
Theoretical Computer Science 359 (2006) 69–76
www.elsevier.com/locate/tcs

An efficient algorithm to find a double-loop network that realizes a
given L-shape�

Chiuyuan Chena,∗, James K. Lana, Wen-Shiang Tangb

aDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
bDepartment of Communication Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

Received 11 April 2005; received in revised form 19 January 2006; accepted 30 January 2006

Communicated by D.-Z. Du

Abstract

Double-loop networks have been widely studied as an architecture for local area networks. It is well known that the minimum
distance diagram of a double-loop network yields an L-shape. Given a positive integer N , it is desirable to find a double-loop network
with its diameter being the minimum among all double-loop networks with N nodes. Since the diameter of a double-loop network can
be easily computed from its L-shape, one method is to start with a desirable L-shape and then find a double-loop network to realize
it. This is a problem discussed by many authors [F. Aguiló, M.A. Fiol, An efficient algorithm to find optimal double loop networks,
Discrete Math. 138 (1995) 15–29, R.C. Chan, C.Y. Chen, Z.X. Hong, A simple algorithm to find the steps of double-loop networks,
Discrete Appl. Math. 121 (2002) 61–72, C.Y. Chen, F.K. Hwang, The minimum distance diagram of double-loop networks, IEEE
Trans. Comput. 49 (2000) 977–979, P. Esqué, F. Aguiló, M.A. Fiol, Double commutative-step diagraphs with minimum diameters,
Discrete Math. 114 (1993) 147–157] and it has been open for a long time whether this problem can be solved in O(log N) time. In
this paper, we will provide a simple and efficient O(log N)-time algorithm for solving this problem.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Local area network; Double-loop network; Diameter; L-shape; Algorithm

1. Introduction

A double-loop network DL(N; s1, s2) has N nodes 0, 1, . . . , N − 1 and 2N links of two types:

s1-links: i → i + s1 (mod N), i = 0, 1, . . . , N − 1,

s2-links: i → i + s2 (mod N), i = 0, 1, . . . , N − 1.

Throughout this paper, N denotes the number of nodes in the network. Double-loop networks have been widely studied
as an architecture for local area networks. See [2,11,12,15] for surveys of these networks. A double-loop network is
strongly connected if for each ordered pair u, v of nodes, there is a path from u to v. Let gcd() denote the greatest
common divisor; for example, gcd(9, 2, 5) = 1. Fiol et al. [9] proved that a double-loop network DL(N; s1, s2) is
strongly connected if and only if gcd(N, s1, s2) = 1.

� This research was partially supported by the National Science Council of the Republic of China under the Grant NSC94-2115-M-009-006.
∗ Corresponding author. Tel.: +886 3 5731767.

E-mail address: cychen@mail.nctu.edu.tw (C. Chen).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.01.048

http://www.elsevier.com/locate/tcs
mailto:cychen@mail.nctu.edu.tw

70 C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76

5

0 2 4 6

6

3

0 1 2

4 5

7 8

8

1

7

3

DL(9; 2, 5) DL(9; 1, 3)

Fig. 1. Examples of the L-shapes.

h

l

p
n

Fig. 2. An L-shape and its parameters l, h, p, n.

When DL(N; s1, s2) is strongly connected, we can talk about its minimum distance diagram (MDD). This diagram
gives a shortest path from node u to node v for any u, v. Since DL(N; s1, s2) is node-symmetric, it suffices to give
a shortest path from node 0 to any other node. Let 0 occupy cell (0,0). Then v occupies cell (i, j) if and only if
is1 + js2 ≡ v (mod N) and i + j is the minimum among all (i′, j ′) satisfying the congruence, where ≡ means
congruent modulo N . That is, if v occupies cell (i, j), then a shortest path from 0 to v is achieved through taking i

s1-links and j s2-links (in any order). The MDD of DL(N; s1, s2) includes every node exactly once (in case of two
shortest paths, the convention is to choose the cell with the smaller row index, i.e., the smaller j). Note that in a cell
(i, j), i is the column index and j is the row index.

Wong and Coppersmith [16] proved that the MDD of a double-loop network is always an L-shape (see Fig. 1);
a rectangle is considered a degeneration. An L-shape can be determined by four geometric parameters l, h, p, n as
shown in Fig. 2. These four parameters are the lengths of four of the six segments on the boundary of the L-shape. For
example, DL(9; 2, 5) in Fig. 1 has l = 5, h = 3, p = 3, and n = 2. Clearly,

N = �h − pn.

