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ABSTRACT Because the protein’s function is
usually related to its subcellular localization, the
ability to predict subcellular localization directly
from protein sequences will be useful for inferring
protein functions. Recent years have seen a surging
interest in the development of novel computational
tools to predict subcellular localization. At present,
these approaches, based on a wide range of algo-
rithms, have achieved varying degrees of success
for specific organisms and for certain localization
categories. A number of authors have noticed that
sequence similarity is useful in predicting subcellu-
lar localization. For example, Nair and Rost (Pro-
tein Sci 2002;11:2836–2847) have carried out exten-
sive analysis of the relation between sequence
similarity and identity in subcellular localization,
and have found a close relationship between them
above a certain similarity threshold. However, many
existing benchmark data sets used for the predic-
tion accuracy assessment contain highly homolo-
gous sequences—some data sets comprising se-
quences up to 80–90% sequence identity. Using these
benchmark test data will surely lead to overestima-
tion of the performance of the methods considered.
Here, we develop an approach based on a two-level
support vector machine (SVM) system: the first level
comprises a number of SVM classifiers, each based
on a specific type of feature vectors derived from
sequences; the second level SVM classifier functions
as the jury machine to generate the probability
distribution of decisions for possible localizations.
We compare our approach with a global sequence
alignment approach and other existing approaches
for two benchmark data sets—one comprising pro-
karyotic sequences and the other eukaryotic se-
quences. Furthermore, we carried out all-against-
all sequence alignment for several data sets to
investigate the relationship between sequence ho-
mology and subcellular localization. Our results,
which are consistent with previous studies, indicate
that the homology search approach performs well
down to 30% sequence identity, although its perfor-
mance deteriorates considerably for sequences shar-
ing lower sequence identity. A data set of high
homology levels will undoubtedly lead to biased
assessment of the performances of the predictive
approaches—especially those relying on homology
search or sequence annotations. Our two-level clas-
sification system based on SVM does not rely on

homology search; therefore, its performance re-
mains relatively unaffected by sequence homology.
When compared with other approaches, our ap-
proach performed significantly better. Further-
more, we also develop a practical hybrid method,
which combines the two-level SVM classifier and the
homology search method, as a general tool for the
sequence annotation of subcellular localization.
Proteins 2006;64:643–651. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

Due to the rapid advances in genomic and proteomic
research in recent years, tremendous amounts of DNA and
protein sequences have accumulated in databases. It
becomes increasingly important for computational biolo-
gists to develop practical tools to efficiently extract rel-
evant biological information from sequences for functional
annotation. Because the protein’s function is closely associ-
ated with its subcellular localization, the ability to predict
protein subcellular localization will be useful in the charac-
terization of the expressed sequences of unknown func-
tions. In recent years, many efforts1–19 have been made to
develop novel approaches to predict protein subcellular
localization. These approaches cover various types of algo-
rithms such as the knowledge-based expert system,1 the
artificial neural networks,3,4,11 the support vector ma-
chines (SVM),9,12,16 the covariant discriminant algo-
rithm,2,5 and the Bayesian networks.15,18 Some of the
approaches use the short N-terminal amino acid se-
quences1,3,6–8 (i.e., the sorting or signal peptides), the
amino acid compositions,2,4,5,9,11,12,19 or the general n-
peptide compositions16 derived from the whole amino acid
sequences. Other approaches make use of additional infor-
mation like sequence profiles derived from PSI-
BLAST,10,17,19 the ontology labels, or the text annotations
of the sequence databases.13–15 In general, these ap-
proaches perform well for specific organisms and for
certain localization categories. However, it is noticed that

*Correspondence to: Jenn-Kang Hwang, Institute of Bioinformatics,
National Chiao Tung University, Hsinchu, Taiwan, ROC. E-mail:
jkhwang@cc.nctu.edu.tw

Received 22 December 2005; Revised 8 March 2006; Accepted 13
March 2006

Published online 2 June 2006 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.21018

PROTEINS: Structure, Function, and Bioinformatics 64:643–651 (2006)

© 2006 WILEY-LISS, INC.



