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Abstract

A nondestructive evaluation method using vibration data to determine mechanical properties (material and spring

constants) of elastically restrained laminated composite plates is presented. The Rayleigh–Ritz method in which a set of

Legendre’s polynomials is adopted to approximate the plate deflection is used to determine the theoretical natural

frequencies of the elastically restrained laminated composite plates. A number of natural frequencies extracted from the

impulse vibration test data of the laminated composite plates supported by elastic restraints at both the edges and centers

of the plates are used in the present method to determine the mechanical properties of the plates. The sum of the squared

differences function which measures the differences between the experimentally and theoretically predicted natural

frequencies of the elastically restrained laminated composite plates is established. The identification of the plate mechanical

properties is then formulated as a constrained minimization problem in which the mechanical properties are determined by

making the sum of the squared differences function a global minimum. The feasibility and accuracy of the proposed

method are studied by means of several numerical examples on the mechanical properties identification of elastically

restrained laminated composite plates with different layups made of various composite materials. Experimental

investigation of the mechanical properties identification of several elastically restrained laminated composite plates has

been performed to illustrate the applications of the present method. It has been shown that the present method can

produce good estimates of the mechanical properties of the elastically restrained laminated composite plates in an efficient

and effective way.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Owing to their many advantageous properties, the fiber-reinforced composite plates have been increasingly
used in the aeronautical and aerospace industry as well as many other fields of modern technology. The
attainment of the actual behavioral predictions of such structures usually depends on the correctness of the
system parameters of the structures such as the elastic constants of the materials constituting the structures
and the stiffnesses of the supports restraining the structures. As is well known, composite structures fabricated
by different methods or curing processes may possess different mechanical properties and the material
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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constants of the structures in service will change due to structural and material degradations. Therefore, the
material properties determined from standard specimens tested in laboratory in general may deviate from
those of the laminated composite components manufactured in factory or the existing composite structures. In
recent years, the determination of realistic material constants of structural components/structures has become
an important topic of research and different techniques for elastic constants identification of beam and plate
types of structures have been proposed. For instance, Castagnède et al. [1] determined the elastic constants of
thick composite plates via a quantitative ultrasonic approach. Fallstrom and Jonsson [2] determined the
material constants of anisotropic plates using the frequencies and mode shapes measured by a real-time TV-
holography system. Nielsenand and Toftegaard [3] used the ultrasonic measurement approach to obtain the
elastic constants of fiber-reinforced polymer composites under the influence of absorbed moisture. Berman
and Nagy [4] used measured normal modes and natural frequencies to improve an analytical mass and
stiffness matrix model of a structure. Kam and his associates [5–10] developed methods to identify the element
bending stiffnesses of beam structures using measured natural frequencies and mode shapes and determine
elastic constants of shear deformable laminated composite plates using measured strains and/or displacements
obtained from static testing of the plates. Recently, a number of researchers have used experimental natural
frequencies to identify the elastic constants of laminated composite plates with free boundary conditions
[11–18]. For instance, Moussu and Nivoit [14] used the method of superposition to determine the elastic
constants of free rectangular plates from the measured experimental natural frequencies of the plates. Wilde
and Sol [15] used the method of Bayesian estimation to study the identification of elastic constants from the
experimental natural frequencies of free rectangular composite plates. Araujo et al. [16,17] used an
optimization method to determine the elastic constants of free composite plates using the measured natural
frequencies of the plates. In general, the previously proposed methods were only applicable for plates with
simple boundary conditions and might require the use of 12–16 natural frequencies in the elastic constants
identification process if obtaining results with satisfactory accuracy was desired. In view of the fact that the
dynamical behaviors of plates with elastic restraints are very different from those with simple boundary
conditions, when using vibration data to identify the mechanical properties of a flexibly supported plate, it is
expected that the elastic restraints of the plate will play an important role in the identification. Therefore, if
realistic mechanical properties of the plate are to be determined nondestructively, the effects of the elastic
restraints on the identified properties must be taken into consideration. Although the system identification
of plates with flexible supports is an important topic of research, so far not much work has been devoted to
this area.

In this paper, a nondestructive evaluation method is presented for the identification of mechanical
properties of laminated composite plates elastically restrained both at the edges and in the interior of the
plates. The Rayleigh–Ritz method together with an appropriate set of characteristic functions is used to
predict the natural frequencies of the flexibly supported laminated composite plates. Vibration tests of the
flexibly supported laminated composite plates are performed to extract the natural frequencies of the plates
from the measured vibration data. The sum of the squared differences function which measures the differences
between the experimental and theoretical predictions of natural frequencies of the laminated composite plates
is established. The identification of mechanical properties is then formulated as a constrained minimization
problem in which the mechanical properties are determined by making the sum of the squared differences
function a global minimum. A multi-start global minimization method is used to search for the global
minimum and a normalization technique for normalizing the design variables is adopted to increase the
convergence rate of the solution. A number of examples of the mechanical properties identification of
elastically restrained laminated composite plates with different layups made of different composite materials
are given to illustrate the accuracy and feasibility of the proposed method. Several flexibly supported
laminated composite plates are subjected to impulse vibration testing. The measured natural frequencies of the
composite plates are used in the present method to identify the mechanical properties of the plates.

