
Information Sciences 176 (2006) 1241–1265

www.elsevier.com/locate/ins
Stateful session handoff for mobile WWW

Ming-Deng Hsieh a, Tsan-Pin Wang b,*, Ching-Sung Tsai a,
Chien-Chao Tseng a

a Department of Computer Science and Information Engineering,

National Chiao-Tung University, Taiwan
b Department of Computer Science and Information Engineering, Providence University,

200 Chung-Chi Road, Shalu, TaiChung 433, Taiwan

Received 30 September 2003; received in revised form 27 January 2005; accepted 26 February 2005
Abstract

This paper proposes a web session handoff system that can hand over not only state-

less but also stateful sessions between homogenous and heterogeneous user devices to

enable uninterrupted and seamless web access. The proposed system adopts a proxy-

based approach and an optional client-assisted scheme in order to track and hand over

session information. In the proposed system, a session is registered at a User Agent

Proxy (UAP) and then tracked by the UAP so that the session can be handed over from

one device via the UAP to another device. In addition to session information tracked by

a UAP, the UAP can hand over more comprehensive session information by using the

client-assisted scheme. Compared with client-based approaches, our design has several

advantages, such as less modification to user devices, practicability, and fault tolerance.

We have implemented a UAP on a PC and client programs for both PC and PDA. The

implementation can successfully hand over between PC and PDA a stateful session for

online shopping applications.

� 2005 Elsevier Inc. All rights reserved.
0020-0255/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2005.02.009

* Corresponding author. Fax: +886 426324045.

E-mail addresses: mdhsieh@csie.nctu.edu.tw (M.-D. Hsieh), tpwang@pu.edu.tw (T.-P. Wang),

tstsai@csie.nctu.edu.tw (C.-S. Tsai), cctseng@csie.nctu.edu.tw (C.-C. Tseng).

mailto:mdhsieh@csie.nctu.edu.tw
mailto:tpwang@pu.edu.tw
mailto:tstsai@csie.nctu.edu.tw
mailto:cctseng@csie.nctu.edu.tw

1242 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
Keywords: Web session handoff; User agent proxy; Stateful session; Session information
1. Introduction

In recent years, advances in wireless technologies and mobile devices have

made mobile Internet practically feasible. The new environment challenges

researchers to support terminal mobility, personal mobility, and session mobil-

ity [1] for reliable and seamless Internet access. In the literature, there is much

research on terminal mobility or personal mobility, but little on session mobil-
ity. Session mobility is a mixed problem of terminal and personal mobility, and

has become increasingly important recently. For example, handing over an

application session between user devices enables a user to resume his applica-

tion when he changes device. Among current Internet applications, web brows-

ing is the most popular one and contributes to most Internet traffic. Therefore,

we focus on web session handoff in this paper. Web session handoff enables a

user to resume browsing the last page that he viewed on a first device without

traversing the hierarchy of a web site�s content again after he changes to a sec-
ond device. Besides, handing over history of a web session enables a user to re-

view the pages that he just viewed on the first device. Due to these features, web

session handoff becomes useful when a user�s browsing is interrupted and he

must leave his current device. For example, one may use a PC in his office

to start browsing for preparing a suddenly-notified meeting and then can hand

over his browsing session to a portable computer (a homogeneous device) or a

PDA (a heterogeneous device) before he leaves his office or when he moves into

a meeting room. Moreover, a session initially on a capability-limited mobile de-
vice can be handed over to a more powerful stationary device for the purpose

of the user�s convenience. For example, one can initially view and process stock

information with a PDA or a smartphone and then hand over this session to a

PC when it is available. In the literature, session handoff has been envisioned in

first-aid and clinical domains [2]. As mobile Internet access becomes popular,

there will be more useful and diverse scenarios about web session handoff in

the future.

