of them related to and essential for the un-
derstanding of the optics of embedded nano-objects. The
first aspect concerns the dynamic part of the polarizabil-
ity. This dynamic part of the hybrid model is a quantum
mechanical polarizability term where only a few pairs of
quantum states near the absorption edge play a role. To
combine it properly with the static part of electrodynamic
origin we have to know its electromagnetic nature in the
sense whether this quantum mechanical term is defined
with respect to the average internal or with respect to
the external electric field. The first option classifies the
polarizability as bare and the second as dressed.

The second aspect concerns the static part of the op-
tical response problem. Although it is best resolved in a
traditional macroscopic local way, a reformulation of the
results in a nonlocal discrete way improves both the phys-
ical insight and the connection to the dynamic quantum
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Fig. 1. Conceptual picture of the building of a metamaterial from semiconductor nano-objects (embedded ellipsoidal quantum
dots).

mechanical part of the description. It turns out to be very
beneficial to introduce the concepts of field penetration
and excess polarization. Field penetration simply means
the fraction of the external field which manages to enter
the nano-object and excess polarization means that only
part of the polarization density determines the optical re-
sponse of the nano-object.

It is not easy to distinguish immediately effects caused
by embedding, often taken to be equivalent to screening,
and effects related to the bare/dressed picture. Yet they
are not the same. A free floating nano-object e.g. has
different bare and dressed polarizabilities. On the other
hand the bare (full) polarizability of a nano-object will
not change upon embedding.

After the reformulation of all results, both the dy-
namic quantum mechanical and static local, in terms of
the same nonlocal discrete description, an ensemble of
these nano-objects can effectively be treated by means of
modified discrete dipole theory. The response of an em-
bedded dielectric ellipsoidal nano-object is used for the
electrostatic part in order to model as closely as possible
realistic semiconductor quantum dots. We combine this
discrete nonlocal description for the excess response of the
dots with a local continuum description for the uniform
background, extending over the host material, including
the dots. Since there is no general consensus whether the
dynamic quantum mechanical part of the polarizability
is bare or dressed, this paper will investigate the conse-
quences of either choice. Temperature dependence will not
be taken into account, (T = 0 K situation), but partly
temperature dependence will be accounted for by using a
damping term γ in the dynamical part.

2 Theory

In this section we will derive the hybrid model and use
it to describe the optical response of metamaterials com-
posed of nano-objects like quantum dots, embedded in

a dielectric host material (see Fig. 1). The nano-objects
will be assumed in this paper to have a static (low fre-
quency) dielectric constant ε different from the dielectric
constant εm of the host material. Both the host material
and the nano-objects at low frequencies will be assumed
to be transparent, in other words εm and ε are supposed
to be real. Only the dynamical part ∆α(ω) has a nonzero
imaginary component, due to the complex character of
fhl,el(ω). These assumptions reflect accurately the behav-
ior of the dots in the frequency range near the interband
transitions onset.

2.1 Bare and dressed polarizabilities of semiconductor
nano-objects

The polarizability of a nano-object determines how large
the dipole moment of that object as induced by an
electric field, will be [5]. Hence this electric field needs to
be specified in order to define properly the polarizability.
It may look at first glance that this could not be much
of a problem, but actually this point in general is not
well taken. Although, once a choice has been made, the
situation is further clear, often this choice has been left
in the open and uncertainty is the result. In fact two
choices of electric field can be equally well defended as a
proper polarizability reference. At first it is logical that
the electrons (and holes) which determine ultimately the
polarizability, react locally and that means that they will
react upon the internal electric field (local means here
dependent upon electric fields inside the nano-object).
A polarizability defined with respect to the internal
electric field is a bare polarizability. Any experimentalist
however will correctly object that such a choice is not
practical, since there is no way to measure this internal
field. Therefore to define the polarizability with respect
to the external electric field is also a result of common
sense, although such field can only be measured at the
furthest place of any electron or hole in the nano-object.
A polarizability defined with respect to the external
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electric field is a dressed polarizability and that is where
experimental values refer to.

To define the polarizability α for a given nano-object
we have to introduce first the dipole strength p:

p =
∫

V

dr′ P(r′) (1)

where P(r) is the polarization density and V the volume
of the nano-object. The bare polarizability αB is defined
with respect to the internal electric field EI by:

p =
↔
αB EI . (2)

This electric field EI is a macroscopic field and is therefore
a spatial average of the microscopic electric field e(r). The
dressed polarizability αD is defined by:

p =
↔
αD EX (3)

where EX is the external electric field in the case of a
single nano-object. The above definitions are only mean-
ingful for ellipsoidal bodies with a constant internal field
and represent the local macroscopic continuum descrip-
tion. For the nonlocal discrete description we need the
definition:

p =
↔
αB EA

EA = EX +
↔
t p (4)

where EA is the applied electric field (definition) and t is
the full electromagnetic selfinteraction tensor for the nano-
object, to be called further intracellular transfer tensor.
For dielectric spheres or ellipsoids, the applied field equals
statically the internal field. Therefore, at least for this
paper, the bare polarizability remains the same. It is easy
to show the following elementary relationship between the
two kinds of polarizability [6]:

↔
α

−1

D =
↔
α

−1

B − ↔
t . (5)

When more nano-objects are present the external field EX

needs to be replaced by the local field EL in all expressions
above. The distinction between bare and dressed polariz-
abilities is necessary to understand properly the physics
behind the hybrid method, as will be worked out in the
rest of this paper.

2.2 Addition of dynamical part polarizability

In the hybrid model we have to add a static electromag-
netic and a dynamic quantum mechanical polarizability.
It is obvious that only polarizabilities of the same kind,
dressed or bare, can be added in a meaningful way. This is
no problem for the static electromagnetic part, since this
will be derived unambiguously as a dressed polarizability
as we will show in the next section. For the dynamic part
of the polarizability, the quantum mechanical part, the

situation is different. In a previous publication [6] we have
shown already that the polarizability of a nano-object for
photon frequencies near the energy gap of the semicon-
ductor the object is made from, can be approximated by
the sum of a static polarizability and the dynamical con-
tribution ∆α(ω), given by:

∆α(ω) =
3
4

e2

�
r2
eh

[
x̂x̂T + ŷŷT

]

×
−2∑
l=0

|〈Fhl|Fel〉V |2 fhl,el(ω) (6)

where reh is the matrix element of the spatial coordinate
r between states e (electron) and h (hole) over the bulk
unit cell VB. 〈Fhl|Fel〉V is the overlap matrix element be-
tween envelope functions of index l for hole and electron
over the volume V of the nano-object. fhl,el(ω) is a com-
plex frequency dependent function. Direct vector products
x̂x̂T , ŷŷT indicate the x- and y-position on the diagonal
of the polarizability tensor.