It was proven in [9,10,4] that there exists a double-loop network DL(N; s1, s2) realizing the L-shape(l, h, p, n) if and
only if

l > n, h�p and gcd(l, h, p, n) = 1. (1.1)

The diameter d(N; s1, s2) of a double-loop network DL(N; s1, s2) is the largest distance between any pair of
nodes. It represents the maximum transmission delay between any two nodes. The diameter of a double-loop network
DL(N; s1, s2) can be easily computed from its L-shape(l, h, p, n) by the equation

d(N; s1, s2) = max{l + h − p, l + h − n} − 2.

Let d(N) denote the optimal diameter of a double-loop network with N nodes. Wong and Coppersmith [16] showed
that d(N)�

⌈√
3N

⌉ − 2. Given a positive integer N , it is desirable to find a double-loop network with N nodes such

that its diameter is d(N). This is a problem discussed by many authors; see [1,3–5,7–10,13,16]. Since the diameter of
a double-loop network can be readily computed from its L-shape, one method is to start with a desirable L-shape and
then find a double-loop network to realize it. This is Problem 2 described below.

The following two problems have been discussed by many authors:

Problem 1. Given a double-loop network DL(N; s1, s2), find its L-shape(l, h, p, n) and its diameter.

C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76 71

Problem 2. Given an L-shape(l, h, p, n), find a double-loop network DL(N; s1, s2) that realizes it.

For Problem 1, Cheng and Hwang [5] have proposed a very elegant O(log N)-time solution. As for Problem 2, three
algorithms have been proposed in the following literature: the Smith normalization method [1,8], the sieve method
[4], and the Chan–Chen–Hong’s algorithm (the CCH algorithm in short) [3]. In particular, the Smith normalization
method is based on finding the Smith normal form of a matrix and it requires matrix operations [14]; see [3] for an
explicit algorithm of this method. The CCH algorithm is based on the Smith normalization method, but unlike the
Smith normalization method, it does not require any matrix operation and thus greatly simplifies the computation.
Both the Smith normalization method and the CCH algorithm take O((log N)2) time; see [3]. The sieve method is
based on the sieve method in number theory; it uses the Euclidean algorithm and is very easy to be implemented. The
exact time complexity of the sieve method is not known; however, Chan et al. [3] showed that it is upper bounded by
O(P�(N) log N), where �(N) is the number of prime factors of N and Pi is the ith prime (i.e., P1 = 2, P2 = 3, etc.).

It has been open for a long time whether Problem 2 can be solved in O(log N) time. In this paper, we will show
that there exists a family of L-shapes such that for each L-shape in this family, we have P�(N) �

√
log N . We will also

improve the CCH algorithm to derive a simple and efficient O(log N)-time algorithm for solving Problem 2. We now
summarize current results of Problems 1 and 2 in the following tables.

Algorithm for Problem 1 Worst-case time complexity

Cheng–Hwang’s algorithm [5] O(log N)

Algorithm for Problem 2 Worst-case time complexity

Smith normalization method [1,8] O((log N)2)

Sieve method [4] O(P�(N) log N)

CCH algorithm [3] O((log N)2)

Our algorithm O(log N)

This paper is organized as follows. In Section 2, we show that there exists a family of L-shapes such that for each
L-shape in this family, P�(N) �

√
log N . In Section 3, we describe our O(log N)-time algorithm. The concluding remarks

are given in Section 4.

2. The time complexity of the sieve method

Given an L-shape, Chen and Hwang [4] (see also [12]) proposed the following method, which is based on the sieve
method in number theory, to find a double-loop network that realizes the given L-shape.

The Sieve Method [4]
Input: An L-shape(l, h, p, n) that satisfies (1.1).
Output: A double-loop network DL(N; s1, s2) that realizes the given L-shape(l, h, p, n).
1. Let N = lh − pn and k = 0.
2. Let ak = kn + h and bk = kl + p.
3. If gcd(N, ak, bk) = 1, then return N , s1 = ak (mod N), s2 = bk (mod N) and stop the algorithm; otherwise,

increase k by 1 and go to Step 2.

We now prove that there exists a family of L-shapes such that for each L-shape in this family, we have P�(N) �
√

log N .
First a lemma.

Lemma 1. Let P1, P2, . . . , Pt be the smallest t primes, where t �2 and P1 < P2 < · · · < Pt . If N = P1×P2×· · ·×Pt ,
then P�(N) �

√
log N .