HTTP, the basic communication protocol of web browsing, is originally de-
signed to support stateless sessions. However, supporting stateful web sessions

is important and necessary for web servers, e.g., online shopping web sites,

which should differentiate sessions initiated by different users. Therefore, many

approaches have been proposed and extensively used by web servers to enable

stateful web sessions. In order to hand over not only stateless sessions but also

stateful sessions, a web session handoff protocol/system should be able to track

and hand over session information including session state between users de-

vices. For example, BSR [3] adopts a client-based approach that uses a sub-

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1243
stantially modified browser to save and hand over browser state to/from a BSR

repository. However, using client-based approaches to hand over web sessions

is not desirable since they require substantial modification to browsers. In cli-

ent-based approaches, each browser for various types of user devices needs its

own modification and program code. Besides, the inefficient browser-depen-

dent modification is impractical and usually has incompatibility problem when
inter-working with unmodified web proxies or web servers.

In this paper, we propose a web session handoff system that allows users to

hand over not only stateless but also stateful sessions between homogeneous or

heterogeneous user devices. Essentially, our design is a proxy-based approach

that deploys a User Agent Proxy (UAP) between user devices and web servers

to track and hand over web sessions. As a result, the proposed system requires

less modification to user devices while being able to hand over much of session

information. In our experience, proxy-based approaches are practical for web
session handoff before a standardized or popular web session handoff protocol

is widely recognized.

The remainder of this paper is organized as follows. Section 2 discusses pre-

vious related work in mobility and compares three kinds of approaches for web

session handoff. Section 3 presents the system overview. Section 4 discusses

ways to track sessions and addresses issues of session tracking in detail. Section

5 elaborates our session handoff protocol including ways to hand over session

information. Section 6 shows our current implementation. Section 7 gives con-
clusions and future work.
2. Related work

2.1. Previous work

In the literature, much research on mobility focus on terminal mobility, e.g.,
Mobile IP [4] and its variants [5]. Mobile IP and many of its variants deal with

delivering packets via the home agent and foreign agents to a mobile terminal.

In [5], by looking-up the location of a mobile terminal and directly establishing

a connection to the mobile terminal, packets can be delivered by a correspon-

dent node without passing through the home agent or foreign agents of the mo-

bile terminal. On the other hand, personal mobility becomes more and more

important [6–12] because it realizes a convenient scenario that allows a user

to use various devices and to switch between them. Netchaser [6] uses agent
programs residing on user devices and servers to achieve personal mobility.

MPA [7–9] aims to contact a user regardless of devices available at hand

and usable communication protocols. The iProxy/iMobile system [10] is a

cross-platform middleware that allows client applications on various devices

with various underlying protocols to access web services. VHE [11] in UMTS

1244 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
aims to provide global service portability that enables a user to tailor his ser-

vice set and to receive personalized services, regardless of his location, access

network or device type. In general, most systems support personal mobility

by using a performance enhancing middleware server [12] situated between mo-

bile devices and correspondent nodes to perform protocol conversion, content

adaptation, and content caching. These middleware servers can store and use
information about users preference, devices capability, and personal service

profiles to adapt contents for mobile devices accordingly.

There is little research on handing over between user devices application ses-

sions. iMASH [2] implements a system to fulfill this concept and uses it in a

special-purposed healthcare domain. Besides, web session handoff can be real-

ized by using process migration, Virtual Network Computing (VNC) [13], or

Remote Desktop provided by Microsoft Windows XP operating system. How-

ever, protocols for process migration are too complex and heavy to suit appli-
cation handoff. Furthermore, VNC and Remote Desktop are intrinsically

different from application handoff since they are designed for remote console

that outputs the screen of a first device to a second device and sends user input

to the first device for processing. The transmission of screen data is a weakness

since it may consume much network bandwidth. Besides, they cannot work

well between heterogeneous user devices.

To hand over web sessions, Browser State Repository (BSR) Service [3] has

implemented a BSR repository server and a BSR plug-in for Microsoft Internet
Explorer (IE) 5.0. The BSR plug-in of a first device takes a snapshot of a brow-

ser�s state and saves the snapshot at a BSR repository server, and then a brow-

ser on a second device can retrieve the saved snapshot to resume the saved state

and session. Note that the first device is hereafter referred to as source device

since it is the source providing session information, while the second device

is referred to as target device since it is the target to accept saved snapshot.

