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Abstract

This paper uses linear and nonlinear statistical models, including artificial neural network (ANN) methods, to

investigate the influence of the four economic factors, which are the national income (NI), population (POP), gross of

domestic production (GDP), and consumer price index (CPI) on the electricity consumption in Taiwan and then to develop

an economic forecasting model. Both methods agree that POP and NI influence electricity consumption the most, whereas

GDP the least. The results of comparing the out-of-sample forecasting capabilities of the two methods indicate the

following. (1) If given a large amount of historical data, the forecasts of ARMAX are better than the other linear models.

(2) The linear model is weaker on foretelling peaks and bottoms regardless the amount of historical data. (3) The

forecasting performance of ANN is higher than the other linear models based on two sets of historical data considered in

the paper. This is probably due to the fact that the ANN model is capable of catching sophisticated nonlinear integrating

effects through a learning process. To sum up, the ANNmethod is more appropriate than the linear method for developing

a forecasting model of electricity consumption. Moreover, researchers can employ either ANN or linear model to extract

the important economic factors of the electricity consumption in Taiwan.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Modeling electrical demand and energy consumption is usually based on historical consumption and the
relationship of this consumption to other relevant variables, such as: economic, demographic, climatic, energy
price, etc. Multivariate modeling along with cointegration techniques or regression analysis were used in a
number of studies on different countries [1–7] to investigate the influence of different determinants on energy
consumption. Glasure and Lee [1] presented a bidirectional causality relationship between energy
consumption and gross of domestic production (GDP) for South Korea and Singapore using the cointegration
and error-correction models (ECM). Shiu and Lam [2] found that there is a unidirectional relationship
running from electricity consumption to real GDP for China using ECM model. Soytas and Sari [3] examines
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the causal relationship between GDP and energy consumption in the top 10 emerging markets and the G-7
countries. Yang [4] found a bidirectional causality between energy consumption and GDP for Taiwan.
Additionally, Yan [5] presented residential electricity consumption models using climate variables for Hong
Kong. Rajan and Jain [6] expressed energy consumption patterns for Delhi as functions of weather and
population. Moreover, Egelioglu et al. [7] found that the model using the number of customers, the number of
tourists, and the electricity prices as regressors has very strong predictive ability for Northern Cyprus.

Recently, some studies have analyzed forecasting performance for energy consumption using different
models on different countries [8–10]. Darbellay and Slama [8] compared the predictions of nonlinear
artificial neural networks (ANNs) with linear ARIMA models for Czech electric consumption. They
found that, for univariate modeling, the forecasting abilities of a linear model and a nonlinear model were not
very different. For multivariate modeling, adding the temperature as an external input allows ANNs to
integrate more information and thus produce better forecasts. Saab et al. [9] investigated three univariate
models, AR, ARIMA, and AR(1)/highpass filter, to forecast electrical energy consumption in Lebanon.
They found that AR(1)/highpass filter model yielded the best forecast for this data set. Fatai et al. [10]
used three econometric approaches to analyze the pattern of electricity consumption in New Zealand. They
found that autoregressive distributed lag approach has the best forecasting performance. Variables affecting
demand and energy consumption may vary from one region to another. A model developed for one region
may not be appropriate for another region. Electrical consumption models are required for a variety of
utility activities. Therefore, a model should be developed in different regions for efficient planning and
organization.

Taiwan’s energy consumption rises sharply from 52.01million kiloliters of oil in 1990 to 103.42million -
kiloliters of oil in 2003 because of rapid economy growth and higher living standard. Among the energy forms
consumed, petroleum took up 44.2% in 1990 to 39% in 2003; coal 12.8–10.7%; natural gas & liquid natural
gas 3–2.3%; and electricity 40–48%. Electricity consumption takes up almost 50% of the total final energy
consumption in 2003.