72 C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76

Proof. Let N = P1×P2×· · ·×Pt . Then �(N) = t and N �(Pt)!�P
Pt
t . Hence log N �Pt log Pt and log log N � log Pt

+ log log Pt �2 log Pt . So log Pt �(log log N)/2 = log
√

log N . Hence P�(N) = Pt �
√

log N . �

Theorem 2. There exists a family of L-shapes such that for each L-shape in this family, P�(N) �
√

log N and the sieve
method has to execute the Euclidean algorithm at least P�(N) times to solve Problem 2.

Proof. First we construct an L-shape. Let t be an integer in {2, 3, . . . , 100 000}. Let P1, P2, . . . , Pt be the smallest t

primes and suppose P1 < P2 < · · · < Pt . Let

d = P1 × P2 × · · · × Pt−1.

It is not difficult to verify that for each t in {2, 3, . . . , 100 000}, Pt �2Pt−1 holds and thus we have Pt < d and
�2d/Pt��1. Since 2d is not divisible by Pt , �2d/Pt	 and �2d/Pt� are two consecutive integers. Thus

�2d/Pt	 − �2d/Pt� = 1 (2.1)

and

gcd (�2d/Pt	, �2d/Pt�) = 1. (2.2)

Set

(l, h, p, n) = (Pt�2d/Pt	 − d, d, d, Pt�2d/Pt� − d).

It is easy to see that l > 0, h > 0, p�0, n�0, l�p and h�n hold. Thus (l, h, p, n) forms an L-shape.
We claim that there exists a double-loop network DL(N; s1, s2) realizing the L-shape (l, h, p, n). To prove this

claim, we have to prove that the three constraints l > n, h�p and gcd(l, h, p, n) = 1 in (1.1) hold. It is easy to see
that l > n and h�p hold. By the definition of Pt and d,

gcd(Pt , d) = 1. (2.3)

Hence

gcd (l, h, p, n) = gcd (Pt�2d/Pt	, Pt�2d/Pt�, d)

= gcd (�2d/Pt	, �2d/Pt�, d) (by (2.3))

= 1 (by (2.2)).

We now prove that for the L-shape(l, h, p, n), P�(N) �
√

log N occurs and the sieve method has to execute the

Euclidean algorithm at least P�(N) times to solve Problem 2. Recall that N = lh − pn. Thus N = dPt (�2d/Pt	 −
�2d/Pt�) (2.1)= dPt = P1 × P2 × · · · × Pt . By Lemma 1, P�(N) �

√
log N . Let F be the set of prime factors of N

and let Fk be the set of prime factors of gcd(ak, bk). Then F = {P1, P2, . . . , Pt }. F0 = {P1, P2, . . . , Pt−1} since

gcd(a0, b0) = gcd(h, p) = d . F1 = {Pt } since gcd(a1, b1) = gcd(n + h, l + p) = gcd(Pt�2d/Pt�, Pt�2d/Pt) (2.2)=
Pt . Recall that P1, P2, . . . , Pt are the smallest t primes and P1 = 2, P2 = 3, P3 = 5, and so on. It was proved in [4]
that if f ∈ F appears in Fk for some k and kf is the smallest such k, then f appears in every f th k after kf . Therefore

P1 ∈ F appears in gcd(a0, b0), gcd(a2, b2), gcd(a4, b4), gcd(a6, b6), and so on;
P2 ∈ F appears in gcd(a0, b0), gcd(a3, b3), gcd(a6, b6), gcd(a9, b9), and so on;
P3 ∈ F appears in gcd(a0, b0), gcd(a5, b5), gcd(a10, b10), gcd(a15, b15), and so on;
· · ·
Pt−1 ∈ F appears in gcd(a0, b0), gcd(aPt−1 , bPt−1), gcd(a2×Pt−1 , b2×Pt−1), and so on;
Pt ∈ F appears in gcd(a1, b1), gcd(a1+Pt , b1+Pt), gcd(a1+2×Pt , b1+2×Pt), and so on.

Thus the first k such that gcd(N, ak, bk) = 1 is Pt . Since Pt = P�(N) and since each iteration of the sieve method
involves the Euclidean algorithm, the sieve method has to execute the Euclidean algorithm at least P�(N) times to solve
Problem 2. Since t can be chosen arbitrarily from the set {2, 3, . . . , 100 000}, we have this theorem. �

C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76 73

3. Our algorithm

Let us describe the CCH algorithm first.