We have to combine this ∆α(ω) properly with the
static dressed polarizability αD. Then we have to know
whether equation (6) represents a bare or a dressed po-
larizability. To answer that question we reformulate the
one-particle Hamiltonian as given in [5], equation (14):

H = H0 + H1(r, t)

H1(r, t) = − q

2m

[
pTA(r, t) + AT (r, t)p

]
(7)

where H1(r, t) is the time dependent perturbation, split in
[5] into ĤD, a dissipative part, and the actual perturba-
tion W (r). If the A(r, t) would have been known exactly,
solution of the problem would have been straightforward
and any further discussion would have been superfluous.
This however is not the case and approximations have to
be made to arrive at a practical solution. The only way to
proceed from here towards a traditional expression for the
polarizability as given e.g. in equations (2, 3) is by intro-
ducing an auxiliary vector potential AU (t) being constant
over the volume of the nano-object:

A(r, t) = ∆A(r, t) + AU (t)

∆A(r, t) = A(r, t) − AU (t). (8)

Then we can continue as in [5] and replace there AI by
∆A and use AU to define W (r). It is from the matrix
element of W , that this constant AU has to be taken out
to arrive at a proper polarizability. The crucial step in
this essentially approximative procedure is the choice of
AU . The first choice is AU = AX , as has been done in [9]
and correspondingly in [5]. With this assignment the re-
sulting polarizability will be dressed. The other common
choice is to use the spatial average of the vector potential
〈A〉 and this choice would yield a bare polarizability. At
present there is a definite preference for this option since it
accounts better for the contribution of the sources inside
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the nano-object. Yet such argument is purely electromag-
netic and does not account for effects of quantum mechan-
ical nonlocality, which in general weaken these short range
electromagnetic interactions. As yet there is no strong ev-
idence which of the two approximations is the best. The
interested reader can find additional information about
this important subject in references [8,9] about the origin
of the debate, in references [10–12] about the modern for-
mulation and in references [13–17] about more recent use
of a quantum mechanically derived polarizability.

All of this brings us to the conclusion that it has not
been agreed upon whether quantum mechanical expres-
sions for the polarizability of dielectric bodies (sum over
states expressions) are bare or dressed. Yet it is clear that
especially a hybrid model needs to find a way to deal with
this ambiguity. Definitely we have a clear preference for
the bare option, but it is not the aim of this paper to re-
solve this longstanding bare/dressed ambiguity here. In-
stead we will investigate both options, the one where we
add ∆α(ω) to the bare and the one where we add it to
the dressed polarizability and analyze the results for both
cases. It will depend on the outcome of experiments to
decide which option is the better one. At forehand we
mention that we will use both for the theory and for the
calculations, the bare polarizability as the main (internal)
carrier of information, as will be explained further on.

For the first option, adding to the static bare polar-
izability, we have to realize that this polarizability is ob-
tained as a dressed one, αD, so we have to convert it first
to a bare one, αB, using (5):

αB =
[
α−1

D + t
]−1

. (9)

Then we can add the dynamical part ∆α(ω) to this static
bare polarizability αB:

αB(ω) = αB + ∆α(ω) (10)

where αB(ω) is the dynamic bare polarizability.

The other option is to add ∆α(ω) to the static dressed
polarizability αD. This can be done straightaway:

αD(ω) = αD + ∆α(ω) (11)

where αD(ω) is the dynamic dressed polarizability. How-
ever, when we add the dynamical part ∆α(ω) to the
dressed polarizability, we have to convert the result to
a corresponding bare polarizability. To that end we use
again (5)

αB(ω) =
[
α−1

D (ω) + t
]−1

. (12)

Notice that we have returned to a scalar description, but
since all tensors involved are diagonal, this is possible and
improves reading. Both options, (10) and (12), are shown
as a diagram in Figure 2.

Here the bare polarizability αB(ω) is the full bare po-
larizability of the nano-object, different from the excess
bare polarizability, to be used later. The full bare polar-
izability is an intrinsic property of the nano-object not
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+

α
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α
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?
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B

Fig. 2. Addition of Dynamical part: Added to bare (B) versus
added to dressed (D). Double arrows point to bare/dressed
conversion.

dependent on or influenced by embedding. Explicit expres-
sions for the basic parameters αD and t will be given in
Section 2.4. If we choose the bare option for the quantum
mechanical part, we will refer to the bare polarizability
αB(ω) given by (10) as added to bare polarizability and if
we choose a dressed quantum mechanical part, we refer
to the bare polarizability αB(ω) given by (12) as added to
dressed polarizability.

2.3 Embedded dielectric objects: electric fields

In the hybrid model we need the static polarizability of
the nano-object, for which we use the approximation here
of an ellipsoidal dielectric body. This oblate ellipsoid has
short axis c and long axis a as treated in [6]. We will use
again ζ = c/a. For the transformation to elliptic coordi-
nates we use:

x = f cosh ξ cos η cosφ

y = f cosh ξ cos η sinφ

z = f sinh ξ sin η (13)

where f =
√

a2 − c2. A dielectric ellipsoid embedded in a
different dielectric medium obeys the macroscopic version
of the Poisson equation:

∇ ·D = 0

where D = ε ε0E is the dielectric displacement and ε the
dielectric constant. This allows for the introduction of the
electrostatic potential Φ(r) in the usual way and because
of the cylindrical symmetry of the problem we have to
solve the following Poisson equation for Φ(r):

[
∂2

∂ξ2
+ tanh ξ

∂

∂ξ
+

∂2

dη2
− tan η

∂

∂η

]
Φ = 0. (14)
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This differential equation can be solved by separation of
coordinates:

Φ(η, ξ, φ) = G(η)F (ξ). (15)

It suffices to use only the following η-dependence:

G0(η) = −E0f sin η (16)

where E0 is the amplitude of the externally applied uni-
form electric field EX = E0ẑ. For the solution F (ξ) con-
nected to this η-dependence, we need the following two
independent solutions:

F0(ξ) = sinh ξ

F1(ξ) = 1 − sinh ξ tan−1

(
1

sinh ξ

)
. (17)

Since the condition ξ = ξ0 establishes the surface of the
oblate ellipsoid, varying φ, η means scanning this surface.
For later use we need the expression for the external po-
tential ΦX(r):

ΦX(r) = −E0 z = G0(η)F0(ξ). (18)

Freezing the η-dependence to G(η) = G0(η), reduces the
dielectric oblate ellipsoid problem to a one-dimensional
problem in the functions F0(ξ) and F1(ξ). So we write the
electrostatic potential Φ(r) as:

Φv(ξ, η, φ) = G0(η) [AvF0(ξ) + BvF1(ξ)] (19)

where the index v equals I for the inner and O for the
outer region of the ellipsoid, making 4 unknowns in total.
Two of the unknowns can be eliminated by requiring that
the electric field inside is constant and that the electric
field outside for large ξ has to coincide with the external
field EX . As a result BI = 0 and AO = 1. The remaining
coefficients AI , BO follow from the boundary conditions:

ΦI(ξ0) = ΦO(ξ0)

ε
dΦI(ξ)

dξ

∣∣∣∣
ξ=ξ0

= εm
dΦO(ξ)

dξ

∣∣∣∣
ξ=ξ0

(20)

and we find the coefficients AI and BO to be:

AI =
εm(h1 − h2)
εh1 − εmh2

BO =
εm − ε

εh1 − εmh2
(21)

where the factors h1, h2 are given by:

h1 =

√
1 − ζ2

ζ
− tan−1

(√
1 − ζ2

ζ

)

h1 − h2 =
(1 − ζ2)

3
2

ζ
(22)

and this gives us for the internal field EI :

EI = −AI∇G0(η)F0(ξ) = AI EX . (23)

The electric field outside EO(r) has to be derived from:

EO(r) = EX − BO∇G0(η)F1(ξ)

= EX + EE(r). (24)

We refrain from the details and give only the final result
in cylindrical coordinates:

EE(r) = Eρ ρ̂ + Ez ẑ

r = ρ ρ̂ + z ẑ =
√

x2 + y2 ρ̂ + z ẑ

ρ̂ = cosφ x̂ + sin φ ŷ (25)

and the component fields Eρ, Ez are obtained as:

Eρ = −E0BO

[
z̃ ρ̃

√
S

(S2 + z̃2) (1 + S)

]

Ez = −E0BO

[
tan−1

(
1√
S

)
− S

√
S

S2 + z̃2

]
(26)

where the auxiliary variable S is defined by:

S =
√

s2 + z̃2 + s

s =
1
2
[
ρ̃2 + z̃2 − 1

]
(27)

whereas ṽ = v/f and v = ρ, z. Using these expressions
for the outer field, back-transformation to cylindrical co-
ordinates is established, but those coordinates are equiv-
alent to Cartesian, because of the cylindrical symmetry
of the problem. We treat in detail only the response in
the z-direction. The response in the x, y-direction will be
added later in a different way.

2.4 Embedded dielectric objects: excess polarization
and field penetration

With the closed expressions for the electric fields obtained
in the previous section we have all essential ingredients to
investigate the consequences of embedding upon the op-
tics of nano-objects. In top of that we have to account
also for the bare or dressed character of the dynamical
part ∆α(ω). Finally we will describe the optics of embed-
ded nano-objects by means of a modified discrete dipole
model. This requires a proper transformation of the results
obtained until here and that transformation is the topic of
this section. It starts by extracting physically meaningful
quantities from the electric field expressions.

We start with the expression for the internal electric
field (23) and use it to introduce the field penetration fE ,
which determines the amount of the external field E0,
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which can enter the nano-object as its internal (average)
field EI :

fE = AI =
εm

εm + Nz(ε − εm)

Nz =
h1

h1 − h2
. (28)

Although fE is just a redefinition, it highlights much
better what happens physically. At the same time we in-
troduce the shape (or depolarization) factor Nz, which
depends only on the geometry of the nano-object. It is
exclusively determined by the values of the eigenfunctions
of the problem at the boundary ξ0 and accounts for the
shape dependence. We find for Nz:

Nz =
1

1 − ζ2

(
1 − ζ cos−1 ζ√

1 − ζ2

)
(29)

where we have used the identity

cos−1 ζ = tan−1

(√
1 − ζ2

ζ

)
. (30)

This shape factor Nz (29) is exactly the same as the shape
factor obtained by Avelin [18]. It comes close to being a
local continuum counterpart of the intracellular transfer
tensor, but it is not its replacement. We define now two
polarization densities:

P = (ε − 1)ε0 fE EX

Pm = (εm − 1)ε0 fE EX (31)

where P is the full polarization density inside the nano-
object and Pm the polarization density inside of it if the
nano-object would have had the dielectric constant of the
host, but with the internal field unaltered (fE remains
the same function of εm). We call this Pm the host part
of the polarization density. When we use the generic rela-
tion (1) we can use these polarization densities to define
corresponding dipole strength’s and dressed polarizabili-
ties:

p = αEX = fE αB EX

pm = αm EX = fE αBm EX (32)

and bare polarizabilities:

αB = (ε − 1)ε0V

αBm = (εm − 1)ε0V. (33)

When we replace in the expression for αB the static ε by
the dynamic ε(ω), we obtain the full bare polarizability
αB(ω) treated in Section 2.2. Why we introduce these po-
larizabilities becomes clear when we work out further the
expression for the outer electric field. First we reformulate

the coefficient BO:

BO = −F (ζ)
εm

(ε − εm)fEε0V = −F (ζ)
εm

(α − αm)