The main object of this study is to analyze and forecast Taiwan’s electricity consumption. Variables national
income (NI), population (POP), GDP, consumer price index (CPI), climate, and electricity price are concluded
to be the most possible factors to affect electricity consumption according to relating literature worldwide
[1–10], but the electricity price is not used because it is fixed and rarely changed in Taiwan. Therefore, this
paper proposes linear and nonlinear economy models to investigate the influence of NI, POP, GDP, and CPI
variables on the electricity consumption and then to forecast the consumption. They are useful for the
government authorities to control electrical energy supply. The rest of this paper is organized as follows:
Section 2 records the results of data analysis and review. Section 3 proposes three types of linear model and
nonlinear ANN models to analyze the relativity between the four economic factors and Taiwan’s electricity
consumption and to build economic forecasting models. Three statistics for comparison of linear and
nonlinear models are also introduced in this section. Section 4 presents the empirical results and comparisons
of the models, whereas the last section briefs our findings and presents conclusions.
2. Data analysis

The data applied here are 156 monthly data recorded in January 1990 through December 2002. The values
of ELEC, NI, POP, GDP and CPI are collected from the TEDC (Taiwan Economic Data Center) database
supervised by the Education Ministry Taiwan. Additionally, the monthly temperature (TEMP) record is
collected from 25 representative weather stations, set up by Taiwan Central Weather Bureau.

Table 1 shows the descriptive statistics for variables, and their linear relativities are recorded in Table 2. As
we can see, NI has rather high linear relativity with POP (0.99) and CPI (0.97), while POP reacts the same to
CPI (0.96). Fig. 1 shows the scatter plot of ELEC to four economic factors. Graphs exhibit logarithmic trend.
So, ln (ELEC) is considered dependent variable in this research. The linear relativities that ln (ELEC) has with
GDP, POP, NI and CPI are shown in Fig. 2; that of ELEC and ln (ELEC) with TEMP is shown in Fig. 3.
Fig. 4 shows the electricity consumed annually from 1990 to 2002. The consumption gradually increases to hit
the peak in summertime, and decreases to the bottom in wintertime.
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Table 1

Descriptive statistic analysis of variables

Variables Size Mean SD Minimum Maximum

ELEC (million) 156 10981.82 2968.50 5545.46 17850.50

LELEC (million) 156 9.27 0.28 8.62 9.79

GDP (million) 156 2629508 381299 1848485 3522562

POP (million) 156 21.379 0.688 20.117 22.453

NI (million) 156 576632 143911 322459 770914

CPI (%) 156 92.42 7.78 75.12 101.97

TEMP (1C) 156 21.91 3.91 14.44 27.96

Table 2

Correlations of the variables

ELEC LELEC GDP POP NI CPI TEMP

ELEC 1.00 0.990 0.63 0.92 0.89 0.86 0.45

(o0.0001) (o0.0001) (o0.0001) (o0.0001) (o0.0001) (o0.0001)

LELEC 1.00 0.65 0.93 0.91 0.90 0.45

(o0.0001) (o0.0001) (o0.0001) (o0.0001) (o0.0001)

GDP 1.00 0.68 0.68 0.67 0.06

(o0.0001) (o0.0001) (o0.0001) (0.4894)

POP 1.00 0.99 0.96 0.15

(o0.0001) (o0.0001) (0.0558)

NI 1.00 0.97 0.11

(o0.0001) (0.1572)

CPI 1.00 0.16

(0.0478)

TEMP 1.00

p-Values are in the parentheses.
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3. Methodology

Electricity demand has always been one of the critical economic issues in Taiwan. To investigate the
influence of the economic variables on electricity consumption and then to forecast the consumption, the
nonlinear ANN and three types of linear models, multiple log-linear regression (LNREG), response surface
regression (RSREG), and regression with ARMA errors model (ARMAX) are proposed. The out-of-sample
forecasting capabilities of all models are then compared.

3.1. LNREG, ARMAX and RSREG linear models

This section describes three types of linear model to analyze and forecast Taiwan’s electricity consumption.
Fig. 2 shows a linear relativity between logarithm function of electricity consumption and individual variable,
and Table 2 shows a close linear relativity among the four factors. As a result, the following seven log-linear
regression models are employed firstly. The last four models (Models 4–7) are nested, variables GDP, CPI,
and POP are added into Model 4 stepwise. The experimental formula (Model 5) is extracted after deleting POP
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Fig. 1. Scatter plot of ELEC vs. independent variables.
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and CPI variables selected by the Model 7 with statistics of Mallows C(p) [11], Adj-R2, and VIF (Variance
Inflation Factor). The procedure is practiced to prevent multicollinearity.