the benchmark data sets used for the assessment of the
predictive performances of many methods usually contain
highly homologous sequences. For example, the data set of
Reinhardt and Hubbard4 as well as that of Garg et al.19

include sequences with up to 90% sequence identity, and
the data set of Park and Kanehisa12 comprises sequences
with up to 80% sequence identity. Several groups20,21 have
already pointed out that there is a close relationship
between sequence similarity and identity in both subcellu-
lar localization and the signal peptide cleavage sites. For
example, Nair and Rost21 have performed large-scale
analysis of the relation between sequence similarity and
identity in subcellular localization. Their results show that
one can accurately infer the subcellular compartment of a
protein if one can find close homologs of experimentally
verified localization using the HSSP distance,21 a measure
for sequence similarity accounting for pairwise sequence
identity and alignment length. It is well known in the
study of secondary structure prediction22–24 that the ho-
mologous sequences are meticulously removed from the
testing-training data sets. For example, the popular bench-
mark RS126 set22 comprises sequences in which no se-
quence pairs share more than 25% sequence identity (over
a length of more than 80 residues). The training-testing
data sets of high homology will obviously lead to overpre-
diction, that is, the positive predictions may be due to the
presence of highly similar sequences in both training and
testing sets instead of the effectiveness of the approaches
in extracting key features associated with the investigated
properties. Unfortunately, such is not the case of the study
of subcellular localization. In this work, we developed a
two-level SVM system to predict subcellular localization:
the first level comprises a number of SVM classifiers, each
based on a distinctive set of feature vectors derived from
sequences. The second level consists of a jury SVM that
processes the outputs from the first level SVM classifiers
to generate the probability distribution of subcellular
localization. We showed that this two-level approach per-
forms better than other approaches for data sets compris-
ing sequences of low homology. We will refer to this
two-level SVM predictor of subcellular localization as
CELLO II. Furthermore, using the relationship between
sequence similarity and identity in subcellular localiza-
tion,20,21 we propose a practical pipeline approach combin-
ing CELLO II and the sequence alignment method to
predict subcellular localization.

METHODS
Support Vector Machines

We will briefly explain SVM here. The idea of the SVM
goes as follows: given training vectors xi where i � 1, . . . . l,
and a vector y � (y1, . . .,yi) defined as: yi � 1 if xi is in one
class, and yi � �1 if xi is in the other class. The support
vector technique tries to find the optimal separating-
hyperplane wTxi � b � 0 with the largest distance
between two classes, measured along a line perpendicular
to this hyperplane. This requirement is equivalent to
solving the equation: min

w,b
1/2 wTw under the constraints

yi[(w
Txi) � b] �1, i � 1, . . .,l. However, in practice, these

data to be classified may not be linearly separable. To
overcome this difficulty, SVM transforms the original
input space into a higher dimensional feature space using
the function �(x) � (�l(x),�2(x), . . .). The optimization
equation is now written as:

min
w,b,�

1
2 wTw�C �

i�1

l

�i

under the constraints yi[(w
T�(xi)) � b] �1 � �i, i � 1, . . .,l.

The constraints are much more relaxed and allow some
training data to be on the incorrect side of the separating
hyperplane wTx � b � 0. If the penalty parameter C is
large enough and the data is linearly separable, all �is will
be zero.25 In practice, the explicit form of �(x) is not
required, and we only need to calculate the function
K(xi,xj) � �(xi)

T �(xj) called the kernel function. Note
that the training data are mapped into a vector in a higher
dimensional space, since in a higher dimensional space,
the data may be linearly separated. This procedure has the
advantage of allowing training errors, because we do not
require the training data to be always on the correct side of
the separating hyperplane. Thus, we minimize the train-
ing error �i

l
� 1 �i in the objective function. In the end, the

decision function is written as f(x) � sgn(wT�(x) � b).
Those xis that are used to construct w and b are called
support vectors. All the SVM calculations are performed
using LIBSVM,26 a general library for support vector
classification and regression from Lin’s lab. Here, we use
the radial basis function kernel given by exp(����xi � xj��

2)
for all our calculations. An important issue is the selection
of parameters. For SVM training, the penalty parameter C
and the kernel parameter � of the RBF function must be
determined in advance. We use the cross validation on
different parameters for the model selection.27