The CCH algorithm [3]
Input: An L-shape(l, h, p, n) that satisfies (1.1).
Output: A double-loop network DL(N; s1, s2) that realizes the given L-shape(l, h, p, n).
1. Find r1 = gcd(l, −n).
2. Find integers �1 and �1 such that �1l + �1(−n) = r1.
3. Find r2 = gcd(r1, −�1p + �1h).
4. Find integers �2 and �2 such that �2r1 + �2(−�1p + �1h) = r2 and gcd(�2, r2) = 1.
5. Return N = lh − pn, s1 = �2n − �2h (mod N), s2 = �2l − �2p (mod N) and stop the algorithm.

For example, let (l, h, p, n) = (5, 3, 3, 2). Then r1 = 1, �1 = 1, �1 = 2, r2 = 1, �2 = −2 and �2 = 1. Thus N = 9,
s1 = −7 (mod 9) = 2, s2 = −13 (mod 9) = 5. It can be verified from Fig. 1 that double-loop network DL(9; 2, 5)

realizes the L-shape(5,3,3,2).
Recall that N = lh − pn. The CCH algorithm takes O((log N)2) time because: Steps 1–3 and 5 take O(log N) time

and Step 4 takes O((log N)2) time [3]. Our algorithm is the same as the CCH algorithm except the implementation
of Step 4. In the CCH algorithm, Step 4 was implemented by an O((log N)2)-time algorithm, while in our algorithm,
Step 4 is implemented by an O(log N)-time algorithm. We now describe the details.

It was proved in [3] that

Lemma 3 (Chan et al. [3]). If �, a, �, b are integers (not all zero) such that �a + �b = 1, then gcd(a, �) = 1.

It is well known that

Lemma 4 (Cormen et al. [6]). If a and b are integers, not both zero, then there exist integers � and � such that
�a + �b = gcd(a, b). Moreover, if |a|� |b|, then � and � can be found in O(log |b|) time.

Step 4 of the CCH algorithm is based on the following theorem [3]:

Theorem 5 (Chan et al. [3]). If a and b are integers, not both zero, then there exist integers x and y such that
xa + yb = gcd(a, b) and gcd(y, gcd(a, b)) = 1.

We now prove that

Theorem 6. If a and b are integers, not both zero, then there exist integers x and y such that xa + yb = gcd(a, b)

and gcd(y, gcd(a, b)) = 1. Moreover, if |a|� |b|, then x and y can be found in O(log |b|) time.

Proof. It was proved in [3] that if a and b are integers, not both zero, then there exist integers x and y such that
xa + yb = gcd(a, b) and gcd(y, gcd(a, b)) = 1. For completeness of this paper, we describe the proof here. Set
r = gcd(a, b) for easy writing. By Lemma 4, there exist integers � and � such that

�a + �b = r.

If gcd(�, r) = 1, then we are done. In the following, assume that gcd(�, r) = k > 1. Let r ′ be the largest integer
such that

r ′ | r and gcd(r ′, k) = 1. (3.1)

Then either r ′ = 1 or r ′ > 1. In the former case, every prime factor of r is also a prime factor of k. In the latter case,
every prime factor of r is either a prime factor of k or a prime factor of r ′. Let

a′ = a/r and b′ = b/r. (3.2)

74 C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76

Note that gcd(r ′, �) = 1; otherwise, we will have gcd(�, r) > k. Since �a + �b = r , we have

�a′ + �b′ = 1.

By Lemma 3, we have gcd(a′, �) = 1. Since gcd(a′, �) = 1 and k | �, we have gcd(a′, k) = 1. Since k | � and
gcd(r ′, k) = 1 and gcd(a′, k) = 1, we have

gcd(� − r ′a′, k) = 1. (3.3)

Since gcd(r ′, �) = 1 and r ′ | r ′a′, we have

gcd(� − r ′a′, r ′) = 1. (3.4)

Recall that either r ′ = 1 or r ′ > 1. In the former case, by (3.3) and (3.4) and the fact that every prime factor of r is
also a prime factor of k, we have

gcd(� − r ′a′, r) = 1.

In the latter case, by (3.3) and (3.4) and the fact that every prime factor of r is either a prime factor of k or a prime
factor of r ′, we also have

gcd(� − r ′a′, r) = 1.