In its current implementation, BSR service only supports Microsoft�s desktop
OS and does not show the ability to hand over web sessions between heteroge-
neous devices (though it envisions such scenarios). Besides, BSR is a client-

based approach and therefore requires much effort for modification to user

devices.

2.2. Server-based, client-based, and proxy-based approaches

A web session handoff system should be able to track and obtain session

information from source devices so that session information can be handed
over as much as possible and a session can be more completely resumed on

the target device. There can be three alternatives to web session handoff: cli-

ent-based, server-based, and proxy-based approaches. As described in [3], ser-

ver-based approaches are restricted by the information that a client sends to a

web server and are not compatible to web servers that do not support web

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1245
session handoff. Client-based and proxy-based approaches can hand over more

session information than server-based approaches, but require modification to

clients and proxies respectively. Since these two kinds of approaches require no

modification to web servers, session handoff can be performed transparently to

web servers and therefore server compatibility problem need not be concerned.

The main advantage of client-based approaches is that complete and pre-
cise session information can be obtained since a modified client can locally

monitor complete session information. However, each client-based approach

is currently restricted to user devices that have specially modified browsers

or specialized client programs for each approach. It is impractical and ineffi-

cient to modify all existing browser programs for all types of user devices un-

less a standardized or popular web session handoff protocol is widely

recognized.

In proxy-based approaches, a proxy should record all HTTP requests and
responses passing through the proxy and perform additional treatment to track

session information. Proxy-based approaches have two advantages over client-

based approaches:

1. Practicability: Proxy-based approaches have high practicability since they

require less or no modification to user devices and therefore are easy to sup-

port more browsers and devices. Although client-based approaches can

hand over complete and precise session information, they require in-depth
knowledge about browsers and substantial modification to user devices.

For example, the modification to user devices in BSR [3] is made directly

to Microsoft�s IE 5.0. In contrast, an unmodified user device in proxy-based

approaches can still hand over a session without losing much session infor-

mation. Besides, a user device in proxy-based approaches can be slightly

modified without in-depth knowledge about browsers to hand over more

session information. Thus client-based approaches cannot work properly

when modified devices are unavailable to users. Besides, users may suffer
from the problem that their favorite browsers do not have a modified ver-

sion that supports web session handoff.

2. Fault tolerance to unreachable source device: During handoff, a source device

may be unreachable due to lack of battery or wireless connection. In this

case, a proxy-based approach can still hand over a session because this ses-

sion has been tracked by a proxy while the user is browsing. As a result, ses-

sion handoff in a proxy-based approach fails only when the tracking proxy is

unreachable. On the contrary, client-based approaches store session infor-
mation in source devices or outer repositories (e.g. BSR repository), and

therefore session information will not be stored or handed over if source

devices, outer repositories, or network connections to them fail. In sum-

mary, proxy-based approaches are tolerant to the failure due to unreachable

1246 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
source devices. Thus, proxy-based approaches are more robust than the cli-

ent-based approaches in terms of fault tolerance, especially in wireless and

mobile environment.

On the contrary, compared with client-based approaches, proxy-based ap-

proaches have two disadvantages:

1. The additional treatment generates extra load to proxies.

2. Session information tracked by proxy-based approaches might be incom-

plete since some session information may not pass through a proxy and will

not be tracked by the proxy.

To overcome these disadvantages, we adopt in our design a proxy-based ap-

proach with optional assistant information from user devices. The assistant
information includes session information that cannot be tracked by a proxy,

but can be collected by a slightly modified browser or an optionally installed

client program in a user device. With the combination of proxy-based and

client-assisted scheme, the proposed approach elaborated in the following

sections outperforms the existing approaches.
3. System overview

Fig. 1 illustrates the system topology of our design. The topology is similar

to the traditional web access topology that consists of user devices, proxies,
Fig. 1. System topology.