Coding Schemes

The n-Peptide Composition
We have previously developed a general global sequence

descriptor based on the n-peptide composition codings
(denoted by An) to predict protein properties.16,28,29 In the
case of n � 1, the A1 coding reduces to the usual amino acid
composition, which can be considered as the first-order
approximation to the complete protein sequence. The A2

coding gives the dipeptide composition. As n increases, the
An coding provides progressively more detailed sequential
information. In the limit that n is the whole length of the
sequence, the An becomes the sequence itself. The An

coding scheme has the advantage of systematically extract-
ing more information from sequences when n increases. In
the case of n � 3, the computation of An becomes not only
impractical from a learning viewpoint but also susceptible
to the danger of overfitting. We can overcome the size
problem by regrouping the amino acids into smaller num-
ber of classes according to their physicochemical proper-
ties. In this work, we use the following classification
schemes based on the physicochemical properties of amino
acid—we use Hn for polar (RKEDQN), neutral (GAST-
PHY), and hydrophobic (CVLIMFW);30 Vn for small
(GASCTPD), medium (NVEQIL), and large (MHK-

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

644 C.-S. YU ET AL.



FRYW);30 Zn for low polarizability (GASDT),30 medium
(CPNVEQIL), and high (KMHFRYW);30 Pn for low polar-
ity (LIFWCMVY), neutral (PATGS), and high polarity
(HQRKNED);30 Fn for acidic (DE), basic (HKR), polar
(CGNQSTY), and nonpolar (AFILMPVW); Sn for acidic
(DE), basic (HKR), aromatic (FWY), amide (NQ), small
hydroxyl (ST), sulfur-containing (CM), and aliphatic (AG-
PILV); En for acidic (DE), basic (HKR), aromatic (FWY),
amide (NQ), small hydroxyl (ST), sulfur-containing (CM),
aliphatic 1 (AGP), and aliphatic 2 (ILV). For clarity, these
coding schemes are summarized in Table I.

The partitioned amino acid composition

We use Xk
Y to denote the partitioned amino acid composi-

tion—the sequence is partitioned into k subsequences of
equal length, and each fragment is encoded by the particu-
lar amino acid composition Y. For example, the notation
X5

A1 denotes that the sequence is divided into five subse-
quences, each of which is encoded by A1 (note that X1

A1 is
equivalent to A1). The coding Xk

Y provides information
about the local properties of sequences.

The g-gap dipeptide composition

Another generalized sequence composition is the g-gap
dipeptide compositions, denoted by Dg, in which we com-

pute the composition of the sequence of the form a(x)gb,
where a and b denote two specific amino acid types, and
(x)g denotes g intervening amino acids of arbitrary type x.
Note that in the special case of g � 0, D0 is equivalent to
A2.

The local amino acid composition

We use Wl to denote the amino acid composition of a
sliding window of length l centered on a given amino acid
type. The Wl provides information on the flanking se-
quences of a given amino acid type. Note that when l is the
length L of the whole sequence, WL reduces to A1.

The two-level SVM classifier system

The SVM classifiers in the first level comprise a number
of SVM classifiers, each based on a specific sequence
coding as described in the previous section. For the sake of
notation simplicity, we will use the coding symbol to
represent the SVM classifier based on that coding. For
example, we will denote the SVM system comprising three
classifiers, say, A, B, and C by the shorthand symbol A �
B � C. In this work, the first level classifiers consist of the
following SVMs:

�
k�1

9

Xk
a1 � �

k�0

6

Dk � �
x�S

X S
x � �

l�S	

Wl,

where S � {H3,P3,F3,S2,E2} and S	 � {7, . . .,15}. Each SVM
generates a probability distribution16,28 of the subcellular
localization based on its particular sequence coding. A
second SVM (i.e., the jury SVM) is used to process these
probabilities to generate the final probability distribution
of subcellular compartment. The location with the largest
probability is used as the prediction. The two-level SVM
system is shown schematically in Figure 1.