F (ζ) =
1

ε0V

(
ζ

(1 − ζ2)
3
2

)
(34)

where V = 4
3πa2c = 4

3πζa3 is the volume of the ellipsoid.
This result allows us to write the expression for the outer
field in a format which is required by the further discrete
nonlocal treatment of this problem:

Eρ =
F (ζ)
εm

[
z̃ ρ̃

√
S

(S2 + z̃2) (1 + S)

]
∆p

Ez =
F (ζ)
εm

[
tan−1

(
1√
S

)
− S

√
S

S2 + z̃2

]
∆p (35)

where we used the following definitions:

∆p = p − pm = αDE E0 = αBE fE E0

αBE = αB − αBm = fC ε0V

fC = ε − εm (36)

where fC is the excess susceptibility. This excess suscep-
tibility fC controls the excess polarization density. The
excess bare polarizability αBE is the most important
object parameter for embedded nano-objects. From the
expression for the outer field we have to conclude that
optically the nano-objects are dielectric protrusions, ex-
pressing themselves independently only by means of an
excess polarization density and excess dipole strength ∆p.
For embedding the relevant dressed polarizability is not α,
but the dressed excess polarizability αDE :

αDE = ε0εmV

(
ε − εm

εm + Nz(ε − εm)

)
. (37)

For εm = 1 this result produces also Avelin’s vacuum po-
larizability [18]. For εm > 1 the dressed excess polariz-
ability above becomes really an embedded one. The other
components of αDE can be obtained by using the depo-
larization factors Nx, Ny:

Nx = Ny =
1 − Nz(ζ)

2
(38)

which is because the static transfer kernel has trace zero
and the depolarization factor is just the volume integral
of it. We classify this result as local electromagnetic. We
use expression (36) for the bare excess polarizability αBE

and the nonlocal expression (5) for αDE :

αDEu =
(

αBE

1 − tEu αBE

)
(39)
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where u = (x, y, z), to derive the embedded intracellular
transfer tensor tE . The result is:

tEu =
1
εm

tu

tu = − Nu

ε0 V
(40)

where t is the corresponding tensor for the vacuum situa-
tion. For embedded nano-objects the intracellular transfer
tensor tE is screened by εm, the dielectric constant of the
embedding medium. For a nano-object in vacuum the in-
tracellular transfer tensor t is, in contrast, not screened by
the dielectric constant ε of the nano-object. Calculations
start with the full bare polarizability αB as will be dealt
with in detail in Section 3. Next the bare excess polariz-
ability αBE takes over and enables the hybrid method to
determine the excess dipole strength. From here on we will
implicitly assume this excess character and omit mostly
the excess qualifier. Similarly ∆p will be replaced by p to
improve reading.

We have collected all ingredients to specify the de-
tails of the hybrid model for the case of embedded nano-
objects. The static interaction between more of these ellip-
soids is governed by the ellipsoidal transfer kernel tL(r).
This transfer kernel is defined by:

EE(r) =
1

εm

↔
t

L

(r) p (41)

where the ρ, z components were obtained already in equa-
tion (35) and we can write:

tLρz(r) = F (ζ)

[
z̃ ρ̃

√
S

(S2 + z̃2) (1 + S)

]

tLzz(r) = F (ζ)

[
tan−1

(
1√
S

)
− S

√
S

S2 + z̃2

]
. (42)

We show in the appendix, that this ellipsoidal transfer
kernel converges rapidly to the classical dipolar transfer
kernel t(r) which has been studied extensively by us and
others [19,20]. For this paper the difference is small (at
maximum 5% for the nearest neighbors) and we replace
the ellipsoidal kernel by its dynamic dipolar equivalent
for all intercellular interactions. Then we can set up the
discrete part of the hybrid method. This requires no more
but the systematic replacement above of the external field
E0 by the local field EL, as follows:

ELi = E0 +
1

εm

∑
j �=i

↔
t ij pj (43)

where tij is the vacuum intercellular transfer tensor, de-
fined simply as:

tij = t(ri − rj) (44)

with ri, rj the center coordinates of the nano-objects.
When a � aL � λ, where λ is the wavelength of the

incoming light, the local field ELi as expressed above is
a good approximation. The transfer tensor is the discrete
counterpart of the continuum transfer kernel. The induc-
tion for the dipole strength’s pi becomes now:

pi =
↔
αDE,i

⎡
⎣E0 +

1
εm

∑
j �=i

↔
t ij pj

⎤
⎦ (45)

where αDE,i is the dynamic dressed excess polarizability
αDE,i. The system of equations to be solved becomes:

↔
α

−1

DE,i pi − 1
εm

∑
j �=i

↔
t ij pj = E0. (46)

This scheme of solution has not our preference. For all
calculations we will use the dynamic bare excess polariz-
ability αBE (Eq. (36)), obtained as:

αBE = αB(ω) − αBm = (ε(ω) − εm) ε0V (47)

where αB(ω) is either for added to bare from (10), or for
added to dressed from (12). Then we only have to use (5)
to change (46) into:

↔
α

−1

BE,i pi − 1
εm

∑
j

↔
t ij pj = E0

tu = − Nu

ε0 V
+

iω3

6πε0c3
(48)

where we have added the Lorentz radiation damping (the
term with ω3 above) to the intracellular transfer tensor tu
(second line above). This intracellular transfer tensor is
added subsequently to the sum over transfer tensors (first
line above). For a crystalline lattice plane (here a square
lattice) the sums above can be calculated by a highly con-
vergent series expansion (Vlieger approximation [21,22]).
In this expansion the Lorentz radiation damping term will
cancel with respect to a similar term in that expansion.

A last remark, but a very important one, concerns the
correct transfer of the material properties of an isolated
nano-object towards the embedded situation. This ques-
tion can only be properly answered in the local continuum
picture. In that picture the optical parameter governing
the response of the object is the dielectric constant ε. The
rule now simply becomes that embedding cannot change
the dielectric constant of the nano-object. Now we switch
to the equivalent nonlocal discrete description of the nano-
object. In that description the dressed polarizability de-
pends upon the intracellular transfer tensor and the bare
polarizability. The intracellular transfer tensor does not
depend on ε, as one can see from equation (40). Hence
all dependency with respect to ε is in the bare excess po-
larizability αBE , equation (47). We see from that equa-
tion that the dielectric constant ε(ω) is equivalent to the
bare full polarizability αB(ω). If this bare full polarizabil-
ity remains the same upon embedding (and it does) the
nano-object keeps its correct material property ε(ω). So
the bare polarizability is the crucial carrier of information
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going from vacuum to embedded, independently from how
the dynamical part has been added. The type of addition
has already been included in the dielectric constant ε(ω)
prior to embedding.