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1247
and web servers. In this topology, we introduce a special purpose web proxy,

called User Agent Proxy (UAP), to replace a normal web proxy. In our de-

sign, user devices and the UAP are able to perform handoff-related function-

alities in addition to traditional functionalities of web proxies. The UAP,

situated between user devices and web servers, provides user authentication,

session tracking, session handoff, and content adaptation functionalities for
fulfilling web session handoff. As for user devices, they can be unmodified

or slightly modified in comparison with normal user devices. The slight mod-

ification to user devices is to plug in a small client program that performs

handoff-related functionalities such as registering sessions, collecting informa-

tion for assisting the UAP in tracking sessions, and handing over sessions.

User devices without modification still can perform session handoff as well,

while the modification to user devices supports handoff of more session infor-

mation, e.g., un-submitted user input. Intrinsically, the idea of this design is
different from BSR service because a BSR repository server is not involved

when a user device is browsing and does not provide functionalities of web

caching and session tracking.

3.1. Proxy session handling

In our design, a UAP will track the session information of each proxy ses-

sion for session handoff. A proxy session, in our definition, is different from a
normal web session established between a user device and a web server. A

proxy session starts when a browser process on a user device is authenticated

with the UAP, remains when the user hands over his session to another device,

and terminates when the authentication expires or the user logouts. According

to this definition, a proxy session thus may contain multiple traditional sessions

between several web servers in parallel.

In our design, processing of a proxy session is divided into three stages: reg-

istration, browsing and tracking, and session handoff.

3.1.1. Registration

In this stage, a user authenticates himself and his current device with a UAP

to register his device location, profiles, and sessions. For the user�s convenience,
he is allowed registering a new session by using another browser process on the

same or another device while keeping previously registered sessions.

3.1.2. Browsing and tracking

In this stage, an authenticated user device (can be a source device or a tar-

get device) sends browsing requests to the UAP, and then the UAP not only

processes the browsing requests as a traditional proxy does but also tracks

the proxy session. If the UAP cannot satisfy the requests with its cached ob-

jects, the UAP will forward the requests to original web servers. However

1248 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
the UAP needs to add user profiles as CC/PPex [14–16] headers in the re-

quests sent by the browsers not supporting CCPP [14]. Furthermore, it needs

to add in the requests sent from a target device or in the responses replied

from web servers the session information, such as cookies, which has not

been handed over to the target device. On the other hand, session tracking

is performed when the user device and the UAP exchange browsing requests
and responses. Therefore, no extra messages are exchanged between the user

device and the UAP for session tracking. The basic treatment of session

tracking is to record all HTTP requests from a registered browser and to

track their corresponding responses for session information. Besides, the

UAP can perform further treatment to learn more session information. The

description of such further treatment about proxy session tracking will be

elaborated in Section 4.

3.1.3. Session handoff

In this stage, the UAP, one or more source devices, and the target device co-

operate to hand over the proxy session from a selected source device to the tar-

get device. First, the user switches to the target device and chooses to hand over

a proxy session among those registered ones in the UAP. The UAP then com-

bines necessary session information tracked at the UAP with assistant informa-

tion collected at the source device (if available), and hands over the combined

session information to the target device. Note that in this stage not all session
information is handed over to the target device. Therefore, the UAP will hand

over more session information to the target device when necessary. After hand-

off of the session information, the user can continue browsing with the same

information that he viewed at the source device. The issues and protocol design

of session handoff will be elaborated in Section 5.

3.2. UAP architecture

As shown in Fig. 2, UAP provides the following functional components:

(1) User Authenticator: User Authenticator authenticates source or target

user devices and browser processes before proceeding to other UAP func-

tionalities. It stores users� authentication information in User DB.

(2) Profile Manager: Profile Manager stores user profiles such as user prefer-

ence, device capabilities, and locations of user devices in User Profile DB.

(3) HTTP Proxy Agent: HTTP Proxy Agent behaves like a traditional web
proxy. It receives browsing requests from registered browsers and

responses from web servers, asks Session Manager to deal with the

requests and the responses, obtains the requested objects from web serv-

ers or Content Cache, and then replies user devices with objects adapted

by Content Adapter.