Model 1 : LELECt ¼ a1 þ b1TEMPt þ c1GDPt þ e1t, (1)

Model 2 : LELECt ¼ a2 þ b2TEMPt þ c2CPIt þ e2t, (2)

Model 3 : LELECt ¼ a3 þ b3TEMPt þ c3POPt þ e3t, (3)

Model 4 : LELECt ¼ a4 þ b4TEMPt þ c4NIt þ e4t, (4)

Model 5 : LELECt ¼ a5 þ b5TEMPt þ c5NIt þ d5GDPt þ e5t, (5)

Model 6 : LELECt ¼ a6 þ b6TEMPt þ c6NIt þ d6GDPt þ e6CPIt þ e6t, (6)

Model 7 : LELECt ¼ a7 þ b7TEMPt þ c7NIt þ d7GDPt þ e7CPIt þ f 7POPt þ e7t, (7)

where LELEC ¼ ln (ELEC).
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Fig. 2. Scatter plot of ln (ELEC) vs. independent variables.

Fig. 3. Scatter plot of (ELEC, ln (ELEC)) vs. temperature variable.
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Fig. 4. Electricity consumption in Taiwan.

H.-T. Pao / Energy 31 (2006) 2129–21412134
Among the above models, Model 1 through Model 4 present how the four economic factors affect electricity
consumption under controlled the temperature, respectively. And Model 5 is the economic forecasting model of
electricity consumption. Compared with Model 4, Model 5 is able to tell how the GDP has an effect on Taiwan’s
electricity consumption. On the other hand, standardized regression model (SRM) is applied to estimate
coefficients values. The standardized estimates may be used to compare the impact of independent variables on
the dependent variable. The Durbin–Watson test is applied to test the existence of the first order autoregressive
process for each model. The results of normality test, F-test, and DW test are presented in Table 3.

The model residuals are amplified by exponential transformation because we need to fit them with the log-
linear regression model and then must convert prediction for logarithmic back to untransformed units. So, we
build ARMAX and RSREG, two linear models, on the original values to analyze and forecast electricity
consumption. When the residuals in the regression model are significantly auto-correlated, the general
ARMAX model is used, which is written as

ELECt ¼ mþ o1TEMPt þ o2NIt þ o3GDPt þ
yqðBÞ

fpðBÞ
at, (8)

where

yqðBÞ ¼ 1� y1B� y2B2 � � � � � yqBq and

fpðBÞ ¼ 1� f1B� f2B2 � � � � � fpBp.

The roots of fpðBÞ ¼ 0 and yqðBÞ ¼ 0 should all lie outside the unit circle, where B is a backward shift
operator: BmðY tÞ ¼ Y t�m. This model shows that the response series is a combination of past values of
random shocks at and past values of other input series. ELECt serves as the response series while TEMPt, NIt,
GDPt are the input series.

The response surface regression model (RSREG) is another linear model to be used on the original values to
analyze and forecast electricity consumption. It fits the parameters of a complete quadratic response surface
and analyzes the fitted surface to determine the factor levels of optimal response, which is written as:

ELECt ¼ o0 þ o1TEMPt þ o2NIt þ o3GDPt þ o4TEMPt � TEMPt þ o5NIt �NIt

þ o6GDPt �GDPt þ o7TEMPt �NIt þ o8TEMPt �GDPt þ o9NIt �GDPt þ et. ð9Þ

An important limitation of response models is that they provide approximations to a surface, and the model
coefficients usually have no practical interpretation. This paper uses the above three models to predict
Taiwan’s electricity consumption.

3.2. ANN models

The (ANN) consists of an input layer, an output layer and one or more intervening layers also referred to as
hidden layers. Each layer consists of multiple neurons that are connected to neurons in adjacent layers. The
connection weights and node biases are the model parameters. Fig. 5 is a popular feed forward multilayer
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Table 3

Coefficients using regression and standardized regression

Intercept TEMP GDP CPI POP NI Adj-R2 Normality

(p-val)

F value

(p-val)

DW Size

Model 1 Estimate 7.554* 0.028* 4.07E-7* 96.24 0.225 132

(63.05) (7.77) (10.92) 0.5925 0.0060 (o0.0001)