Let

x = � + r ′b′ and y = � − r ′a′. (3.5)

Then xa + yb = (� + r ′b′)a + (� − r ′a′)b = r and gcd(y, r) = gcd(� − r ′a′, r) = 1. From the above, if a and b are
integers, not both zero, then there exist integers x and y such that xa + yb = gcd(a, b) and gcd(y, gcd(a, b)) = 1.

We now prove that if |a|� |b|, then x and y can be found in O(log |b|) time.

Claim 1.

r ′ = r

gcd(k�log2 r�, r)
is the largest integer satisfying (3.1).

Proof of Claim 1. Recall that k|r . Assume that

k = p
s1
1 p

s2
2 · · · psm

m ,

where p′
is are distinct prime factors of k. Also assume that

r = p
t1
1 p

t2
2 · · · ptm

m p
tm+1
m+1p

tm+2
m+2 · · · ptn

n ,

where p′
j s are distinct prime factors of r . Note that when pm+1, pm+2, . . . , pn do not exist (this case occurs when k

contains every prime factor of r), we will simply say that p
tm+1
m+1p

tm+2
m+2 · · · ptn

n = 1. It is clear that if r ′ is the largest
integer satisfying (3.1), then

r ′ = p
tm+1
m+1p

tm+2
m+2 · · · ptn

n .

Thus it suffices to prove that

r

gcd(k�log2 r�, r)
= p

tm+1
m+1p

tm+2
m+2 · · · ptn

n .

Note that

k�log2 r� = p
�log2 r�s1
1 p

�log2 r�s2
2 · · · p�log2 r�sm

m .

Since 2 is the smallest prime, we have

ti ��log2 r� for all i, 1� i�n.

C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76 75

Therefore

ti ��log2 r�si for all i, 1� i�m.

Thus

gcd(k�log2 r�, r) = p
t1
1 p

t2
2 · · · ptm

m .

So

r

gcd(k�log2 r�, r)
= p

t1
1 p

t2
2 · · · ptm

m p
tm+1
m+1p

tm+2
m+2 · · · ptn

n

p
t1
1 p

t2
2 · · · ptm

m

= p
tm+1
m+1p

tm+2
m+2 · · · ptn

n . �

The following is an algorithm for finding x and y such that xa + yb = r and gcd(y, r) = 1.

ALGORITHM-NEW-EUCLIDEAN
Input: Integers a and b, not both zero, and r = gcd(a, b).
Output: Integers x and y such that xa + yb = r and gcd(y, r) = 1.
1. Find integers � and � such that �a + �b = r .
2. Find k = gcd(�, r).
3. If k = 1, then let x = �, let y = �, return x and y, and stop this algorithm.
4. If k�2, find r ′ = r/gcd(k�log2 r�, r).
5. Let a′ = a/r , b′ = b/r , x = � + r ′b′ and y = � − r ′a′. Return x and y.

The correctness of ALGORITHM-NEW-EUCLIDEAN follows from Claim 1, (3.2) and (3.5). We now analyze the
time complexity of ALGORITHM-NEW-EUCLIDEAN. We claim that

Claim 2. If |a|� |b|, then ALGORITHM-NEW-EUCLIDEAN takes O(log |b|) time.

Proof of Claim 2. Since r = gcd(a, b), we clearly have

r � |b|. (3.6)

By Lemma 4, Step 1 takes O(log |b|) time. By (3.6) and by Lemma 4, Step 2 takes O(log |b|) time. It is clear that Steps
3 and 5 take O(1) time. In Step 4, computing k�log2 r� takes O(log�log2 r�) = O(log log |b|) time. Once k�log2 r� is
known, by (3.6) and by Lemma 4, finding gcd(k�log2 r�, r) takes O(log |b|) time. Hence finding r ′ = r/gcd(k�log2 r�, r)
takes O(log log |b|) + O(log |b|) + 1 = O(log |b|) time, where +1 is for the division. Thus Step 4 takes O(log |b|)
time. We have this claim. �

We now have Theorem 6. �

We now describe our algorithm. It is the same as the CCH algorithm except the implementation of Step 4.

Our algorithm
Input: An L-shape(l, h, p, n) that satisfies (1.1).
Output: A double-loop network DL(N; s1, s2) that realizes the given L-shape(l, h, p, n).
1. Find r1 = gcd(l, −n).
2. Find integers �1 and �1 such that �1l + �1(−n) = r1.
3. Find r2 = gcd(r1, −�1p + �1h).
4. Uses ALGORITHM-NEW-EUCLIDEAN to find integers �2 and �2 such that �2r1 + �2(−�1p + �1h) = r2 and

gcd(�2, r2) = 1.
5. Return N = lh − pn, s1 = �2n − �2h (mod N), s2 = �2l − �2p (mod N) and stop the algorithm.