Performance assessment

Following the previous works,16,28 we use the percent-
age accuracy to assess the accuracy of the subcellular
localization identification: Qi � ci/ni, where ci is the
number correctly predicted in the ith subcellular location,
and ni is the number of sequences in that location. The
overall prediction accuracy is given by

P � �
i

fiQi (1)

where fi � ni/N and N is the total number of sequences.
Although the percentage accuracy (Qi or P) provides a
convenient measure for predictive performance, the Mat-
thews Correlation Coefficient31 (MCC) gives a more infor-
mative measure for predictive performance:

MCCi�
TPiTNi�FPiFNi

�
TPi � FNi�
TPi � FPi�
TNi � FPi�
TNi � FNi�

(2)

where TPi is the true positives in location i, TNi is the true
negatives in location i, FPi is the false positive, and FNi is
the false negative. The value of MCCi is 1 for a perfect

TABLE I. The Coding Schemes of the Amino Acids
Compositions Based on Different Classification Types

Coding
Schemes Classification types Amino acid types

Polar RKEDQN
H Neutral GASTPHY

Hydrophobic CVLIMFW
Small GASCTPD

V Medium NVEQIL
Large MHKFRYW
Low polarizability GASDT

Z Medium polarizability CPNVEQIL
High polarizability KMHFRYW
Low polarity LIFWCMVY

P Neutral polarity PATGS
High polarity HQRKNED
Acidic DE

F Basic HKR
Polar CGNQSTY
Nonpolar AFILMPVW
Acidic DE
Basic HKR
Aromatic FWY

S Amide NQ
Small hydroxyl ST
Sulfur-containing CM
Aliphatic AGPILV
Acidic DE
Basic HKR
Aromatic FWY

E Amide NQ
Small hydroxyl ST
Sulfur-containing CM
Aliphatic 1 AGP
Aliphatic 2 ILV
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prediction, 0 for a completely random prediction and �1
for a perfectly reverse correlation.

The sequence–localization relationship

The query sequence is aligned against sequences of
known localization. If the top-ranking aligned sequence
has an identical localization with the query sequence, the
sequence pair will be counted as a positive hit, or else a
negative hit. We performed all-against-all sequence align-
ment using the global alignment program ALIGN devel-
oped by Myers and Miller.32

Data sets

Two data sets were used in the experiment. The first
data set, referred to as the PS data set, is composed of
Gram-negative sequences.18 We selected from the data set
only those sequences with a single localization (there are
four groups of sequences with double localization, the
average of which accounts for about 1% of the original data
set). The resultant data set comprises 1444 protein se-
quences for five subcellular compartments: extracellular
(190), cytoplasmic (278), cytoplasmic membrane (309),
periplasmic (276), and outer membrane (391). The second
data set is from Park and Kanehisa,12 referred to as the
PK dataset. The sequences are selected from
SWISSPROT33 release 39.0 in such as way that the
pairwise sequence identities are below 80%. The PK
dataset contains 7589 eukaryotic protein sequences for 12
subcellular locations— chloroplast (671), cytoplasmic
(1245), cytoskeleton (41), endoplasmic reticulum (ER) (114),
extracellular (862), Golgi apparatus (48), lysosomal (93),
mitochondrial (727), nuclear (1932), peroxisomal (125),
plasma membrane (1677), and vacuolar proteins (54). We

followed the same validation procedures for predictive
performances as those of the previous works.12,18

RESULTS
The Sequence–Localization Relationship

The sequence homology of a data set can easily be
inspected using the pair distribution of sequence identi-
ties, which shows the relative numbers of sequence pairs
that share a given range of sequence identity. Figure 2
shows the pair distributions of the sequence identities of
the PS [Fig. 2(A)] and the PK [Fig. 2(B)] data sets. Both
data sets peak at 20% sequence identity. However, it is
easy to see that significant amount of sequences have a
sequence identity �30% in both data sets. Performing
all-against-all sequence alignments using ALIGN, we plot
sequence similarity against identity in localization for the
PS and PK data sets [Fig. 3(A) and (B)]. In general, when
sequence identity �25%, the sequences usually share
identical subcellular compartments (however, in the PK
data set, the abnormal behaviors of data at sequence
identities �80% are due to the relatively smaller example
sizes at those regions). We also observe that the relation-
ships between sequence identity and identity in localiza-
tion are quite similar for these data sets.

