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Coverage by Randomly Deployed Wireless Sensor
Networks

Peng-Jun Wan, Member, IEEE, and Chih-Wei Yi, Member, IEEE

Abstract—One of the main applications of wireless sensor net-
works is to provide proper coverage of their deployment regions.
A wireless sensor network -covers its deployment region if every
point in its deployment region is within the coverage ranges of at
least sensors. In this paper, we assume that the sensors are de-
ployed as either a Poisson point process or a uniform point process
in a square or disk region, and study how the probability of the

-coverage changes with the sensing radius or the number of sen-
sors. Our results take the complicated boundary effect into ac-
count, rather than avoiding it by assuming the toroidal metric as
done in the literature.

Index Terms—Asymptotics, connectivity, -coverage, node den-
sity, sensing radius, wireless ad hoc sensor networks.

I. INTRODUCTION

ONE of the main applications of wireless sensor networks
is to provide proper coverage of their deployment regions.

Typically, the sensing range of a sensor is a (closed or open)
circular disk centered at the sensor, whose radius is termed as the
sensing radius of the sensor. For any positive integer , a point is
said to be -covered by a sensor network if it falls in the sensing
ranges of at least sensors, and a region is said to be -covered
if each point in this region is -covered. In this paper, we study
how the probability of a deployment region being -covered by
randomly deployed sensors changes with the sensing radius or
the number of sensors. A precise description of the problems is
given below.

Let be independent and uniformly distributed
random points on a bounded region in the plane. Given
a positive integer , the point process is
referred to as the uniform -point process on , and is de-
noted by . Given a positive number , let be
a Poisson random variable with parameter , independent of

. Then the point process
is referred to as the Poisson point process with mean on ,
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and is denoted by . Let be a fixed nonnegative integer,
and be the unit-area square or disk centered at the origin .
For any real number , use to denote the set ,
i.e., the square or disk of area centered at the origin. Let
(respectively, ) denote the event that is -covered
by the (open or closed) disks of radius centered at the points
in (respectively, ). Let (respectively, )
denote the event that is -covered by the unit-area
(closed or open) disks centered at the points in
(respectively, ). Then, we would like to study the
asymptotics of and as approaches in-
finity, and the asymptotics of and as
approaches infinity.

To simplify the presentation of our results, we introduce some
notation. Let denote the peripheral of , which is equal to
(respectively, ) if is a square (respectively, disk). For any

, let

if

if

and

if

if

The mains results of this paper are summarized in the following
two theorems.

Theorem 1: Let

If for some , then

(1)

and

(2)

If , then

(3)

If , then

(4)

0018-9448/$20.00 © 2006 IEEE



WAN AND YI: COVERAGE BY RANDOMLY DEPLOYED WIRELESS SENSOR NETWORKS 2659

Theorem 2: Let

If for some , then

and

If , then

If , then

We remark that the probabilistic studies of -coverage by a
random point process have been conducted for in [1] and
arbitrary integer-valued constant in [6] but with certain limita-
tions. Both studies assume Poisson point processes on a square
and use the toroidal metric, rather than the Euclidean metric
which is more relevant to the applications. This renders their re-
sults hardly applicable to wireless sensor networks. Indeed, the
smallest sensing radius or sensor density to ensure the -cov-
erage under the toroidal metric almost surely fails to guarantee
the -coverage under the Euclidean metric. The assumption of
the toroidal metric technically eliminates the boundary effect
under the Euclidean metric. As will be demonstrated later in
this paper, the boundary effect is the major technical challenge
which requires much delicate and involved analysis. Another
related work is [2] in which a random sensor network is gener-
ated by a Poisson point process followed by a Bernoulli style ac-
tive/inactive process. Here we note that a Poisson point process
followed by a Bernoulli process is still a Poisson point process.
Without explicit proof, authors of [2] claimed the boundary ef-
fect was handled, but their results are not consistent with ours.

To conclude this section, we setup some notation which ap-
plies throughout the rest of the paper. is the Euclidean norm
of a point , and is shorthand for two-dimensional
(2-D) Lebesgue measure (or area) of a measurable set .
All integrals considered will be Lebesgue integrals. The topo-
logical boundary of a set is denoted by . The (closed
or open) disk of radius centered at is denoted by . For
any , let

An event is said to be asymptotic almost sure (abbreviated by
a.a.s.) if it occurs with a probability converges to one as .

The symbols ,1 , , 2 refer to either the limit
or the limit depending on the context. To avoid

trivialities, we tacitly assume and to be sufficiently large
if necessary. For simplicity of notation, the subscripts will be
frequently suppressed.