2.5 Effects of embedding

We have explained in detail the difference between bare
and dressed polarizabilities at the beginning. The concepts
of field penetration fE and excess susceptibility fC intro-
duced in 2.4, determine completely the static behavior of
the bare and dressed polarizabilities (addition of ∆α can
and will be ignored here), as is clear from the definitions:

αDE = fE αBE

αBE = fC ε0V. (49)

The static part of the polarizability is a dominant part of
the polarizability also in the energy range we are interested
in. We study it here separately. To understand its behavior
it is hence enough to understand the two factors fE , fC ,
as given by equations (28, 36):

fE =
1

1 + fC Nu/εm

fC = ε − εm. (50)

Both factors have a clear physical meaning. We summarize
that from the previous section. The field penetration fE

gives the extent by which the external field can penetrate
the nano-object. The excess susceptibility fC gives the
amount by which the polarization of the nano-object in-
creases when its dielectric constant changes from the host
value to the nano-object value under application of the
internal field inside the embedded object. In one glance
the factors show the influence of embedding: embeddding
affects fE by division by εm of the shape factor Nu and
affects fC by subtraction of εm.

These effects can also be retraced in the behavior of the
electric field. We show in Figure 3 the z-component of the
electric field Ez in the xz-plane (shown for the ellipsoid
approximating the same quantum dot, as will be treated
in Sect. 3). The electric field inside the quantum dot is
prominent and indicates the amount of field penetration
as given by fE. The field contribution of the dielectric el-
lipsoid distorts strongly the field just outside the ellipsoid,
but decays rapidly further away. The jump in electric field
strength ∆E at the boundary of the ellipsoid is given by:

∆E

E0
=

1
εm

fEfC

[
sin2 η

√
1 − ζ2

ζ2 + sin2 η (1 − ζ2)

]
. (51)

The value η = 0 represents the xy-plane where there is no
drop in electric field, as should be since Ez is tangential
there. For η = π/2 we are on the z-axis and then;

∆E =

√
1 − ζ2

ε0εm
(P − Pm). (52)
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Fig. 3. Static electric field strength in units of E0 in the
z-direction for an embedded InAs/GaAs quantum dot in an
external electric field E0 = E0ẑ.

There the electric field drop scales with the excess po-
larization density and not e.g. with the difference in po-
larization inside and just outside the ellipsoid. So ∆E is
proportional to fC . For the case shown in Figure 3 the
value of ∆E = 0.137 E0 and fE = 0.879.

The following picture of embedding emerges. First the
bare polarizability decreases from its vacuum value to the
embedded excess value. Simultaneously the field penetra-
tion increases. The dressed polarizability governs the ex-
ternally observable response for a single nano-object and
depends on two antagonistic mechanisms accounted for by
the factors fE, fC . We examine here in detail how the two
factors behave statically.

For oblate ellipsoid-type of quantum dots the field pen-
etration fE is shown in Figure 4. For that case the conse-
quences of embedding upon this factor are very outspoken.
When we use for the dielectric constants the InAs/GaAs
values ε = 15.15 and εm = 13.1 [23], the field penetra-
tion fE increases by a factor of 11.9 for the z-component
and by a factor of 1.8 for the x-component as compared
to vacuum. So the increments caused by embedding are
highly anisotropic. The reason of this anisotropic influ-
ence of embedding is in the large anisotropy of the depo-
larization factor Nu, or equivalently in tu. For values of ε
below εm (ε < 13.1) this results even in a reversal of the
anisotropy and a field penetration larger than 1. For InAs
there is not yet reversal, but the anisotropic change of the
dressed polarizability results into an almost disappearance
of the externally observable anisotropy. The field penetra-
tion fE is for the InAs case 0.878 for the z-direction and
0.991 for the x-direction. The consequences are twofold.
First the difference between internal and external field has
become almost negligible. Next the anisotropy has almost
vanished. Both phenomena have the same origin. In the
expression for the field penetration fE , equation (50), the
influence of the shape Nu has been severely weakened by
the εm.
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Fig. 4. Field penetration fE for an oblate ellipsoid as a func-
tion of its dielectric constant ε. Shaded: semiconductor regime.
The two upper curves are for εm = 13.1, the embedded case,
and the two lower curves are for εm = 1, the vacuum case. x
(dashed), z (solid) Cartesian directions.

The excess susceptibility fC as such has a trivial be-
havior. This factor is important because it is the antago-
nist of the field penetration fE . Because of this antagonis-
tic behavior somewhere a maximum will be encountered.
We cast the influence of both factors into a single expres-
sion for the dressed, hence externally observable, polariz-
ability αDE :

αDE = fEfC ε0V. (53)

The behavior of the combined factors fEfC is shown in
Figure 5 as a function of the dielectric constant εm of
the hostmaterial. Both for the x-direction and for the
z-direction the maximum is found inbetween the vacuum
value of εm = 1 and the value of εm = 13.1 for the current
host (GaAs). Applying basic differentiation rules to fEfC ,
yields upon requiring that the numerator has to be zero,
that the maximum is at εm0, given by:

εm0 =
√

Nu

1 +
√

Nu

ε. (54)

These maxima, obtained for εm ≈ 3.02 for the x-direction
and εm ≈ 7.32 for the z-direction, are well above the value
of the vacuum polarizability. This is remarkable, because
these results are directly proportional to the dressed ex-
cess polarizability, although one has to bear in mind that
for εm → 1 that polarizability becomes the vacuum polar-
izability itself.