We built a much larger data set from SWISSPROT
release 41.0 by excluding any sequences annotated as
MEMBRANE, POSSIBLE, PROBABLE, SPECIFIC PERI-
ODS, or BY SIMILARITY.11 The resultant data set (re-
ferred to as SW41) comprises 9851 eukaryotic proteins
sequences distributed in five subcellular compartments:
extracelluar, cytoplasmic, mitochondria, nuclear, and oth-
ers. The larger SW41 data set also shows a similar

Fig. 1. The first level classification system comprises m SVMs based on different feature vectors: (a1
1a2

1

. . .), (a1
2a2

2 . . .), and (am
1am

2. . .). These SVMs generate m probability distributions (p1
1p2

1 . . .p1
L), (p1

2p2
2 . . .p2

L),
and (pm

1pm
2. . . pL

m) of L subcellular localizations. A second layer SVM (as a jury SVM) is used to process these
probability distributions to generate the final probability distribution (p1p2 . . . pL).
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relationship [Fig. 3(C)] between identity in sequence and
subcellular localization as the PS and PK data sets do.

Comparison of Different Coding Schemes

Tables II and III compare the performances of different
coding schemes for the PK and the PS data sets. CELLO II
uses a second-level SVM to decide the final prediction,
while the SVM based on a single parameter set uses the
output with the largest probability as the prediction. We
observe similar trends in the overall performance of all
single parameter sets for two data sets (Tables II and III).
For example, all single parameter sets perform similarly
for the plasma membrane compartment for which the
overall prediction accuracy ranges from 86 to 92%. The
coding X4

A1 has the best overall performance among the
single parameter sets for both data sets. On the other
hand, for certain rows of subcellular compartments, the
performances of the single parameter sets fluctuate consid-
erably. For example, in Table II, the prediction accuracy
for chloroplast ranges from 57 to 72 %. CELLO II, based on
the multiple feature vector coding schemes, consistently
outperforms those based on the single parameter set. This
is obviously due to the complementarity of information
encoded in the single parameter sets. Our results are
consistent with previous studies16,28,29,34,35 that SVMs
based on multiple parameters usually perform better than
those based on a single parameter.

Comparison of CELLO II and ALIGN

In Figure 4, we compare the predictive performances of
CELLO II and ALIGN for the PS and PK data sets. The
predictive performances of ALIGN are estimated as fol-
lows: we take the top hit from all-against-all alignment
from ALIGN, and if the localization of the hit sequence is
identical to that of the query sequence, it will be counted as
a positive hit, or a negative hit. For the sake of comparison,
we plot the prediction accuracies of both methods as a
function of sequence identity. The procedures go as fol-
lows: assume that there are N sequences in the data set.
By performing all-against-all sequence alignments, we
obtain for any given sequence N � 1 sequence identities sii,
where i � 1. . . N � 1. The value SI � max(sii) sets the
upper limit of the sequence identity for the specific se-
quence sharing with the other sequences. The prediction
accuracies of CELLO II and ALIGN for the sequences will
be plotted against their associated SI. For both data sets,

Fig. 2. (A) The pair distribution of the sequence identities of the PS
data set. Each bin (the width set to 5% sequence identity) represents the
relative amount of the sequence pairs that share a given range of
sequence identity. For example, all sequences in each bin (say 20%) will
share a pair sequence identity between 20 and 25% against each other.
The value of the pair distribution is normalized over the total area under
the distribution curve. (B) The pair distribution of the sequence identities
of the PK data set.

Fig. 3. The bar charts of sequence identity versus identity in localiza-
tion for (A) the PS data set, (B) the PK data set, and (C) the SW41 data
set.
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we observe that, when the sequence identity is �30%,
ALIGN performs slightly better than CELLO II does.
However, the predictive performances of ALIGN drop
considerably when sequence identity is below 20%, while
the predictive performances CELLO II are consistent
throughout the whole range of sequence similarity.

We compare the performances of CELLO II and ALIGN
in each subcellular compartment for sequence identity
�30% (Table IV) and �30% (Table V), respectively. For
sequence identity �30%, ALIGN performs slightly better
than CELLO II does. However, when sequence identity is
�30%, CELLO II performs significantly better than
ALIGN. For example, the MCCs of CELLO II for cytoplas-
mic and cytoplasmic membrane localizations are both
0.85, but those of ALIGN for these two localizations reach
only 0.41 and 0.62, respectively. The MCCs of CELLO II
are generally higher than those of ALIGN by 16–44% in
the low homology region (i.e., sequence identity �30%).