Fig. 2. UAP architecture.

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1249
(4) Session Manager: Session Manager tracks proxy sessions and adjusts

requests and responses during browsing and tracking stage. In addition,

Session Manager will be also involved during session handoff stage. Dur-

ing browsing and tracking stage, Session Manager analyzes requests and

responses received by HTTP Proxy Agent to track and record session

information in Session DB. Session Manger also adjusts requests and

responses by adding necessary session information in the requests and

responses from/to target devices. Moreover, if browsers do not support
CCPP [14], Session Manger will add user profiles as CC/PPex [14–16]

headers in the requests as well. On the other hand, during session handoff

stage Session Manager inter-works with source devices and target devices

to accomplish session handoff.

(5) Content Adapter: Content Adapter adapts web content to fit a user�s pro-
file during session handoff and browsing-and-tracking stages. If web serv-

ers can perform all the necessary adaptation, UAPs� functionality of

content adaptation can be optional. Otherwise, multiple passes of adap-
tation by UAPs and web servers would be possible.
4. Proxy session tracking

This section discusses ways to track a proxy session with modified and

unmodified user devices respectively and also addresses issues of session

1250 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
tracking in detail. Before going into proxy session tracking, we first clarify

usage of the following terms in this paper:

Session information: It consists of any information about a session such as

session history, HTTP cookies, web objects maintained by browsers, etc.

Intrinsically, web session handoff means handoff of session information. Ses-
sion information is called Browser State in BSR [3]. In this paper, we use the

term session information to avoid confusion between session state and

browser state.

Session state: Session state is a subset of session information. It is the infor-

mation used by web servers for identifying or recording a stateful session,

e.g., HTTP cookies and other information discussed in Section 4.2.

Proxy session tracking in our design includes three operations: session his-
tory tracking, session state handling, and un-submitted form fields tracking.

4.1. Session history tracking

Session history denotes the chronological sequence of pages browsed by a

particular browser process. It can be accessed by a browser�s ‘‘back’’ and ‘‘for-

ward’’ commands/buttons. Handoff of session history enables users to traverse

web pages in target devices in the original sequences as they have traversed in
source devices. Therefore, it is the basis of session information.

The most intuitive way to obtain session history is from source devices.

However, most browsers maintain session history in memory, which cannot

be directly and easily accessed without in-depth knowledge about these brow-

sers. Thus obtaining session history requires a modified browser or a program

snooping a browser�s session history. On the other hand, a UAP can track

session history by recording requests and corresponding responses in the

requested order. From the two solutions, we choose the latter in order to min-
imize modification to user devices.

The following sub-subsections further discuss three conditions about session

history tracking and their respective treatments.

4.1.1. Multiple browser processes on a user device

For a user device executing multiple simultaneous browser processes, a UAP

should be able to differentiate requests from different browser processes to sepa-

rately track each proxy session. If persist connection is used (RFC2616 [17],
Section 8.1), the simplest way to this differentiation is according to each re-

quest�s source TCP port. However, a browser�s connection to a UAP may occa-

sionally terminate and the browser process will then use another TCP port to

connect to the UAP. Thus the source port is not sufficient for differentiating

requests. As a result, we propose a solution that requires modification to user

Fig. 3. Identification of proxy session.

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1251
devices and uses session ids to identify proxy sessions. Fig. 3 illustrates the flow

of using session ids. Initially, browser1 on the user device sends the UAP its

first request without proxy session id. Since this request contains no session

id, the UAP assigns a unique proxy session id (id1) to the proxy session for this

request. Afterward, upon receiving the first request�s response from server1, the

UAP adds in the response the session id as an extension HTTP header and re-

lays this response to browser1. Browser1 will then tag all subsequent requests

with this id so that the UAP can recognize these requests are sent from the
same browser process. Afterward, when browser2 on the same device sends

its first request without proxy session id to the UAP, the UAP will assign an-

other unique proxy session id to the proxy session for the request. As a result,

different browser processes are assigned different proxy session ids, and there-

fore proxy sessions can be easily differentiated. In our implementation, we

make no modifications to the browsers. Instead, we plug in a client program

to intercept and store session ids when a user device receives responses. Conse-

quently, our client program appends session id in the requests when a user
device sends requests.