2. Plate vibration analysis

Without loss of generality, consider the elastically restrained rectangular symmetrically laminated
composite plate of area a0� b0 and constant thickness h composed of a finite number of orthotropic layers
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of same material properties and thickness in Fig. 1. The x and y coordinates of the plate are taken in the mid-
plane of the plate. The plate is supported continuously around the edges by flexible strip-type pads of cross-
sectional dimensions be� he and at the center by an annulus-type flexible restraint with inner radius ri. For the
flexible supports considered in this study, it is further assumed that the dimensions, be and ri, of the elastic
supports are much smaller than the plate dimensions, a0 and b0, so that the edge flexible supports of the plate
can be modeled by longitudinal and torsional springs while the center support by a longitudinal spring as
shown in Fig. 2. It is noted that the plate size used in the vibration analysis is a� b in which a ¼ a0 � be and
b ¼ b0 � be. For free vibration, the plate vertical displacement w(x, y, t) is assumed to be of the form

wðx; y; tÞ ¼W ðx; yÞ sin ot, (1)

where W(x, y) is the deflection function and o is the angular frequency. According to the classical lamination
theory with the neglect of the rotary inertia effect, the maximum strain energy UP and maximum kinetic
energy T of the plate are expressed as [19]
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Fig. 1. Elastically restrained laminated composite plate.
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Fig. 2. Mathematical model of elastically restrained composite plate.
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where Dij are bending stiffness coefficients and r is material density. The bending stiffness coefficients are
given by

Dij ¼

Z h=2

�h=2
Q̄
ðmÞ

ij z2 dz ði; j ¼ 1; 2; 6Þ. (4)

The transformed lamina stiffness coefficients Q̄
ðmÞ

ij depend on the material properties and fiber orientation of
the mth layer. For a layer with zero fiber angle, the lamina stiffness coefficients are expressed as

Q11 ¼
E1

1� n12n21
; Q12 ¼

n12E2

1� n12n21
¼ Q21; Q22 ¼

E2

1� n12n21
,

Q66 ¼ G12 with
n12
E1
¼

n21
E2

, ð5Þ

where E1, E2 are Young’s moduli in the fiber and transverse directions, respectively; nij is the Poisson’s
ratio for transverse strain in the j-direction when stressed in the i-direction; G12 is shear modulus in the
1–2 plane.
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For the plate with spring-type elastic supports, additional strain energy stored in the supporting springs
exists. The maximum strain energy of the flexible restraints is

UB ¼
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where kLi and kRi (i ¼ 1; . . . ; 4) are spring constants per unit length of the edge longitudinal and torsional
springs, respectively; kC is spring constant of the center spring. The integrals in the brackets of the above
equation are evaluated at the four edges of the plate. Herein, the equivalent translational and rotational spring
constants of the flexible strip-type pad with cross-sectional area of be� he and Young’s modulus Ee used as an
edge support as shown in Fig. 3 are to be approximated via the mechanics of materials approach. In the
determination of the translational spring constant, it is assumed that the load is distributed uniformly on the
top surface of the edge support where the top surface after deformation remains plane and horizontal as
shown in Fig. 3a. Hence, when treating the flexible pad of unit length as an axial member, the translational
spring constant per unit length is obtained as

kL ¼
Eebe

he

. (7)

To determine the rotational spring constant, it is assumed that the moment-induced load is distributed linearly
across the width of the support where the top surface of the pad remains plane after rotation as shown in
Fig. 3b. Hence, when treating the top surface of the flexible pad of unit length as a beam section, the rotational
spring constant per unit length is obtained as

kR ¼
Eeb3

e

12he

. (8)

In view of Eqs. (2) and (6), the total strain energy, U, is then written as

U ¼ UP þUB. (9)

Based on the Rayleigh–Ritz method, the deflection function expressed in the nondimensional form is

W ðx; ZÞ ¼
XI

i¼1

XJ

j¼1

CijfiðxÞjjðZÞ, (10)

where Cij are undetermined displacement coefficients, fi(x) and fj(Z) are the characteristic functions. In this
study, the Legendre’s orthogonal polynomials with x ¼ ð2x=aÞ � 1 for �1pxp1 and Z ¼ ð2y=bÞ � 1 for
�1pZp1 are chosen to formulate the characteristic functions. In terms of the Legendre’s orthogonal
polynomials, for instance, fi(x) can be written as

f1ðxÞ ¼ 1,

f2ðxÞ ¼ x

and if nX3,

fnðxÞ ¼ ½ð2n� 3Þx� fn�1ðxÞ � ðn� 2Þ � fn�2ðxÞ�=ðn� 1Þ. (11)