Theorem 7. Our algorithm is correct and it takes O(log N) time.

Proof. The correctness of our algorithm follows from the correctness of the CCH algorithm and Theorem 6. We now
analyze the time complexity. Recall that Steps 1–3 and 5 of the CCH algorithm take O(log N) time. Thus Steps 1–3

76 C. Chen et al. / Theoretical Computer Science 359 (2006) 69 –76

and 5 of our algorithm take O(log N) time. It suffices to prove that Step 4 of our algorithm takes O(log N). Recall that
N = lh − pn. When Step 4 is performed, inputs to ALGORITHM-NEW-EUCLIDEAN are a = r1, b = −�1p + �1h

and r = gcd(r1, −�1p + �1h). Since r1 = gcd(l, −n), we have 0 < r1 �N and

min{|a|, |b|} = min{|r1|, | − �1p + �1h|}� |r1| = r1 �N.

By Theorem 6, Step 4 takes O(log N) time. We now have this theorem. �

4. The concluding remarks

This paper considers the problem of finding a double-loop network that realizes a given L-shape. It is well known
that if a and b are integers, not both zero, then there exist integers � and � such that �a + �b = gcd(a, b); moreover,
if |a|� |b|, then � and � can be found in O(log |b|) time. It was proved in [3] that if a and b are integers, not both zero,
then there exist integers x and y such that xa + yb = gcd(a, b) and gcd(y, gcd(a, b)) = 1. In this paper, we showed
that if |a|� |b|, then x and y can be found in O(log |b|) time. Based on this result, we improve the CCH algorithm to
an O(log N)-time algorithm.

References

[1] F. Aguiló, M.A. Fiol, An efficient algorithm to find optimal double loop networks, Discrete Math. 138 (1995) 15–29.
[2] J.-C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer networks: a survey, J. Parallel Distribut. Comput. 24 (1995) 2–10.
[3] R.C. Chan, C.Y. Chen, Z.X. Hong, A simple algorithm to find the steps of double-loop networks, Discrete Appl. Math. 121 (2002) 61–72.
[4] C.Y. Chen, F.K. Hwang, The minimum distance diagram of double-loop networks, IEEE Trans. Comput. 49 (2000) 977–979.
[5] Y. Cheng, F.K. Hwang, Diameters of weighted double loop networks, J. Algorithms 9 (1988) 401–410.
[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, second ed., The MIT Press, Cambridge, MA, pp. 856–862.
[7] P. Erdös, D.F. Hsu, Distributed loop networks with minimum transmission delay, Theoret. Comput. Sci. 100 (1992) 223–241.
[8] P. Esqué, F. Aguiló, M.A. Fiol, Double commutative-step diagraphs with minimum diameters, Discrete Math. 114 (1993) 147–157.
[9] M.A. Fiol, M. Valero, J.L.A.Yebra, I. Alegre, T. Lang, Optimization of double-loop structures for local networks, in: Proc. XIX Internat. Symp.

MIMI’82, Paris, France, 1982, pp. 37–41.
[10] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization problem in local networks and data alignment, IEEE Trans. Comput.

C-36 (1987) 702–713.
[11] F.K. Hwang, A survey on double-loop networks, in: F. Roberts, F.K. Hwang, C. Monma (Eds.), Reliability of Computer and Communication

Networks, AMS Series, 1991, pp. 143–151.
[12] F.K. Hwang, A complementary survey on double-loop networks, Theoret. Comput. Sci. A 263 (2001) 211–229.
[13] F.K. Hwang, Y.H. Xu, Double loop networks with minimum delay, Discrete Math. 66 (1987) 109–118.
[14] M. Newman, Integral Matrices, Pure and Applied Mathematics Series, Vol. 45, Academic Press, New York, 1972.
[15] J.M. Peha, F.A. Tobagi, Analyzing the fault tolerance of double-loop networks, IEEE Trans. Network. 2 (1994) 363–373.
[16] C.K. Wong, D. Coppersmith, A combinatorial problem related to multimodule memory organizations, J. Assoc. Comput. Mach. 21 (1974)

392–402.