4.1.2. HTML document containing other objects

HTML documents may contain other objects, e.g., frames or pictures. For

such documents, a browser will send additional requests for the contained ob-

jects. In this case, the UAP should exclude these objects from session history.

For example, after browsing three objects: A, B, and C sequentially, the session

history should be ‘‘A, B, C’’ even though object B contains another two ob-
jects: B1 and B2. If a UAP has no information about B�s structure and just

records all requested objects into session history, the UAP will maintain

Table 1

Treatments for requests with a message body

Conditions Impacts

UAP

record

message body

Treatment of

documents

UAP can adapt content No Hand over adapted cached documents

UAP cannot adapt content;

method is idempotent

Yes Hand over re-requested documents

from web servers

UAP cannot adapt content;

method is not idempotent

No Hand over un-adapted cached documents

1252 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
an incorrect session history as ‘‘A, B, B1, B2, C’’. Unfortunately, to recognize

the requested document�s structure requires parsing of the document, which

will increase load to the UAP [18]. To alleviate load of UAPs, our client pro-

gram will send a UAP assistant information indicating whether a requested

object should be recorded into session history.

4.1.3. A request with a message body

An HTTP request may contain a message body (RFC2616 [17], Section 4.3).
The meaning and usage of the message body depend on the HTTP method and

the requested URL of the request. The message body is necessary when the re-

quest will be sent to the original web server again. Therefore, the UAP should

record the message body if the UAP will re-request content from the original

server after session handoff. Due to the specification of HTTP [17] and CC/

PP [14], such recording and re-requesting can occur in our system only when

the UAP cannot perform content adaptation to fit for the target device and

the HTTP method in the request is idempotent.1 Table 1 summarizes the im-
pact of a UAP�s adaptation capability and HTTP methods on the treatment

of documents and message body recording.

4.2. Session state treatment

Originally, HTTP is designed to support only stateless sessions. However, as

web browsing become popular and is widely used for more aspect of informa-

tion exchange, stateful sessions with session state persisting across multiple
1 An HTTP request with non-idempotent HTTP method (RFC2616 [16], Section 9.1.2) should

not be unintentionally re-requested to an original web server since re-performing such a request

may result in unwanted update to server contents. According to the specification of HTTP 1.1 [16],

the methods GET, HEAD, PUT, DELETE, OPTIONS, and TRACES are idempotent and the

method POST is not idempotent. In other words, requests using POST method should not be

unintentionally re-performed.

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1253
HTTP transactions become important and necessary. With stateful sessions, a

web client can send requests with necessary session state so that a web server

can identify a session and deal with these requests according to the session

state.

Since a stateful session is established between a source device and a web

server, the target device initially will not have the session state sent between
the source device and the web server. A UAP thus must track session state

so that the target device can continue the stateful session after session hand-

off. Among the approaches [19–22] proposed to support stateful sessions on

the original HTTP, our design deals with session state information supported

by three extensively used approaches that use hidden form fields, cookies, and

URL rewriting. Note that using cookies [20] is different from the other two

since transmission of cookies in HTTP is a special portion for stateful sessions

under the definition in RFC2965 [20] while the other two approaches
can serve for other usage as well as stateful sessions. The following sub-

subsections describe the three approaches and their respective treatment in

our design.

4.2.1. Hidden form fields and URL rewriting

To enable a stateful session, a web server can use hidden form fields (invis-

ible in browser) [20] or URL rewriting [21] to embed session state in web doc-

uments. After browsing such web documents, a client thus can send browsing
request with necessary session state included either in the requested URL or in

the request�s message body. Consequently, the web server can identify the ses-

sion and deal with the request according to appropriate session state.