It is noted that the above characteristic functions fi(x) satisfy the orthogonality conditionZ 1

�1

fnðxÞfmðxÞdx ¼
0 if nam;
2

ð2n�1Þ
if n ¼ m:

(
(12)
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Fig. 3. Model of edge support made of elastic pad.
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Extremization of the functional P which is defined as P ¼ U � T with respect to the displacement coefficients
Cij leads to the following eigenvalue problem:

ð½K� � l2½M�ÞfCg ¼ 0 (13)

with K ¼ KP+KB where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho2a4=D0

p
, the nondimensionalized natural frequencies; {C} is the

displacement coefficient vector; D0 ¼ E1h
3=½12ð1� n12n21Þ�; K is the structural stiffness matrix of the flexibly

supported plate; KP and KB are portions of the structural stiffness matrix contributed by the stiffnesses of the
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laminated plate and edge restraints, respectively. The elements of KP, KB, and M are obtained, respectively, as
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and

½M�mnij ¼ E00
miF

00
nj ; m; i ¼ 1; 2; 3; . . .M ; I ; n; j ¼ 1; 2; 3; . . .N; J; a ¼ a=b (16)

with

Ers
mi ¼

Z 1

�1

drfmðxÞ
dxr

dsfiðxÞ
dxs

� �
dx; Frs

nj ¼

Z 1

�1

drjnðZÞ
dZr

dsjjðZÞ

dZs

� �
dZ; r; s ¼ 0; 1; 2, (17)

ðK1;K2;K3;K4Þ ¼ ðkL1a
3=D0; kL2a3=D0; kL3b

3=D0; kL4b3=D0Þ, (18)

ðR1;R2;R3;R4Þ ¼ ðkR1a=D0; kL2a=D0; kL3b=D0; kL4b=D0Þ (19)

and

K ¼ kCb2=D0. (20)

The solution of Eq. (13) gives the theoretical natural frequencies of the flexibly supported laminated composite
plate. The theoretically predicted natural frequencies may deviate from the actual natural frequencies of the
flexibly supported laminated composite plate if incorrect mechanical properties such as E1, E2, G12, n12, Ee and
kC are used in the frequency analysis of the plate. In the following section, a method is presented to identify the
mechanical properties of flexibly supported laminated composite plates by minimizing the differences between
the theoretical and experimental predictions of natural frequencies of the plates.

3. The inverse problem

The problem of mechanical properties identification of elastically restrained laminated composite plates is
formulated as a minimization problem. In mathematical form it is stated as

Minimize eðxÞ ¼ ðx�Þtðx�Þ;

Subject to xL
i pxipxU

i ; i ¼ 1�N;
(21)

where x ¼ ½E1;E2;G12; n12;Ee; kC � the vector containing the design variables used to denote the mechanical
properties of the elastically restrained laminated composite plates; x* is an N� 1 vector containing the
differences between the measured and predicted values of the natural frequencies; e(x) is the sum of the
squared differences function measuring the differences between the predicted and measured data; xL

i , xU
i are

the lower and upper bounds of the design variables. The elements in x* are expressed as

o�i ¼
opi � omi

omi

; i ¼ 12N, (22)

where opi, omi are predicted and measured values of the natural frequencies, respectively. The above problem
of Eq. (21) is then converted into an unconstrained minimization problem by creating the following general
augmented Lagrangian [20]:

W̄ð ~x;l;g; rpÞ ¼ eð ~xÞ þ
X6
j¼1

½mjzj þ rpz2j þ Zjfj þ rpf
2
j � (23)
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with

zj ¼ max gjð ~xjÞ;
�mj

2rp

� �
; gjð ~xjÞ ¼ ~xj � ~xU

j p0,

fj ¼ max Hjð ~xjÞ;
�Zj

2rp

� �
; Hjð ~xjÞ ¼ ~xL

j � ~xjp0; j ¼ 1� 6, ð24Þ

where mj, Zj, gp are multipliers; max [*,*] takes on the maximum value of the numbers in the bracket. The
modified design variables ~x are defined as

~x ¼
E1

a1
;
E2

a2
;
G12

a3
; n12;