2.6 Electromagnetic response

The calculation of the optical response of an embedded
square lattice (monolayer) of quantum dots can be per-
formed using the same (Vlieger) expressions [21,22] for
the reflected electric fields from a square lattice with lat-

ε m
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Fig. 5. Combined field penetration and excess factors fEfC

for an oblate ellipsoid with ε = 15.15 as a function of the
host dielectric constant εm. Shaded: semiconductor regime. x
(dashed), z (solid) Cartesian directions.

tice constant aL, as used before in [6]:

rss =
fk

Ay cos θi − fk

rpp =
fk cos θi

Ax − fk cos θi
− fk sin2 θi

Az cos θi − fk sin2 θi

. (55)

The following abbreviations are used to make the expres-
sions more concise, but they contain also all elements
which change, when the nano-object gets embedded:

Au = α0 αBEu(ω)−1 − 1
εm

(fu + tu)

fk = 2πiaLkm (56)

where α0 = 4πε0a
3
L. We use here the solution scheme given

in equation (48), based upon the bare excess polarizabil-
ity (47) and combination of the intracellular transfer ten-
sor t with the planar transfer tensor f [19]. Both tensors
are made dimensionless through f = α0 f and t = α0 t.
All transfer tensors are screened, as described before. The
wavenumber km changes also upon embedding, as will be
treated now.

Since the Vlieger equations are dynamical they con-
tain the wave number k, which is directly affected by the
dielectric constant εm of the embedding medium, because
it follows from the dispersion equation for the embedding
medium:

∇2E − ε0µ0εm
∂2

∂t2
E = 0.

We refer to the wave number inside the medium as km

and to the vacuum wave number as k0 = ω/c. The result
becomes:

km =
√

εm
ω

c
=

√
εm k0.

The embedded wave number km turns out to be almost
4 times (3.62) as large as the vacuum wave number k0 for
GaAs and affects the reflection coefficients by the same
amount, as can be seen from equation (55).
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Table 1. Basic input parameters for lattices of InAs/GaAs
quantum dots. For meaning of symbols: see text

aL 80.0 nm
a 18.45 nm
c 1.49 nm

|〈Fh0|Fe0〉V | 0.9
|〈Fh,−1|Fe,−1〉V | 0.9
|〈Fh,−2|Fe,−2〉V | 0.9

reh 0.60 nm
ε 15.15

εm 13.1
�γ 5.0 meV

3 Numerical results

We show the results of the influence of embedding upon
the optical response of an embedded square lattice of
nano-objects for the case of quantum dots. We use the
same geometry for the lattice of InAs-quantum dots as
studied in [6], but now embedded in a GaAs-host. The
dots are statically modelled by oblate dielectric ellipsoids
with a, c as the long, resp. short axis. The relevant data
are given in Table 1. For further details we refer to [6].

In this comparative study where we examine the con-
sequences of the addition of the dynamical polarizability
to the bare or to the dressed polarizability, we have to
start from the bare full polarizability αB under static con-
ditions. This polarizability is the same, as mentioned, as
the bare excess polarizability αBE for vacuum. Without
addition of the quantum mechanical ∆α(ω) this bare po-
larizability would be isotropic and not influenced by the
added to bare or added to dressed choice. We refer to the
static value of the added to bare polarizability by αBB and
to that of the added to dressed polarizability by αDB. We
get for αBB , using equation (10):

αBBx = 4.69401× 10−3 α0

αBBz = 4.68837× 10−3 α0 (57)

where the standard polarizability α0 has the value
5.69677 × 10−32 Fm2 for the lattice chosen in [6]. The
faint anisotropy is caused by the static tail of the tran-
sitions incorporated in the ∆α(ω). For the αDB we get,
using equations (12) and (40):

αDBx = 4.706978× 10−3 α0

αDBz = 4.68837× 10−3 α0. (58)

The z-component is not different from the added to bare
result, but that should be because the z-component does
not contain ∆α(ω). There is however already a slight dif-
ference between the x-components of the two options. This
difference, as we will show, will only increase a lot dynami-
cally, if the quantum mechanical transitions will be at res-
onance. These bare polarizabilities are for quantum dots
in vacuum. To turn these bare vacuum polarizabilities into
bare embedded ones, requires subtraction of αBm, which

Table 2. Dressed static polarizability αD for x, z-orientation
for vacuum and embedded (excess values) situation.

Vacuum Embedded

αDx 2.58309 × 10−3 α0 6.91440 × 10−4 α0

αDz 3.46774 × 10−4 α0 5.96624 × 10−4 α0

acts like a threshold polarizability. The value of αBm is
for this case, using (33):

αBm = 4.0091× 10−3 α0. (59)

As a result the bare embedded polarizability attains the
value:

αBEz = 6.79234× 10−4 α0 (60)

where we give only the z-component since this does not
depend on the type of addition and the x-components are
very close to this value for the static case. This decrement
of the bare polarizability upon embedding is also directly
understood using the concept of the excess susceptibil-
ity fC .

Although internally for all calculations the bare po-
larizability is the main carrier of information, the exter-
nally observable consequences are only displayed by the
dressed (excess) polarizability. We have collected these
dressed polarizabilities in Table 2 both for the vacuum
and embedded situation. These results are based upon
the single αBEz given in (60), since under static condi-
tions the type of addition has hardly any influence. We
observe in this table the trends discussed already in the
previous section. The x-component drops by almost a fac-
tor of 4 upon embedding. The reason is that the depolar-
ization factor Nx is small (0.062), so fE increases only a
little (1.8 times), whereas fC decreases by a full factor of
6.9. The z-component behaves very different. It increases
upon embedding and becomes even stronger than the vac-
uum result. This behavior is exactly as shown in and dis-
cussed for Figure 5. Statically the consequences of embed-
ding hence are strong, although certainly at first glance
counter-intuitive. How we add the quantum mechanical
∆α(0) however has only very weak influence.