Comparison with Other Approaches

The previous results suggest a simple hybrid procedure
to predict subcellular localization: for a query sequence, we
first use ALIGN to search against the data set composed of
sequences of known subcellular localization. The localiza-
tion of the top hit sequence that shares a 30% or greater
sequence identity with the query sequence will be used as
the prediction of its localization. These procedures suffer
from the drawback that the sequence alignment results
usually depend on the choice of sequence database and its
corresponding annotation set.36 In practice, we can use a

Fig. 4. The distribution of prediction accuracy as a function of
sequence identity of both CELLO II (white bar) and ALIGN (black bar) for
the (A) PS data set and (B) the PK data set. Note that we did not plot the
prediction accuracies for those sequence identity bins that have relatively
small example sizes as mentioned in the figure caption of Figure 2.

TABLE II. Comparison of Predictive Performance of SVMs Based on Different Coding Schemes for the PK Data Set

A1 A2 X4
A1 X5

F3 X5
s2 X5

E2 X5
H3 X5

P3 W13

CELLO
II

Chloroplast 62.0 67.4 72.0 56.8 66.5 69.3 57.5 59.6 69.6 79.9
Cytoplasmic 67.5 69.8 70.1 66.3 67.7 70.5 62.2 63.3 69.9 77.2
Cytoskeleton 60.0 47.5 65.0 45.0 45.0 47.5 40.0 35.0 67.5 67.5
ER 48.2 65.8 60.5 56.1 55.3 60.5 52.6 55.3 55.3 67.5
Extracellular 75.1 76.8 82.1 75.3 76.3 82.8 78.4 78.7 80.7 90.2
Golgi 17.0 21.3 38.3 29.8 29.8 36.2 23.4 27.7 27.7 53.2
Lysosomal 61.3 65.6 64.5 44.1 51.6 55.9 47.3 49.5 69.9 68.8
Mitochondrial 44.8 53.1 59.4 49.7 51.0 60.5 34.7 40.0 51.6 72.9
Nuclear 86.7 87.0 89.8 78.9 84.2 86.4 84.9 85.7 89.9 91.0
Peroxisomal 16.0 30.4 35.2 30.4 41.6 40.0 28.0 31.2 32.0 47.2
Plasma

membrane
88.4 89.3 90.3 85.6 87.3 89.6 89.0 90.0 92.2 95.9

Vacuole 31.5 50.0 35.2 25.9 33.3 33.3 20.4 18.5 44.4 51.9
Overall 73.4 76.1 78.8 70.7 74.1 77.7 71.1 72.6 78.1 85.0

TABLE III. Comparison of Predictive Performance of SVMs Based on Different Coding Schemes for the PS Data Set

A1 A2 X4
A1 X5

F3 X5
s2 X5

E2 X5
H3 X5

P3 W13

CELLO
II

Cytoplasm 86.7 82.7 90.3 80.9 81.3 80.6 82.0 79.1 84.5 95.3
Cytoplasmic 90.0 89.3 87.4 87.7 89.3 90.6 88.3 88.7 90.0 90.0
Periplasm 79.3 79.3 84.1 71.4 72.8 79.0 68.8 72.1 81.2 87.7
Outer membrane 90.5 92.8 91.3 86.2 89.0 91.6 83.6 85.9 88.5 92.8
Extracellular 76.8 74.7 78.9 66.8 71.1 74.7 61.6 67.4 76.3 79.5
Overall 85.7 85.2 87.3 80.1 82.1 84.6 78.6 80.1 85.0 90.0
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more sophisticated similarity measure like HSSP distance
developed by Nair and Rost.21 On the other hand, we can
always construct an updated data set comprising a large
amount of sequences—like the SW41 data set. If ALIGN
cannot identify any homologous sequences, we will use
CELLO II to predict the subcellular localization of the
query sequence. We will refer to this approach as HY-
BRID, because it combines CELLO II and ALIGN. Table
VI compares the results of CELLO II, ALIGN, PSORTb 2,
and HYBRID for the PS data set. All results are averaged
over the fivefold crossvalidation. As expected, HYBRID
gives the best overall performance (92%), then CELLO II
(90%), followed by PSORTb 2 (83%) and ALIGN (81%). It is
interesting to note that ALIGN appears to perform surpris-
ingly well for the PS2 data set in comparison with the more
sophisticated PSORTb 2. However, the good performances
of ALIGN are due to the high homology bias inherent in
the PS data set [see Fig. 2(A)]. On the other hand, it is
noted that PSORTb 2 also contains a sequence comparison
module SCL-BLAST, which performs a BLASTP search
against the expanded PSORTdb database. CELLO II is the
only method that does not rely on homology search.
CELLO II performs especially well for the cytoplasmic
localization, yielding a prediction accuracy 95% and MCC �
0.89, in comparison, PSORTb 2 yields 70% and 0.77
respectively, for the same localization.