The following shows the detail of submitting a form containing hidden form

fields or using URL rewriting and the corresponding treatment in our design:

(A.1)A form using GET method and containing hidden form fields: When sub-

mitting such a form, a client includes the hidden form fields as part of
the requested URL. Consider submitting an example HTML document,

which uses GET method and includes a form containing three form ele-

ments: the hidden field ‘‘session’’, the select field ‘‘Year’’, and the button

‘‘Submit’’, as shown in Fig. 4. The client will submit a request for http://

nctu.edu.tw/F1.cgi?session=001&Year=2003. Note that the part ‘‘ses-

sion=001’’ is the embedded session state.

(A.2)Rewriting URL: A web server can use URL rewriting to encode session

state as part of a requested URL. URL rewriting is a server-side tech-
nique which translates the path part of a requested URL to another path.

For the example in Fig. 4, if the web server translates its path ‘‘ses-

sion001/F1.cgi’’ to ‘‘F1.cgi?session=001’’, the server can send a client a

different HTML document that embeds session state in the form action

field as ‘‘http://nctu.edu.tw/session001/F1.cgi’’ without using hidden form

http://nctu.edu.tw/F1.cgi?session=001&Year=2003
http://nctu.edu.tw/F1.cgi?session=001&Year=2003
http://nctu.edu.tw/session001/F1.cgi

Fig. 4. Form example using GET method and hidden form fields.

1254 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
field ‘‘session’’. When submitting such a form, the client sends the server a

request for ‘‘http://nctu.edu.tw/session001/F1.cgi?Year=2003’’ and the

web server can automatically translate the requested URL to the real

one ‘‘http://nctu.edu.tw/F1.cgi?session= 001&Year=2003’’.

As a result, the UAP performs no special treatment and can automatically

record session state embedded by URL rewriting or in hidden form fields of a

form using GET method since the UAP should record requested URLs for
tracking session history. Besides, the UAP performs no special action and

can hand over session state embedded in these two ways when handing over

a session�s history.
(B) A form using POST method and containing hidden form fields: When sub-

mitting such a form, a client appends the hidden form fields in the message

body of the request. Consider the same example in Fig. 4, if the form method

is POST, the client will submit a request for ‘‘http://nctu.edu.tw/F1.cgi’’ with a

message body containing only one line ‘‘session=001 & Year=2003’’.
As a result, tracking of session state embedded in this way needs the same

treatment for a request�s message body as stated in Section 4.1.3. The handoff

of recorded message body will be described in Section 5.3.

4.2.2. Cookies

To enable a stateful session by using cookies, a web server associates session

state with cookies or encodes session state as cookies and then sends the cook-

ies to a client. Afterward, the client will send requests containing these cookies
so that the server can deal with the requests according to the session state.

Transmission of cookies in HTTP is a special portion for stateful sessions

under the definition in RFC2965 [20]. In a stateful session, when answering

a client�s request, a server will assign the client cookies which are associated

with certain domains and some paths in these domains. The assigned cookies

are then sent to the client by using ‘‘Set-Cookie2’’ or ‘‘Set-Cookie’’ HTTP

header in the server�s response and are stored in the client. Afterward, when

the client wishes to access objects in domains and paths which have been asso-

http://nctu.edu.tw/session001/F1.cgi?Year=2003
http://nctu.edu.tw/F1.cgi?session=001&Year=2003
http://nctu.edu.tw/F1.cgi

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1255
ciated with client�s stored cookies, the client will send requests containing the

associated cookies in ‘‘Cookie’’ HTTP header in requests.

As a result, to track a stateful session using cookies, a UAP should handle

‘‘Set-Cookie2’’ or ‘‘Set-Cookie’’ headers in web servers� responses, record

cookies in the Session DB, and hand over recorded cookies to the target de-

vice when handing over the session. However, sending all cookies of a session
to the target device may be unnecessary and slow for a mobile device. As a

result, in our design the UAP will not send any cookie to the target device

upon session handoff. Instead, the target device obtains necessary cookies

during browsing and tacking stage. In this stage, the target device sends re-

quests without cookies, and the UAP should append cookies in these requests

and the corresponding responses if necessary. The detail will be described in

Section 5.3.