Stand. 0 0.434 0.610

Model 2 Estimate 6.226* 0.022* 0.027* 806.92 1.137 132

(83.6) (14.42) (34.88) 0.9248 0.3100 (o0.0001)

Stand. 0 0.349 0.845

Model 3 Estimate 1.111* 0.023* 0.359* 1294.55 1.325 132

(6.55) (18.29) (44.38) 0.9518 0.0379 (o0.0001)

Stand. 0 0.355 0.860

Model 4 Estimate 7.818* 0.024* 1.57E-6* 1291.61 1.265 132

(247.62) (19.69) (44.33) 0.9517 0.0197 (o0.0001)

Stand. 0 0.381 0.857

Model 5 Estimate 7.732* 0.024* 5.44E-8* 1.47E-6* 930.59 1.373 132

(192.66) (20.45) (3.30) (32.30) 0.9551 0.1438 (o0.0001)

Stand. 0 0.381 0.082 0.803

VIF 0 1.01 1.79 1.80

Model 6 Estimate 7.449* 0.024* 5.39E-8* 0.005 1.21E-6* 712.53 1.442 132

(47.83) (19.99) (3.30) (1.87) (8.30) 0.9560 0.1898 (o0.0001)

Stand. 0 0.375 0.081 0.147 0.661

VIF 0 1.05 1.79 18.38 18.84

Model 7 Estimate 5.247* 0.023* 5.04E-8* 0.004 0.121 7.39E-7* 575.841 1.463 132

(3.51) (18.93) (3.07) (1.50) (1.48) (2.11) 0.9564 0.0823 (o0.0001)

Stand. 0 0.367 0.076 0.120 0.290 0.403

VIF 0 1.13 1.82 19.36 114.70 109.71

t Statistics are in the parentheses.

*Indicates statistical significance at the 0.05 level.
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ANN model. The input layer can be represented by a vector X ¼ ðx1; x2; . . . ;xmÞ
0, the middle layer can be

represented by a vector M ¼ ðm1;m2; . . . ;mhÞ
0, and y is the output.

To use an ANN model for forecasting, forecasters must first build it. The model building process is called
the network training or learning. Usually, in applications of ANNs, total available data are split into a
training set and a test set. The training set is used to build the network model and then the forecasting ability
of the network is evaluated from the test set. During the training process, a weighted sum of the inputs is
calculated at tth hidden node:

NETt ¼
Xm

i¼1

wtixi þ bt; t ¼ 1; 2; . . . ; h. (10)

Each hidden node then uses a sigmoid transfer function to generate an output:

mt ¼ ½1þ expð�NETtÞ�
�1 ¼ f ðNETtÞ; t ¼ 1; 2; . . . ; h. (11)

It is between 0 and 1. The outputs from each of the hidden nodes, along with the bias input bo, are then sent to
the output node and again calculated a weighted sum,

NET0 ¼
Xh

t¼1

vtmt þ b0. (12)
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The weighted sum becomes the input to the sigmoid transfer function of the output node. The jth resulting
output is then scaled to provide the predicted output value:

Ŷ j ¼ f ðNET0Þ ¼ ½1þ expð�NET0Þ�
�1; j ¼ 1; 2; . . . ; n. (13)

At this point, the second phase of the back-propagation algorithm, adjustment of the connection weights,
begins. The connection weights of the neural network can be determined by minimizing the objective function
of SSE in the training process:

SSE ¼
Xn

j¼1

ðyj � Ŷ jÞ
2, (14)

where n is the number of the training data.
Assume the relationship of Y and X is monotone, then to calculate the sensitivity Si of the outputs to each of

the ith inputs as a partial derivative of the output with respect to the input [12],

Si ¼
qŶ

qX i

¼
Xh

t¼1

qŶ

@NET0

@NET0

qmt

qmt

qNETt

qNETt

qX i

¼
Xh

t¼1

½f 0ðNET0Þvtf
0
ðNETtÞwti�. (15)

Assume f0 (NET0) and f0 (NETt) are constants and we ignore them, the relative sensitivity is

Ŝi ¼
Xh

t¼1

vtwti. (16)

The input variable with higher absolute value of relative sensitivity has the bigger impact on the output
variable. The step-by-step process is given below.
1.
 Training a neural network on all available data.