II. GEOMETRIC INGREDIENTS

The results in this section are purely geometric, with no prob-
abilistic content. In the following, we will give three lemmas
that will be used in the next section. To increase readability, we
leave their proofs as an appendix .

Lemma 3: Let be a disk of radius . For any , let
be the set of points satisfying that there exists

such that and .
(Here is a cross product of 2D vectors and given by
the determinant .) Then the Lebesgue measure of

is .
If is the disk region, then has equal value for all

. The next lemma provides a simplified asymptotic ex-
pression of this value.

Lemma 4: Assume is the disk region and let be such
that and . is the disk region. Then for
any point

The following lemma gives the asymptotic behavior of two
integrals.

Lemma 5: Let

with for some . Then,

if

if
(5)

and

if

if
(6)

Now, we introduce some notations. For any and a
unit-area square , we partition into three subregions ,

and as illustrated in Fig. 1(a): consists of

1Without loss of generality, assume f (n) and g (n) are positive functions. If
we write f (n) = O (g (n)), it means that there exist c > 0 and n > 0 such
that f (n) � cg (n) for any n � n . If we write f (n) = �(g (n)), it means
that there exist c ; c > 0 and n > 0 such that c g (n) � f (n) � c g (n)
for any n � n . If we write f (n) = o (g (n)), it means that for any " > 0,
there exists n > 0 such that f (n) � "g (n) for any n � n .

2We use f (n) � g (n) to denote lim f (n) = lim g (n);
f (n) g (n) to denote lim f (n) � lim g (n); and
f (n) g (n) to denote lim f (n) � lim g (n).
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Fig. 1. Parition of 
: (a) 
 is square and (b) 
 is disk.

all points in apart from the sides of by at least ,
consists of all points in apart from some side of by less
than and from all other sides by at least , and consists
of the rest points in . The areas of these three regions are as
follows:

For any

For any and a unit-area disk , we partition into three
subregions , and as illustrated in Fig. 1(b):

is the disk of radius centered at ; is the

annulus of radii and centered at ; and

is the annulus of radii and centered at . The areas
of these three regions are

For any

III. CRITICAL SENSING RADIUS

This section is devoted to the proof of Theorem 1. Before
going into details, we sketch the approach underlying the proof
of Theorem 1. The equalities (3) and (4) will be derived from
the inequalities (1) and (2) by a perturbation argument. The
inequality (2) will be obtained from the inequality (1) by a
de-Poissonization argument. The inequality (1) consists of
the asymptotic upper bound and the asymptotic lower bound
on . The proof of the asymptotic upper bound on

is based on the observation that the event
implies that the -vacancy defined by the Lebesgue
measure (i.e., area) of the set of points in which are not

-covered by the closed disks of radius centered at the
points in is zero. Hence, is upper bounded
by . Based on the Cauchy-Schwartz inequality,

can be further upper bounded in terms of the
mean and variance of . The proof of the asymptotic lower
bound on is based on the following characterization
of -coverage by open disks: Let denote the number
of -crossing points where an -crossing point is
either an intersection point of and for some

, or an intersection point of and
for some respectively, and denote the
number of -crossing points which are not -covered
by the open disks of radius centered at the points in .
Then, occurs if and only if and (see,
e.g., [4]). Hence

where the last inequality follows from the Markov inequality.
The remaining of this section proceeds as follows. Sec-

tion III-A investigates the mean and variance of the -va-
cancy . Section III-B studies the mean number of crossing
points which are not -covered. Based on the results
obtained in these two subsections, Section III-C give the proof
of Theorem 1.

A. Mean and Variance of the -Vacancy

The following lemma gives a general expression of the mean
of the -vacancy and an upper bound on the variance of
the -vacancy.

Lemma 6: For any and any

Proof: For the simplicity of presentation, we suppress all
subscripts. For any , we use to denote the event that
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the (closed or open) disk contains at most points in .
Note that occurs if and only if is not -covered by
(closed or open) disks of radius centered at points in .
Then

For any , we use to denote the event that
contains at most points in . Then

For any event , we use to denote the indicator of the
event . Then

and

By Fubini’s theorem

and

Therefore,

Clearly, the event implies , and the two events
and are independent. Thus,

So

Lemma 6 together with Lemma 5 implies the following
lemma.

Lemma 7: Let

with for some . Then,

if

if

and

if

if

B. Crossing Points

In this subsection, we prove the following lemma.
Lemma 8: Let

with for some . Then, is asymptot-
ically almost sure and .