Ee

a4
;
kC

a5

� �
, (25)

where ai are normalization factors. It is noted that the values of ai can affect the search direction and properly
selected values of ai can help expedite the convergence of the solution. In general, the values of ~xiði ¼ 1; . . . ; 4Þ
are best chosen to be greater than 0 and less than 10. The modified design variables ~x are only used in the
minimization algorithm while the original variables x are used in the Rayleigh–Ritz method to determine the
natural frequencies of the plate. The updated formulas for the multipliers mj, Zj, and gp are

mnþ1
j ¼ mn

j þ 2rn
pzn

j ; Znþ1
j ¼ Zn

j þ 2rn
pf

n
j ; j ¼ 126,

rnþ1
p ¼

g0rn
p if rnþ1

p ormax
p ;

rmax
p if rnþ1

p Xrmax
p ;

8<
: ð26Þ

where the superscript n denotes iteration number; g0 is a constant; rmax
p is the maximum value of rp. The

parameters m0j , Z
0
j , r0p, g0, rmax

p chosen based on experience are

m0j ¼ 1:0; Z0j ¼ 1:0; r0p ¼ 0:4; g0 ¼ 2:5; rmax
p ¼ 100: (27)

The constrained minimization problem of Eq. (23) has thus become the solution of the following
unconstrained optimization problem:

Minimize W̄ð ~x;l;g; rpÞ. (28)

The above unconstrained optimization problem is to be solved using a multi-start global optimization
algorithm. In the adopted optimization algorithm, the objective function is treated as the potential energy of a
traveling particle and the search trajectories for locating the global minimum are derived from the equation of
motion of the particle in a conservative force field [21,22]. The design variables, i.e., the plate elastic constants,
Young’s modulus of the edge elastic restraints, and spring constant of the interior support, that make the
potential energy of the particle, i.e., objective function, the global minimum constitute the solution of the
problem. In the minimization process, a series of starting points for the design variables of Eq. (25) are selected
at random from the region of interest. The lowest local minimum along the search trajectory initiated from
each starting point is determined and recorded. A Bayesian argument is then used to establish the probability
of the current overall minimum value of the objective function being the global minimum, given the number
of starts and the number of times this value has been achieved. The multi-start optimization procedure is
terminated when a target probability, typically 0.99, has been exceeded.

4. Experimental investigation

A number of elastically restrained square laminated composite plates with layups [01]8, [01/901]2S, and [451/
�451/451]S were fabricated for experimental investigation. The laminated composite plates were supported by
strip-type elastic pads with cross-sectional dimensions of be ¼ 5:0mm and he ¼ 2:1mm around the peripheries
of the plates with or without an annulus-type flexible support at the plate centers. The materials used to
fabricate the laminated composite plates were T300/2500 graphite/epoxy prepreg tapes produced by Torayca
Co., Japan. The elastic constants of the cured graphite/epoxy laminates were first determined experimentally
using the standard testing procedure in accordance with the relevant ASTM specifications [23]. The means and
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coefficients of variation (c.o.v.) of the elastic constants determined using three standard specimens for each
test are as follows:

E1 ¼ 146:503GPað0:72%Þ; E2 ¼ 9:223GPað1:19%Þ; G12 ¼ 6:836GPað3:16%Þ,

n12 ¼ 0:306ð0:19%Þ. ð29Þ

The values in the parentheses in the above equation denote the c.o.v.’s of the elastic constants of the composite
material. The average layer thickness and mass density of the laminated composite plates were 0.125mm and
1543 kg/m3, respectively. The elastic constant Ee of the edge supporting pads was also determined following
the standard ASTM tensile testing procedure. The mean and c.o.v. of Ee are 2.028MPa and 2.3%,
respectively. The center annulus support, which was made of corrugate fabric as shown in Fig. 4, was
connected to the plate via a hollow cylindrical tube with negligible mass. The inner and outer radii of the
center annulus support were ri ¼ 12:5mm and r0 ¼ 16mm, respectively. The translational spring constant of
the center annulus support determined from static testing was kC ¼ 3:865 kN=m.

The elastically restrained laminated composite plates were subjected to impulse vibration testing using the
experimental setup shown in Fig. 5. In the vibration testing, a hand-held impulse hammer (Kistler 9722A500,
Kistler Instrument, USA) was used to excite the composite plate at different points on the plate, a force
transducer (Kistler 9904A, Kistler Instrument, USA) attached to the hammer’s head to measure the input
forces, an accelerometer (AP19, APTechnology, Netherland) of mass 0.14 g, which is about 0.2% of the plate
weight, located at different points on the plate to pick up the vibration response data, and a data acquisition
and analysis system (B&K 3560C and B&K Pulse Labshop Version 6.1) to process the vibration data from
which the natural frequencies of the composite plates were extracted. A series of tests had shown that the light
accelerometer weight had negligible effects on the measured natural frequencies. Each flexibly supported
composite plate was then tested for 15 times and each test produced a set of vibration data for constructing the
frequency response spectrum of the plate. In general, the modal damping ratios of the plates were small, less
than 2%, for the first seven modes of the plates. Therefore, without loss of generality, it is assumed that the
effects of damping on the natural frequencies of the plate were negligible and not taken into consideration
when extracting the natural frequencies from the frequency response spectrum of the plate. Herein, the first
seven natural frequencies were extracted directly from the corresponding peaks in the frequency response
spectra of the plates. For illustration purpose, Fig. 6 shows a typical frequency response spectrum of the
Plate