2.
 Using these weights, compute the sensitivity for each input variable.
More detailed materials about neural network learning can be found in Bishop [13].
Based on the above models, the following section focuses on the out-of-sample forecasting ability of the

linear and nonlinear models. More advanced models assume their residual values behave differently and offer
more options for better estimates. Conclusions and policies implications are then drawn as valuable tools for
managers in achieving optimal forecasting model.
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3.3. Forecasting evaluation methods

For the purpose of evaluating out-of-sample forecasting capability, we examine forecast accuracy by
calculating three different evaluation statistics, which are the root mean square error (RMSE), the mean
absolute error (MAE), and the mean absolute percentage error (MAPE). Their definitions are in the following:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðPi � AiÞ
2

,
n

vuut , (17)

MAE ¼
Xn

i¼1

jPi � Aij

,
n, (18)

MAPE ¼
Xn

i¼1

jðPi � AiÞ=Aij

,
n

 !
� 100, (19)

where Pi and Ai are ith predicted and actual value, and n is the total number of predictions.

4. Empirical results

In this section, we use LNREG, RSREG, ARMAX linear models, and ANN nonlinear models to
investigate the influence of the economic variables, POP, NI, GDP, and CPI on the electricity consumption
and then to build a forecasting model in Taiwan. The forecasting performances of the ANN models are
compared with those of the linear models using electricity consumption. The period under examination
extends from January 1990 to December 2002, with a total of 156 observations for each series. The data set is
used in two different ways in an attempt to experiment on the amount of historical data required for
generating better forecasts. The first experiment uses the 11-year data set from January 1990 to December
2000 as the training data, and forecast from January 2001 to December 2002. The second experiment uses only
the 4-year data set from January 1997 to December 2000 as the training data, and forecasts for the same time
horizon. The in-sample training period is used to build models and the out-of-sample testing period is used to
evaluate prediction ability.

4.1. Building LNREG, ARMAX and RSREG linear models

Models 1–4 in Section 3.1 investigate the influence of the four economic factors on the electricity
consumption, respectively, under the fixed temperatures. Table 3 indicates that POP and NI affect Taiwan’s
electricity consumption the most reaching 95.18% and 95.17%, respectively, followed by CPI (92.48%), and
GDP scores the least (59.25%) by using a 11-year training data set. The normality test and Durbin–Watson
test for residuals of each model are recorded in Table 3. Though GDP and CPI are both significant indicators
to a country’s economy, they do not affect Taiwan’s electricity consumption as much as the others. This could
result from Taiwan government’s enforcement on electricity saving and economizing policies.

Model 4 to Model 7 are nested models. Variables GDP, CPI and POP are added into Model 4 stepwise.
Adding CPI and POP to Model 5 increases Adj-R2 from 0.9551 to 0.9564, but their VIF are 114.70 and 109.71.
According as the value of VIF in Table 3 on the Models 4–7, Model 5 has much less multicollinearity than
Models 6 and 7. Moreover, from Table 2, we know that NI has rather high linear correlation with POP (0.99)
and CPI (0.97). All of them indicate that NI and POP, NI and CPI contribute very redundant information. To
avoid tedious linear model, TEMP, NI, and GDP are chosen as explanatory variables to predict electricity
consumption (Model 5). Results of Table 3 show that Model 5 has no multicollinearity problem, and both NI
and GDP are important significantly. Compared with Model 4, GDP on Model 5 has significant effect on
Taiwan’s electricity consumption, but it only surpasses Model 4 by 0.34% ( ¼ 95.51%�95.17%). The
estimated coefficients of standardized regression model show the most crucial factors affecting Taiwan’s
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Table 4

Coefficients of the linear models

Incept. Temp NI GDP Temp2 NI2 GDP2 Temp* Temp* NI* R2

NI GDP GDP

Log-linear regression model

11-year 7.73* 0.02* 1.5E-6* 5.4E-8* 0.96

(0.04) (0.001) (4.6E-8) (1.7E-8)

4-year 7.42* 0.02* 1.8E-6* 9.0E-8* 0.87

(0.14) (0.002) (1.9E-7) (2.6E-8)

Response surface regression model

11-year 4190.0 13.9 �0.001 �0.001 0.119 1.3E-9 2.3E-10 3.0E-3* 0.2E-3 4.1E-9 0.96