Proof: For simplicity, we suppress the subscripts. An
-cross pointing is said to be of the first (respectively,

second) type if it is an intersection point between an intersection
point between and for some (respec-
tively, between and for some ).
Let be the number of crossing points of the first type. Then

Thus, is asymptotically almost sure.
Let (respectively, ) be the number of crossing

points of the first (respectively, second) type which are not
-covered. By Lemma 7, would

follow from

We begin with the limit of . First consider the case that
is a square region. Let be a random point and be the

event that the right half-circle of and the upper side of
intersects at a point which is not -covered. By symmetry,

Note that for each on the top side of ,
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Fig. 2. Region A and B for the crosspoint in @
.

and if and only if is at a distance of at least
from either vertical side of . Let be the set of points of
such that the right half-circle of and the upper side of
intersects at a point which is at a distance of at least from both
vertical sides of , and be the set of points of such that the
right half-circle of and the upper side of intersects at a
point which is at a distance of less from either the left vertical
side of or the right vertical side of (see Fig. 2). Then

and

Since for any

we have

Since for any

we have

Therefore,

Now we consider the case that is a disk region. Each node
in produces two crossing points of the first type.
Each node on produces exactly one crossing pint of
the first type. All other nodes does not produce any crossing
point of the first type. By Lemma 4, a crossing point of the
first type is not -covered with an asymptotic probability

. Since has zero measure, we have

Next we derive the asymptotic upper bound on . Fix
an ordered pair of random nodes and . Let be the in-
tersecting point of the two circles and with

. Let denote the event that lies inside
and is not -covered. Then by symmetry,

Since and are with uniform distribution over , the prob-
ability that lies in a sufficiently small circular disk of area
centered at a point is equal to the Lebesgue measure of

such that . Thus, by Lemma 3, the probability
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that lies in a sufficiently small circular disk of area cen-
tered at a point is equal to if , and at
most due to the boundary effect otherwise. Therefore

Hence,

C. Proof of Theorem 1

We first prove the inequality (1). For simplicity, we suppress
the subscripts. By Lemma 7, it is straightforward to show that

By the Cauchy–Schwartz inequality

Thus,

On the other hand, by Lemma 8

So, the inequality (1) holds.
Now we derive the inequality (2) from the inequality (1) using

a de-Poissonization argument. By coupling Poisson point pro-
cesses with uniform point processes, we obtain the following
relations:

By Chebyshev’s inequality

Thus,

Note that

So

By the inequality (1),

Hence,

So, the inequality (2) holds.
Finally, we prove the equalities (3) and (4) from the inequali-

ties (1) and (2) using a perturbation argument. We only provide
the proof for the event , since the proof for the event
is exactly the same. We first prove the equality (3). Assume that

. Note that . For any arbitrarily
small , let such that , and set

Since , for sufficiently large , , and thus
, which further implies that . Conse-

quently

Since can be arbitrarily small, the equality (3) holds. Next, we
prove the equality (4). Assume that . Note that

. For any arbitrarily small , let
such that , and set

Since , for sufficiently large , , and thus
, which further implies that . Conse-

quently

Since can be arbitrarily small, the equality (4) holds. This com-
pletes the proof of Theorem 1.

IV. CRITICAL NUMBER OF NODES

In this section, we will derive Theorem 2 from Theorem 1
using a scaling argument. First, we scale the points of
(respectively, ) by a factor of . The resulting
points form a Poisson (respectively, uniform) point process with
mean (respectively, a uniform -point process) on . Second,
we scale the sensing radius from to . Then,
(respectively, ) occurs if and only if (respec-
tively, )occurs. This implies that
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Thus, we only need to obtain the asymptotic bounds on
and for where

is given in Theorem 2. For this purpose, we prove the following
technical lemma.

Lemma 9: Let be such that for some
and for some .

Let

Then

Proof: Let . Note that

If , then

So

Now we assume that . Then
. We first consider the case that

. For sufficiently large

Thus,

So, the lemma holds in this case.
Next, we consider the case that . Since

and

we have . Thus,

So, we have

Therefore

Next, we proceed on deriving the asymptotic bounds on
and where is given

in Theorem 2. Clearly, if , which happens
only when , then

So assume that . By Lemma 9

as

Thus, by Theorem 1, if , then

if , then

and if , then

This completes the proof of Theorem 2.

V. CONCLUSION

In this paper, we address the asymptotic -coverage of
a square or disk region by a Poisson or uniform point process.
A major technical challenge is the handling of the boundary ef-
fect. As indicated by our analyzes, for the boundary ef-
fect completely dominates the probability of -coverage,
while for the boundary effect still affects significantly the
probability of -coverage. For the purpose of comparison
between with and without the boundary effect, let us consider
the asymptotic -coverage of a square by Poisson point
process with unit-area coverage range. With boundary effect,
the asymptotic -coverage requires that the sensor den-
sity should grow with the area at least according to

with . Without the boundary effect, the
asymptotic -coverage only requires that the sensor
density grows with the area according to

with [6].
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Fig. 3. The shaded annulus is the set A of all possible points x. (a) kxk 2 r � s;
p
r � s and (b) kxk 2 p

r � s ; r + s .