Hollow tube

Corrugate fabric annulus

ri

ro

Movement direction

Fig. 4. Schematic description of center support.
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Fig. 6. Frequency response spectrum of the [451/�451/451]S plate restrained peripherally and centrally.
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Table 1

Measured natural frequencies of peripherally and elastically restrained square composite plates with or without center support

Layup Plate dimensions and

weight

Center support

kC (kN/m)

Natural frequency

1st 2nd 3rd 4th 5th 6th 7th

[01]8 Length (cm) 20.5 0 120 187 311 417 467 490 552

Thickness

(mm)

1 (0.45%)a (0.24%) (0.27%) (0.55%) (0.70%) (0.18%) (0.28%)

3.865 143 183 310 418 459 474 549

Weight (g) 64.63 (0.49%) (0.77%) (0.61%) (0.66%) (0.39%) (0.37%) (0.51%)

[01/901]2S Length (cm) 20.5 0 122 281 364 469 574 710 773

Thickness

(mm)

1 (0.67%) (0.43%) (0.75%) (0.11%) (0.47%) (0.57%) (0.59%)

3.865 145 284 367 467 582 707 781

Weight (g) 64.72 (0.24%) (0.37%) (0.35%) (0.28%) (0.53%) (0.62%) (0.06%)

[451/�451/451]S Length (cm) 19.5 0 126 261 301 444 523 554 660

Thickness

(mm)

0.75 (0%) (0%) (0.18%) (0.12%) (0.22%) (0.15%) (0.25%)

3.865 158 270 309 458 534 575 677

Weight (g) 44.23 (0.74%) (0.33%) (0.67%) (0.96%) (0.32%) (0.27%) (0.62%)

aThe values in parentheses denotes the coefficient of variation of the measured natural frequency.
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[451/�451/451]S plate restrained peripherally and centrally. It is noted that the first seven natural frequencies of
the [451/�451/451]S plate can be easily identified from the peaks of the frequency response spectrum as shown
in the figure. The means and c.o.v.’s of the first seven measured natural frequencies of the peripherally
restrained composite plates with or without center elastic supports determined from the impulse vibration
testing of the plates are listed in Table 1. It is noted that the c.o.v.’s of the measured natural frequencies are
less than or equal to 0.96%. In the elastic constants identification of the plates as will be described in the
following section, the means of measured natural frequencies will be treated as the measured natural
frequencies in Eq. (22) for identifying the mechanical properties of the plates.

5. Results and discussion

Before proceeding to the mechanical properties identification of the elastically restrained laminated
composite plates which have been tested, the present method in predicting natural frequencies and identifying
mechanical properties of elastically restrained composite plates made of different materials is worth studying.
The present method is first used to predict the natural frequencies of several laminated composite plates with
different boundary conditions. A convergence study has shown that the numbers of the characteristic
functions in Eq. (10) being I ¼ J ¼ 10 are sufficient to make the solutions of the flexibly supported plates with
or without center supports to converge. Therefore, the number of terms of I � J ¼ 10� 10 for the
characteristic functions in the Rayleigh–Ritz method is chosen to evaluate the natural frequencies of the plates
under consideration. The results obtained by the present method are listed in Table 2 in comparison with those
available in the literature [24,25] or obtained in the finite element analyses of the plates using the commercial
code ANSYS [26]. For the cases with infinite kL, the value of kL is chosen as 108KN/m2 in the analyses when
using the present method or ANSYS to solve the problems. It is noted that the present method can predict
excellent natural frequencies for the laminated composite plates with or without center elastic supports. Next
study the capability of the present method in mechanical properties identification of various elastically
restrained laminated composite plates made of graphite/epoxy (Gr/ep) or glass/epoxy (Gl/ep) composite
materials. The sizes of the square and rectangular plates are 200mm� 200mm and 200mm� 100mm,
respectively. The elastic constants of the Gr/ep and Gl/ep composite materials are as follows:

Gr=ep : E1 ¼ 131GPa; E2 ¼ 11:2GPa; G12 ¼ 6:55GPa; n12 ¼ 0:28; r ¼ 1550 kg=m3,

Gl=ep : E1 ¼ 43:5GPa; E2 ¼ 11:5GPa; G12 ¼ 3:45GPa; n12 ¼ 0:27; r ¼ 2000 kg=m3. ð30Þ
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Table 2