(3672.1) (191.7) (0.01) (0.03) (3.96) (5.0E-5) 6.1E-10 (0.00) (0.00) (2.7E-9)

4-year 45013 �220.1 �0.15 0.006 �12.22 9.5E-8 �1.3E-9 0.002* 4.2E-6 2.8E-9 0.90

(26713) (537.7) (0.09) (0.01) (9.27) (7.8E-8) (1.2E-9 (0.00) (0.00) (1.6E-8)

ARMAX model

11-year �1461.2 106.0* 0.02* 3.0E-3*

(830.29) (27.83) (0.002) (0.00)

4-year �12017* 305.0* 0.02* 0.001*

(2018.6) (24.69) (0.003) (0.00)

Standard errors are in the parentheses.

*Indicates statistical significance at the 0.05 level.
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electricity consumption, according to priority, are NI (0.803), TEMP (0.381), and GDP (0.082). The results
agree with those of Model 1–Model 4. The Adj-R2 of Model 5 reaches 95.51%, and passes the normality test
for residuals (p-val ¼ 0.1438). The Durbin–Watson statistic is d ¼ 1:373. To test positive autocorrelation at
a ¼ 0:05, we use dL;0:05 ¼ 1:64. Since dodL;0:05. We reject H0. That is, the error terms are positively auto-
correlated. The Adj-R2 and DW statistics of Model 5 using 4-year training data set are 85.78% and 1.624, and
coefficients are in Table 4. The forecast made by the log-linear regression should contain the variance term in
that if y is log-normally distributed and ln (y) has mean m and variance s2, EðyÞ ¼ expðmþ s2=2). Table 6
presents the forecasting results.

Because of the autocorrelations for residuals in Model 5, we use ARMA with input series, TEMP, NI and
GDP to build electricity consumption model on the original value. Table 4 shows the coefficient estimations of
Eq. (8) for 11-year and 4-year training data sets. Below is the error term equations for 11-year data set (figures
in parentheses are standard errors):

yqðBÞ ¼ ð1þ 0:255�B3Þ
ð0:09Þ

ð1þ 0:212�B4Þ
ð0:09Þ

ð1þ 0:226�B11Þ
ð0:10Þ

and

fpðBÞ ¼ 1� 0:241�B
ð0:07Þ

�0:712�B12

ð0:07Þ
. ð20Þ

Using 4-year training data set, the error term equations are:

yqðBÞ ¼ 1; fpðBÞ ¼ 1� 0:296��B3

ð0:16Þ
. (21)

The * or ** on the coefficient indicates that it is significant at the 5% or 10% level. Eq. (8) with Eq. (20) or
(21) gives the predicted values of electricity consumption.

We also build response surface regression models on the original values of electricity consumption. The
estimation values of Eq. (9) are presented in Table 4 for RSREG model using 11-year and 4-year training data
sets. Table 6 presents the forecasting results.

4.2. Building ANN models

We use 11-year (1990–2000) and 4-year (1997–2000) data sets as the training samples, while the 24 monthly
data recorded 2001 through 2002 are used as testing samples. Because the ANN can catch sophisticated
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Table 5

Sensitivities of electricity consumption to five variables

132 historical data 48 historical data

TEMP GDP CPI POP NI TEMP GDP CPI POP NI

Sensitivity 3.068 0.989 �2.344 7.696 15.142 2.453 0.809 �1.831 4.098 6.816
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nonlinear integrating effects through a learning process, all of the explanatory variables, POP, NI, GDP, CPI
and TEMP, are used as the network input values, and electricity consumption is the network output value.
More than 60 experiments are performed to determine the best combination of the learning rate, momentum,
number of hidden layers, number of hidden nodes, learning rule, and transfer function to utilize.