The frequency dependent behavior of the x-component
of the bare excess polarizability αBE is shown in Fig-
ure 6 for its real part and in Figure 7 for its imaginary
part. For all further calculations in this paper we will use
for the damping term the value �γ = 5 meV [6]. Each
panel of each figure shows a direct comparison between
the added to bare polarizability and the added to dressed
polarizability. The added to bare polarizability has been
obtained using equation (10) and the added to dressed
polarizability using equation (12) and subsequently for
both equation (36). A first inspection reveals immediately
that adding to the dressed polarizability increases strongly
(roughly by a factor of 4) any variation in the polarizabil-
ity for this quantum dot-host combination. Here it pays
off to use the field penetration concept. The added to bare
polarizability αBB(ω) is simply:

αBB(ω) = αB + ∆α(ω) (61)
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but for the added to dressed polarizability αDB(ω) we
need two steps:

αD(ω) = fEαB + ∆α(ω) = fE(ω)αDB(ω)

αDB(ω) =
fE

fE(ω)

[
αB +

∆α(ω)
fE

]
(62)

where fE is the static and fE(ω) the dynamic field pen-
etration. Now the addition of ∆α(ω) is divided by fE =
0.532 or multiplied by 1.88. In general fE(ω) < fE, so the
front factor is larger than 1. Both observations explain
what is shown in the figures. The excess mechanism ex-
plains the change of the added to bare polarizability upon
embedding. The factor (ε − 1)/(ε − εm) between vacuum
and embedded has the value 6.9 and can be recognized
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for the low energy results near E = 0.8 eV. The largest
variations in the value of the real part are displayed by the
added to dressed polarizability for the embedded case. No-
tice also the large offset for the vacuum real part results.
The consequence of this offset is that the relative varia-
tions in the embedded results will be larger by a factor
of 4 to 5 than for the vacuum results. A clear difference in
behavior can be noticed between the real and imaginary
part. The real part reacts upon any change, either from
vacuum to embedded or from the one type of addition to
the other. The imaginary part reacts only upon a change
of the type of addition and is indifferent upon changes
in the host dielectric constant εm. This is obvious for the
added to bare polarizability, but it turns out to hold for
the added to dressed result as well. The value of the imagi-
nary part increases by almost a factor of 4 going from bare
to dressed addition and this is much. All imaginary parts
are positive and this is as physics demands.

The first (internally) observable optical response term
is the reflectance. For a single monolayer these re-
flectance’s are weak. Embedding however does not deteri-
orate that situation much. For the angles of incidence of
θi = 0◦, 60◦ the reflectance’s for the two polarization di-
rections s and p are shown in Figures 8, 9. In these figures
thick lines belong to θi = 0◦ and thin lines to θi = 60◦.
The angle of θi = 60◦ is close to the Brewster angle, where
s-type of reflectance is always (much) stronger than for
p-type. Figure 8 shows the ss-reflectance in the area of
interest (0.8 eV < E = �ω < 1.05 eV). To understand the
results the following approximation for the Vlieger expres-
sion, equation (55), is useful:

rss ≈ fk αBy

α0 cos θi
(63)

where the factor
√

εm in fk changes upon embedding and
causes the reflectivity to increase by 3.62 (13.1 for the
reflectance), independent from the type of addition. All
other changes in rss are due to the bare polarizability
αBy. For both types of addition the real part of the po-
larizability decreases upon embedding by roughly a factor
of 5, causing the reflectivity to increase by about 2. This
tendency of the real part to decrease the reflectivity is dis-
turbed by the imaginary part which is not influenced by
embedding. The final result is that the overall reflectivity
remains about the same for the added to bare and added
to dressed cases. Only at he high energy side there is some
decrement, but the relative variations in the reflectance
are strongly enhanced for all cases upon embedding. This
enhancement is about a factor of 4 for θi = 0◦ and for
upto a factor of 10 for θi = 60◦.

For the p-component the situation is different. The an-
gle θi is close to Brewster’s angle and therefore the two
terms composing rpp in equation (55) are of comparable
strength. This explains the reversal of the Rpp curves: the
Brewster angle moves then from the one side of θi to the
other. Because of the cancellation of the two terms in rpp

a simple explanation as for rss is not possible. Definitely
the overall value of Rpp is decreased (by one order of mag-
nitude) with respect to Rss as should be the case. The
influence of the dynamical part however seems to be un-
harmed. The fact that the low energy embedded values
for the added to dressed are lower than for the the added
to bare reflectance can only be understood by assuming
that the first result is closer to the Brewster angle than
the second. For both types of addition relative variations
increase strongly upon embedding. The highest increment
is for added to dressed, but that is clear in view of equa-
tion (62).
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For both the Rss and Rpp reflectances, as shown in
Figures 8, 9, it is clear that the vacuum and embedded re-
sults are very different as concerns the character of the dy-
namic polarizability. For nano-objects in vacuum there is
little influence whether we use the dynamical part ∆α(ω)
as dressed or as bare. Upon embedding however the differ-
ences increase considerably, upto a factor of 5. This means
that is should be relatively easy to use experimental data
to decide which of the two options, bare or dressed, is the
better one.

To complete the picture of the influence of embedding
upon the externally observable response, as discussed for
Figure 5 in Section 2.5, we show the reflectances Rpp, Rss

in Figure 10 as a function of εm. This figure allows for
a conclusion similar to the one made there: also the em-
bedded (pp)-reflectance can be larger than the vacuum
reflectance. We also see clearly that for εm ≈ 4.5 the Brew-
ster angle should be close to 60◦, because we see the cor-
responding minimum. A possible replacement of the host
material by GaP, having εm = 11.11 [23] would result in
an even stronger internal reflectance, as Figure 5 shows.
Figure 5 also reveals that the closer ε gets to the host di-
electric constant εm, the better it becomes to discriminate
between the types of addition, but it is also quite likely
that then the model as such will loose validity.

In Figures 11, 12 we show the absorbances for the lat-
tice of quantum dots. In Figure 11 are the results for s- and
in Figure 12 for p-polarization. The p-type absorbances are
by one order of magnitude below the s-type absorbances.
For isotropic polarizabilities the absorbance would not
have depended on polarization. Since the imaginary part
of the polarizability of the quantum dots however is highly
anisotropic in the region of interest, the absorbance be-

comes polarization dependent, as elucidated before in [7].
The absorbances in the figures have been calculated using
Poynting’s theorem:

A = 1 − (R + T ) (64)

where A is the optical absorbance and R, T the reflectance,
transmittance resp. [6]. A simple, direct explanation of
the calculated results is not possible here, so we comment
only the general observed trend. The added to dressed
results are always systematically above the added to bare
results. This is in agreement with the behavior of the imag-
inary part of αB as shown in Figure 7. The embedded ab-
sorbances are all above the vacuum absorbances by one
order of magnitude. Partly this can be understood from
the increased field penetration. For near static conditions
fE increases by roughly a factor of 2 for this case and
this factor should influence the absorbance as its square,
amounting in a factor of 4. This analysis however is based
upon the local absorption inside the nano-objects. This
absorption is proportional, but not identical to the opti-
cal absorbance. There is no straightforward interpretation
of the p-type of absorbance, beyond what we have written
already.