Natural frequencies of square plates predicted by different methods

Layup Edge support Center

support

Method Natural frequency l

kL kR kC 1st 2nd 3rd 4th 5th 6th 7th

[01/901/01] 2 (MN/m2) 800 (N) 5 (kN/m) Presenta 28.95 29.68 48.89 57.18 61.02 63.11 69.93

ANSYS [26] 28.90 29.46 48.53 57.00 60.84 63.05 69.76

[451/�451/451] 100 (kN/m2) 100 (N) 1 (kN/m) Present 17.60 22.93 28.95 31.33 37.59 39.79 44.58

ANSYS [26] 17.49 22.83 28.89 31.24 37.57 39.72 44.55

[01/901/01] N 0 0 Present 13.95 21.76 38.64 51.21 55.79 63.99 66.98

ANSYS [26] 13.94 21.74 38.61 51.17 55.74 63.88 66.90

Masoud [24] 13.95 — — — — — —

Reddy [25] 13.948 — — — — — —

20 0 Present 25.90 33.33 49.59 69.39 74.04 74.79 84.85

ANSYS [26] 25.71 33.16 49.41 68.92 73.58 74.46 84.40

Masoud [24] 25.91 — — — — — —

20 0 Present 31.24 38.64 55.73 82.94 84.51 88.81 99.34

ANSYS [26] 30.96 38.39 55.48 82.53 83.80 88.12 98.67

Masoud [24] 31.24 — — — — — —

aMaterial property and definition of normalized natural frequency for the analysis: E1 ¼ 200GPa, E2 ¼ 10GPa, G12 ¼ 6GPa,

n12 ¼ 0:25, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rho2a4=D0

p
.

Table 3

Actual natural frequencies of the Gr/ep and Gl/ep plates supported by elastic restraints with different rigidities

Material Layup Shape Edge

support Ee

(MPa)

Center

support kC

(kN/m)

Natural frequency

1st 2nd 3rd 4th 5th 6th 7th

Gr/ep [01/901/01]S Square 1 1 106.159 210.290 287.920 360.594 424.408 531.693 612.360

10 163.290 210.290 287.920 360.594 444.188 531.693 627.521

Rectangular 15 1 310.451 446.202 755.975 852.199 941.920 1158.707 1213.974

10 368.062 446.202 783.529 852.199 941.920 1158.707 1213.974

[451/�451]2S Square 1 1 152.074 317.208 348.261 526.847 611.322 630.898 777.177

10 189.412 317.208 348.261 530.342 611.322 647.641 777.177

Rectangular 15 1 411.270 638.073 969.090 1145.644 1394.426 1432.504 1840.852

10 445.426 638.073 984.205 1145.644 1394.426 1432.566 1840.852

Gl/ep [01/901/01]S Square 1 1 71.817 132.677 161.183 215.186 266.810 329.155 338.956

10 120.301 132.677 161.183 215.186 284.263 329.155 363.741

Rectangular 15 1 218.688 288.550 455.579 562.911 618.972 696.449 739.844

10 274.087 288.550 494.273 562.911 618.972 696.449 739.844

[451/�451]2S Square 1 1 92.877 190.224 202.845 319.178 367.807 374.863 482.650

10 132.318 190.224 202.845 321.233 367.807 400.575 482.650

Rectangular 15 1 265.755 387.479 580.410 705.413 831.212 860.262 1089.689

10 304.749 387.479 601.264 705.413 831.212 860.303 1089.689

C.R. Lee, T.Y. Kam / Journal of Sound and Vibration 295 (2006) 999–10161010
Each laminated composite plate is peripherally supported by same strip-type elastic pads and centrally
supported by an elastic spring. Different values for the Young’s modulus Ee of the elastic pads and spring
constant kC of the center elastic spring are adopted in the study. The first seven actual natural frequencies of
the elastically restrained composite plates under consideration are listed in Table 3. The actual natural
frequencies in Table 3 will be treated as ‘‘measured’’ natural frequencies and used in the numerical study to
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identify the mechanical properties of the elastically restrained plates. The square [451/�451]2S plate made of
Gr/ep material supported by edge elastic pads with Ee ¼ 1:0MPa and center support with spring constant
kC ¼ 1 kN=m is used as an example to demonstrate the identification process of the present method. The
upper and lower bounds of the mechanical properties adopted in solving the identification problem are chosen
based on experience

0pE1p400GPa; 0pE2p40GPa; 0pG12p20GPa;

0pn12p0:5; 0pEep20MPa; 0pkCp20 kN=m: ð31Þ

The modified design variables of Eq. (25) are obtained via the use of the following normalization factors

a1 ¼ 100 (32a)

and

ai ¼ 10 ði ¼ 2� 5Þ. (32b)