Another interesting observation is the similar asymptotics of
the -coverage and the -connectivity. To illustrate this
similarity, let’s consider a Poisson point process on the unit-
area square or disk. The asymptotic -connectivity re-
quires that the communication radius should grow with at least
according to with
[3]. Similarly, the asymptotic -connectivity requires that the
sensing radius should also grow with at least according to

with . It would be
interesting to discover the exact correlation between the -cov-
erage and the -connectivity.

APPENDIX

In the Appendix, we are going to give the proofs of Lemma
3, 4, and 5.

Proof (Lemma 3): Without loss of generality, we assume
that is centered at the origin . Let be the annulus centered at

with radii and (see Fig. 3). Then is exactly the set
of points such that for some point . Now
fix a . Let denote the arc of the boundary circle of
the disk which lies inside the disk with
(see Fig. 3). Note that the angle only depends on .
Let be the half of the angle . For

, increases with and

(see Fig. 3(a)). For , decreases with
and

(see Fig. 3(b)).
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Fig. 4. The shaded region is set B (x) of all possible points y for a fixed x.

Let (respectively, ) be such that (respectively, )
is a diameter of the disk (respectively, ) (see
Fig. 4). Let denote the sector of the disk sub-
tended by and , and let

which is the shaded region illustrated in Fig. 4. Then

By a simple geometric argument, we can show that and
the sector have the same area, i.e.

Thus,

Using integration by parts on the integral yields

Hence, the lemma follows.

Fig. 5. The shaded region is D (z) \ 
.

Proof (Lemma 4): For the simplicity of presentation, we
suppress all subscripts. Let be a radius of which is
perpendicular to , and be an intersection point between
and which lies to the same side of as (see Fig. 5).
Clearly, . As decreases with

On the other hand, the angle , hence

Thus, the area of the sector is . This im-
plies that

Since

we have

Thus,

So the lemma follows.
Lemma 5 will be established by Lemmas 10–12. These lem-

mas are presented in a format more general than required for
the proof of Lemma 5 for being applicable to other probabilistic
studies beyond this paper.
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Lemma 10: Let

with and for some . Then for any integer
and any integer

Proof: For the simplicity of presentation, we suppress all
subscripts. By a slight modification of the proofs in [3, Theo-
rems 2 and 3], we can show that for any integer and any
integer

Due to the space limit, we omit the proof details here. Conse-
quently, Lemma 10 would follow if we can show that for any

Next, we fix an and prove the above asymptotic equality.
Clearly

Since , we have

Thus,

So

For any , let denote the set of points satis-
fying that and (see
Fig. 6).

Fig. 6. The shaded region is 
 .

Lemma 11: For any and any

If is the unit-area square, then for any and any

Suppose that is an arbitrarily small constant, and is
the unit-area disk. Then when is sufficiently small, for any

and any ,

Proof: For the simplicity of presentation, we suppress all
subscripts. It was proved in the proof of Lemma 2 in [5] that if

, then

Thus, if and ,

Now, we assume that is the unit-area square, and
. Then, for the same value of , achieves
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its minimum when both and are in , with the minimum
equal to

So, the lemma also holds in this case. Finally, we assume that
is the unit-area disk. Let any arbitrarily small positive constant.
It was proved in the proof of Lemma 2 in [5] that for any

and any

Note that

Thus, for sufficiently small

and thus

So the lemma hold in this case as well.
Lemma 12: Suppose that is an arbitrarily small con-

stant. Then when is sufficiently small, for any

Proof: For the simplicity of presentation, we suppress all
subscripts. By symmetry

So, we only need to prove that

We first show that if there is a constant such that
for any , then

As decreases with , we have

Now by Lemma 11

If is a unit-area square, then by Lemma 11

Now we assume that is a unit-area disk. Let be any arbitrarily
small positive constant. Let be another constant satisfying that

Then by Lemma 11, when is sufficiently small, for any , any
and any

Thus, when is sufficiently small, for any

Finally

Hence, the lemma follows.



WAN AND YI: COVERAGE BY RANDOMLY DEPLOYED WIRELESS SENSOR NETWORKS 2669

Now we are ready to prove Lemma 5.
Proof (Lemma 5): Let be as given in Lemma 5. By

Lemma 10,

and if

otherwise

Thus, the equality (5) follows immediately. Together with these
(asymptotic) equalities, Lemma 12 implies that if

otherwise

Let , we obtain the inequality (6).
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