The ellipsometric angles Ψ and ∆ are the experimental
values which can be measured with the highest accuracy.
They obey the definitions:

rpp

rss
= tan Ψei∆ (65)

and are relative quantities not dependent upon the ab-
solute intensities of the reflected light. To this has to be
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added that the internal reflection (and transmission) co-
efficients of embedded nano-objects are in principle mea-
surable, different from the free floating dots treated by us
before [6]. Again we see that the added to dressed results
are considerably stronger than the added to bare results.
Both Ψ and ∆ however increase strongly upon embed-
ding. In general Ψ resembles in character the real part of

the absorbance, as shown in Figure 6, and ∆ resembles
the imaginary part, as shown in Figure 7. Both responses
“turn upside down”, because the Brewster angle moves
upon embedding. The relative variations in both Ψ, ∆ im-
prove by at least one order of magnitude upon embedding.
This holds particularly for ∆ where the enhancement goes
up to two orders of magnitude already for the added to
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Fig. 13. Ellipsometric angle Ψ for angle of incidence θi = 60◦. (a): Vacuum (no embedding); (b) embedding with εm = 13.1.

bare results. The strongest variations are displayed by the
added to dressed results, so the maximum theoretical vari-
ations are found for embedded added to dressed results.
All ellipsometric results are comfortably within the range
of a modern ellipsometer, provided the 4 to 5 orders of
loss in intensity upon reflection can be coped with. Some
indication that this is realistic can be derived from [24],
where a commercial ellipsometer was used to measure a

100 nm layer of about 15 nm CdTe nanoparticles without
noticeable noise.

4 Summary and conclusions

For a system of nano-objects (here quantum dots) we have
derived a hybrid discrete-continuum model to investigate
the changes in optical response of a square lattice of these
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dots upon embedding. The behavior of this model can be
understood in terms of field penetration and excess suscep-
tibility. These mechanisms determine what happens when
the dots get embedded in a dielectric host material. The
role of the excess susceptibility is clear in the sense that it
is directly responsible for the representation of the optical
response of the embedded lattice by excess discrete dipoles
and excess bare polarizabilities. All electromagnetic in-
teractions in a nonlocal picture however turn out to be
screened by the host dielectric constant. This may seem
obvious, but the internal electromagnetic interactions in-
side a free quantum dot are, in contrast, not screened. It
is possible and also recommendable to use bare polariz-
abilities as the main carrier of information for the optical
response. That results in a shorter and more transpar-
ent theoretical description, although it is definitely possi-
ble to use dressed polarizabilities also. The appealing idea
to use a derivation where any dressed polarizability (the
measured one!) is absent is frustrated by a fundamental
problem caused by the dynamical part of the polarizabil-
ity. Although from the theoretical point of view there is a
preference to regard the quantum mechanical expression
for that part as a bare polarizability, that identification
is not really certain. It could also be dressed in nature.
It is not the purpose of this paper to resolve this long-
standing issue. Rather we have done all derivation and
calculations for both options. The two options share the
same general trends. Both give stronger to much stronger
response for the embedded than for the vacuum case and
the relative variation in the optical response is even more
enhanced. The ellipsometric response given by the angles
Ψ, ∆ is with several tens of degree very strong. The dif-
ference between the added to bare and added to dressed
options is in the systematically stronger results for the

latter. This enhancement becomes even puzzling since the
real part of the added to dressed polarizability can be-
come negative. This does not reject the added to dressed
option on physical grounds however, although it is defi-
nitely not normal dielectric behavior. The wiser decision
to accept or reject any of the two options seems to be to do
the measurements and to decide according to what those
provide.

Appendix A: Ellipsoidal transfer tensor:
remote behavior

In this paper we need that the ellipsoidal transfer kernel/-
tensor approaches closely the dipolar transfer kernel/ten-
sor at large distances from the center of the ellipsoid.
From general considerations of electrodynamics it is obvi-
ous that this has to be so, but here we show it explicitly
for this particular case. We will use the original solutions
for Eρ and Ez:

tLρz(r) = F (ζ)
[

sin η cos η

(sinh2 ξ + sin2 η) cosh ξ

]

tLzz(r) = F (ζ)
[
tan−1

(
1

sinh ξ

)
− sinh ξ

sinh2 ξ + sin2 η

]
. (66)

The distance r is expressed in ellipsoidal coordinates as:

r2 = f2[cosh2 ξ − sin2 η] = f2[sinh2 ξ + cos2 η] (67)

which for large ξ, corresponding to large r, can be approx-
imated by:

f cosh ξ ≈ f sinh ξ ≈ r (68)
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and further it is useful to know that:

f3F (ζ) =
1

εm

3
4πε0

(69)

we rewrite the field expression in the long range limit and
expand it to the order of r−2. For the zz-component we
have:

tLzz(r)
F (ζ)

≈ − 1
3 sinh3 ξ

+
sin2 η

sinh3 ξ
(70)

where we have used that tan−1(x) ≈ x − 1
3x3 and that

1/(1 + x) ≈ 1 − x,

tLzz(r) ≈
f3F (ζ)

3r3

[
3 sin2 η − 1

]

=
1
εm

1
4πε0r3

[
3 sin2 η − 1

]
(71)

and for the ρz-component we have:

tLρz(r)
F (ζ)

≈
[

sin η cos η

sinh2 ξ cosh ξ

]
=

f3

r3
sin η cos η. (72)

From which we get:

tLρz(r) =
1

εm

3
4πε0r3

sin η cos η. (73)

It suffices to use that for large distances η = π/2 − θ,
where θ is the usual polar angle measured from the z-axis,
to conclude that the ellipsoidal transfer tensor converges
to the dipolar transfer tensor, as should be the case.
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