It is noted that the use of the above normalization factors can adjust the search direction in such a way
that the convergence of the solution can be expedited. The randomly generated starting points, the lowest
local minima for the starting points, numbers of iterations required to obtain the lowest local minima,
and the global minimum for the Gr/ep [451/�451]2S plate using 5 and 6 ‘‘measured’’ natural frequencies in
identifying the mechanical properties are listed in Tables 4 and 5, respectively. For the cases under
consideration, six starting points are sufficient to find the global minima and around seven iterations to obtain
the lowest local minima for the starting points during the minimization process. A further study has shown
that the actual mechanical properties can definitely be identified when more than six ‘‘measured’’ natural
frequencies are used in the present method. Similarly, the mechanical properties of the other elastically
restrained composite plates in Table 3 can be identified using the same identification procedure. Herein, six
‘‘measured’’ natural frequencies have been used in the identification process to identify the mechanical
properties of the elastically restrained Gr/ep and Gl/ep plates. The results have shown that the actual
mechanical properties of the plates can be obtained for all the cases under consideration irrespective of the
rigidities of the flexible supports. It is worth noting that if the number of spring constants and elastic constants
Table 4

Mechanical properties identification of the square Gr/ep [451/�451]2S plate using five ‘‘measured’’ natural frequencies

Starting

point no.

Stage Mechanical property

E1 (GPa) E2 (GPa) G12 (GPa) n12 Ee (MPa) kC (kN/m) Sum of squared

differences

Number of

iterations

1 Initial 310.387 27.119 13.090 0.1464 14.643 0.978 2.2251E+0 5

Final 132.894 11.008 7.637 0.0322 1.016 0.980 1.40E�16

2 Initial 188.674 23.736 7.596 0.2094 17.884 0.274 7.2722E�1 10

Final 132.895 11.007 7.638 0.0320 1.016 0.980 1.072E�16

3 Initial 130.031 23.142 16.456 0.0698 9.797 16.291 4.5275E�1 9

Final 132.894 11.007 7.638 0.0321 1.016 0.980 1.139E�16

4 Initial 193.400 6.969 5.425 0.3481 14.904 9.830 6.9981E�1 8

Final 102.814 9.063 7.957 0.2908 7.471 0.291 5.1718E�4

5 Initial 130.976 11.236 18.951 0.0447 10.671 0.077 1.1503E�1 9

Final 132.894 11.007 7.638 0.0321 1.016 0.980 1.45E�16

6 Initial 149.957 32.578 12.079 0.3394 5.183 2.197 3.4467E�1 9

Final 132.895 11.007 7.638 0.0320 1.016 0.980 1.073E�16

Global minimum 132.895

(1.45%)a
11.007

(�1.72%)

7.638

(16.61%)

0.0320

(�88.57%)

1.016

(1.56%)

0.980

(�1.97%)

aThe values in parentheses denote percentage difference between predicted and measured data.
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Table 5

Mechanical properties identification of the square Gr/ep [451/�451]2S plate using six ‘‘measured’’ natural frequencies

Starting

point no.

Stage Mechanical property

E1 (GPa) E2 (GPa) G12 (GPa) n12 Ee (MPa) kC (kN/m) Sum of squared

differences

Number of

iterations

1 Initial 174.214 1.738 8.137 0.3526 10.378 16.747 6.2286E�1 6

Final 131.000 11.200 6.550 0.2800 1.000 1.000 1.499E�16

2 Initial 69.822 29.244 9.650 0.1984 7.450 6.899 3.6506E�2 7

Final 131.000 11.200 6.550 0.2800 1.000 1.000 1.1476E�16

3 Initial 285.288 3.545 6.267 0.0411 0.362 0.045 1.1060E�1 5

Final 131.000 11.200 6.550 0.2800 1.000 1.000 1.0456E�16

4 Initial 331.548 33.018 7.028 0.3314 3.440 17.652 2.7603E+0 10

Final 131.000 11.200 6.550 0.2800 1.000 1.000 1.2525E�16

Global minimum 131.000 (0%)a 11.200 (0%) 6.550 (0%) 0.2800 (0%) 1.000 (0%) 1.000 (0%)

aThe values in parentheses denote percentage difference between predicted and measured data.

C.R. Lee, T.Y. Kam / Journal of Sound and Vibration 295 (2006) 999–10161012
of the elastic supports to be identified is larger than two, six ‘‘measured’’ natural frequencies will be insufficient
and more natural frequencies will be required in the present method to identify the mechanical properties of
the plate.