In Table VII we compare the performances of HYBRID,
CELLO II, ALIGN, and the PK method12 for the eukary-
otic PK data set. The PK method used SVM based on the
compositions of both amino acids and amino acid pairs to
predict protein subcellular localization. As expected, HY-
BRID gives the best overall performance (91.6%). ALIGN
(85.8%) performs slightly better than CELLO II (85.0%).

The PK method gives a 78.2% overall prediction accuracy.
However, the good performance of ALIGN is due to the
even higher homology levels of the PK data set [Fig. 2(B)].
In fact, when the homologous sequences (sequence identity
�30%) are removed in the PK data set, the overall
prediction accuracy of ALIGN drops to 57%.

It is interesting to note that all approaches perform well
for some subcellular compartments and poorly for some
other (Tables VI and VII). For example, all approaches
perform well for subcellular compartments associated
with membranes (cytoplasmic membrane or outer mem-
brane in Table VI, and plasma membrane in Table VII).
The good prediction accuracies are probably due to the
distinct sequence features of the membrane proteins.
Indeed, even the topology of the transmembrane proteins
can be predicted with relatively good accuracy from pro-
tein sequences.37–39 We also found that the nuclear,
extracellular and chloroplast localization are among the
best predicted in the eukaryotes (Table VII). On the other
hand, Golgi and vacuole localizations are among the worst
predicted in the eukaryotes. These poor performances are
presumably due to the relatively small number of se-
quences in the data set and possibly multiple localizations
of these sequences.

At present, our program does not deal with multiple
subcellular localizations.18,35 However, it is straightfor-
ward to extend our approach to the case of multiple
localization; because our SVM output is, in fact, a probabil-
ity distribution of subcellular localization, we can set a
proper probability threshold to determine the possible
subcellular compartment candidates.

DISCUSSION

Sequence similarity is useful in predicting subcellular
localization for sequences sharing �30% sequence iden-
tity. We showed that the homology search method perform
surprisingly well for two popular benchmark data sets.
However, on closer inspection, these seemingly good perfor-
mances are, in fact, due to the high homology levels
inherent in the data sets. The performances deteriorate
rapidly with the homologous sequences removed from the
data sets. We have developed a two-level SVM system
CELLO II to predict protein subcellular localization. Its
performance is comparable to the homology search method
in the high homology regions and better than the homology
search method in the low homology regions. We showed
that CELLO II performs better than other current meth-
ods. We have also developed a hybrid approach combining
CELLO II and ALIGN, which may be applied to a wide
range of sequence identity and thus provide a practical tool
for biologists.
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TABLE IV. Comparison of CELLO II and ALIGN for the
Sequences with Sequence Identity >30% in the

PS Data Set

Localization

CELLO II Align

Accuracy MCC Accuracy MCC

Cytoplasm 94.6 0.92 93.2 0.93
Cytoplasmic membrane 98.1 0.97 99.4 0.99
Periplasm 92.8 0.90 94.4 0.94
Outer membrane 96.5 0.96 99.4 0.99
Extracellular 90.6 0.90 98.6 0.98
Overall 94.9 — 97.7 —

TABLE V. Comparison of CELLO II and Align for the
Sequences with Sequence Identity <30% in the

PS Data Set

Localization

CELLO II ALIGN

Accuracy MCC Accuracy MCC

Cytoplasm 95.6 0.85 42.2 0.41
Cytoplasmic membrane 81.7 0.85 68.6 0.62
Periplasm 78.1 0.68 54.2 0.38
Outer membrane 77.3 0.72 81.3 0.46
Extracellular 49.0 0.56 43.1 0.40
Overall 82.6 — 56.3 —
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