Throughout the training, the NeuralWare utility, ‘SAVEBEST’ is used to monitor and save the lowest root
mean square (RMS) error from the testing set. The best RMS error result is obtained using a learning rate of
0.2, a momentum of 0.1, and 6 neurons in a single hidden layer that use the generalized delta learning rule and
a sigmoid transfer function. The best architecture for 11-year data set contains 5 input layer neurons, 6 hidden
neurons, and 1 output layer neuron (5:6:1 architecture). For 4-year data set, the best architecture is 5:5:1. The
estimations of connection weights wti and vt are obtained, then apply them to formula (16) to calculate the
sensitivities Ŝi. The absolute sensitivity value of each input variable represents its relative effect with electricity
consumption. Crucial factors affecting electricity consumption are, by priority, NI, POP, TEMP, CPI and
GDP. Their absolute sensitivities are 15.142, 7.696, 3.068, 2.344 and 0.989 for 11-year data set, 6.816, 4.098,
2.453, 1.831 and 0.809 for 4-year data set (see Table 5). The results agree with that of regression model on
which the economy indicators, GDP and CPI, are not the key factors to Taiwan’s electricity consumption, but
POP and NI are.

Once the eight models to predict monthly electricity consumption are developed, we empirically examine the
relative effectiveness of the models in predicting electricity consumption using the data from January 2001 to
December 2002.
4.3. Out-of-sample forecasting performance results

We use three statistics, RMSE, MAE, MAPE, and scatter diagram to see the out-of-sample ability of the
linear and nonlinear models. Panel A of Table 6 shows that the statistics of the ARMAX model (the optimal
linear model) are 931.13%, 764.90% and 4.83% for an 11-year training data set while those of the ANN
model decrease to 635.38%, 460.74%, and 3.19%. Panel B of Table 6 shows the statistics of the RSREG
model (the optimal linear model) are 1295.43%, 1171.78% and 7.58% for a 4-year training data set while
those of the ANN model fall sharply to 709.25%, 598.65% and 4.02%. It is because: (1) the linear model has
been tested to make good forecasts for seasonal time series over a short-term period; however, it requires large
amount of historical data; (2) the ANN is capable of catching sophisticated nonlinear integrating effect
through a learning process. Fig. 6 presents both forecasting values (the ANN and linear models) and actual
value of ELEC. It clearly shows that the ANN forecast value is closer to the ELEC actual value, and the linear
model is weaker on foretelling peaks and bottoms. This result proves that the ANN is more appropriate to be
applied to build an economic forecasting model for Taiwan’s electricity consumption regardless of the amount
of historical data.
5. Conclusion

By adopting the linear and nonlinear ANN methods, surprisingly, we find that economy indicators, GDP
and CPI, have less effect on Taiwan’s electricity consumption than POP and NI. Factors NI, TEMP, and
GDP are contained in the superior linear economic forecasting model after excluding the multicollinearity.
From the ANN model, we obtain the crucial factors, by priority, NI, POP, TEMP, CPI and GDP. By
comparing scatter diagram and three statistics, RMSE, MAE, and MAPE for out-of-sample forecasting



ARTICLE IN PRESS

Table 6

Comparing forecasting measurement errors

Panel A Panel B

132 historical data 48 historical data

RMSE MAE MAPE RMSE MAE MAPE

LNREG 1508.96 1341.57 8.60% 1542.43 1376.26 8.84%

RSREG 1701.90 1489.72 9.51% 1295.43 1171.78 7.58%

ARMAX 931.13 764.90 4.83% 1566.34 1386.99 8.88%

ANN 635.38 460.74 3.19% 709.25 598.65 4.02%

Fig. 6. Actual and forecasted values of Taiwan’s electricity consumption ((a) 132 historical data, (b) 48 historical data).

H.-T. Pao / Energy 31 (2006) 2129–21412140
ability of linear and the ANN models, the major findings included the following. (1) If given a large amount of
historical data, the forecasts of ARMAX is better than the other linear models. (2) The linear model is weaker
on foretelling peaks and bottoms regardless the amount of historical data. (3) The forecasting performance of
ANN is higher than the other linear models based on two sets of historical data considered in the paper. This
is probably due to the fact that the ANN model is capable of catching sophisticated nonlinear integrating
effects through a learning process. To sum up, the important economic variables of the electricity
consumption selected by both methods are consistent. Researchers can employ either ANN or linear model to
extract them. Moreover, the ANN model is more appropriate between the two to help us build the economy-
forecasting model of Taiwan’s electricity consumption. Furthermore, it is possible to use the linear and
nonlinear hybrid model and univariate time series to forecast energy consumption.
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