Now the present method is applied to the mechanical properties identification of the elastically
estrained laminated composite plates which have been tested. The measured frequencies of the [01]8 plate
with or without a center support in Table 1 are first used to illustrate the identification process.
Tables 6 and 7 list the randomly generated starting points, the lowest local minima obtained for the
starting points, the numbers of iterations required for getting the lowest local minima, and the global
minimum for the plate with or without a center support, respectively, using different numbers of measured
natural frequencies in the identification processes. In view of the results in Table 6, due to the existence of
noise in the measurements, the use of the first six measured natural frequencies in the identification process is
unable to produce acceptable result for the [01]8 plate with a center support while the use of seven measured
natural frequencies can produce satisfactory estimates of the mechanical properties with percentage
differences less than or equal to 6.48%. It is worth noting that for the case with the use of seven measured
natural frequencies, only four starting points are needed to obtain the global minimum with probability
exceeding 0.99 and around eight iterations to find the lowest local minima for the starting points during
the minimization process. As for the case without a center support, the results in Table 7 show that the use
of five rather than four measured natural frequencies in the identification process can produce better
estimates of the mechanical properties with percentage differences less than or equal to 5.99% for the
[01]8 plate. It is also noted that the use of five measured natural frequencies only requires four starting points
to find the global minimum and around seven iterations to obtain the lowest local minima for the starting
points in the minimization process. The mechanical properties of the other elastically restrained composite
plates which have been tested and listed in Table 1 are then identified using the present method with the
use of seven and five measured natural frequencies for the cases with or without a center support, respectively.
The identified mechanical properties and their associated percentage differences of the plates are listed in
Table 8. Again, it is noted that very good estimates of the mechanical properties with percentage differences
less than or equal to 7.63% have been obtained for the plates. In view of the small percentage differences
between the actual and identified mechanical properties obtained for the plates, the neglect of the damping
effects on the measured natural frequencies is found to be acceptable. It is also worth pointing out that if the
number of the unknown spring constants and elastic constants of the elastic supports are larger than two, it
is required to use more than seven measured natural frequencies to identify the mechanical properties of
the plates.
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Table 8

Identified mechanical properties of flexibly supported laminated composite plates using measured natural frequencies

Layup Support condition Identified mechanical property

E1 (GPa) E2 (GPa) G12 (GPa) n12 Ee (MPa) kC (N/m)

[01/901]2S Edge and center 142.181 (�2.95%)a 8.76 (�5.02%) 6.439 (�5.81%) 0.3 (�1.96%) 2.126 (4.83%) 3.834 (�0.80%)

Edge 139.72 (�4.63%) 8.818 (�4.39%) 6.818 (�0.26%) 0.30002 (�1.95%) 1.998 (�1.48%) —

[451/�451/451]S Edge and center 147.149 (0.44%) 9.927 (7.63%) 6.833 (�0.04%) 0.3 (�1.96%) 2 (�1.38%) 3.777 (�2.28%)

Edge 138.925 (�5.17%) 9.158 (�0.70%) 7.158 (4.71%) 0.30001 (�1.96%) 1.999 (�1.43%) —

aThe values in parentheses denote percentage difference between predicted and measured data.
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6. Conclusions

The nondestructive evaluation of mechanical properties of a number of laminated composite plates
elastically restrained at the centers and peripheries of the plates using measured natural frequencies extracted
from the vibration data of the plates have been studied via both theoretical and experimental approaches. The
nondestructive evaluation method used for the mechanical properties identification of the plates has been
established on the basis of the Rayleigh–Ritz method together with a multi-start global minimization method.
The theoretical natural frequencies which are obtained in the Rayleigh–Ritz method using trial mechanical
properties and the measured natural frequencies of the plates have been used to construct the sum of the
squared differences function for measuring the differences between the theoretical and experimental natural
frequencies of the plates. The multi-start global minimization method together with several measured natural
frequencies has been used to identify the mechanical properties of each of the plates by making the sum of the
squared differences function of the plate a global minimum. A normalization technique has also been used in
the identification process to expedite the convergence of the solution. In the theoretical study, the mechanical
properties identifications of several peripherally and centrally restrained plates made of Gr/ep or Gl/ep

composite materials with different layups and dimensions have been performed to demonstrate the capability
and accuracy of the present method. It has been shown that the use of six actual natural frequencies, which are
treated as measured ones, can identify the actual mechanical properties of the plates with peripheral and
central elastic supports in an efficient and effective way. In the experimental study, several flexibly supported
laminated composite plates have been fabricated and subjected to impulse vibration testing. For the plates
with peripheral and central elastic supports, seven measured natural frequencies have been used to identify the
plate mechanical properties of which the percentage differences are less than or equal to 7.63%. For the plates
with only peripheral elastic supports, five measured natural frequencies have been used to identify the plate
mechanical properties of which the percentage differences are less than or equal to 5.99%. The experimental
investigation has demonstrated the applications and validated the capability of the present method.
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