4.3. Un-submitted form fields tracking

Handoff of user input in un-submitted form fields provides users conve-

nience to avoid tedious refilling when they hand over devices during filling

forms. In normal browsing operation, values of form fields are sent to a

UAP only after form submission and therefore the UAP has no way to receive

and track user input in un-submitted form fields without assistance from mod-

ified user devices. In our design, we adopt a client program to snoop the main-
tained objects in browsers for the current-viewed HTML files, to find input

fields, and to collect these fields� inputted values. The collected data will then

be requested by the UAP during session handoff stage. The detail operation

will be described in Section 5.1.

4.4. Violation of RFC�s cache-control directives

In our design, UAPs may store responses and cookies for the purpose of ses-
sion tracking. However, this storing operation may violate the specifications in

RFC2616 [17] and RFC2695 [20] if a response is specified as non-cacheable by

using ‘‘private’’, ‘‘no-cache’’, or ‘‘no-store’’ directives in ‘‘Cache-Control’’

header (RFC2616 [17], Section 14.9). These directives are originally used for

preventing reveal of private information when proxies reply with cached data

to subsequent requests from other user devices. Thus, in order to protect the

private information such as personalized data and session state, a user device

and a UAP should establish security association. Fortunately, there have been
many application layer, network layer, and link layer approaches that can

establish the required secure association [23–25]. Besides, a UAP must sepa-

rately maintain private information and must not provide the private informa-

tion of a user to other users. Moreover, the UAP should delete the private

information when a proxy session terminates.

1256 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
5. Stateful session handoff

Fig. 5 shows the message flow of our session handoff protocol. In this pro-

tocol, the participants at a user device can be an unmodified browser or our

client program (if it has been installed in the user device). Initially, several

source devices have ongoing registered sessions tracked by the UAP. At Step
1, the target device sends a handoff request to the UAP after registering to

the UAP. At Step 2, the UAP replies a list of the user�s registered sessions to

the target device. At Step 3, the target device requests to hand over a selected

session. If the source device is unreachable or without installing our client pro-

gram, Step 4 will be skipped. Otherwise, at Step 4, from the selected source de-

vice the UAP obtains partial information of the selected session collected by

our client program. At Step 5, the UAP sends the target device necessary ses-

sion information that the UAP tracks as well as that collected by our client
program. In the current state, our implementation only hands over the session

history in order to avoid handing over unnecessary information that is not

immediately used by the target device. If necessary, other part of the session

information will be sent to the target device together with subsequent browsing

responses. At Step 6, the target device sends the UAP a browsing request for a

page in the session, e.g., the last-viewed page. At Steps 7, if necessary, the UAP

adjusts the browsing request by adding the user profile as CC/PPex [14–16]

header and session information containing the message body and cookies that
are previously recorded by the UAP and associated with objects accessed in

this browsing request. The adjusted request is then sent to the web server. At

Step 8, the UAP receives a response from the web server. Steps 7 and 8 can
Fig. 5. Session handoff protocol message flow.

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1257
be optional if the UAP can perform content adaptation by using cached files.

At Step 9, the UAP adjusts the response by appending necessary cookies and

relays the adjusted response to the target device. Note that Steps 6–9 will repeat

for every browsing request sent by the target device.

The following subsections describe handoff of user input in un-submitted

form fields, web pages, recorded cookies, and recorded message bodies in
detail.

5.1. Handoff of user input in un-submitted form fields

As stated in Section 4.3, user input in un-submitted form fields can be

handed over only using modified user devices. In our design, our client pro-

gram assists the UAP in handing over user input in un-submitted form fields.

During browsing and tracking stage, the client program snoops the maintained
objects in browsers and collects user input in un-submitted form fields as

shown in the left of Fig. 6. The UAP then obtains the collected user input as

part of session information during Step 4 of Fig. 5. Afterward, when the target

device requests an HTML document containing un-submitted form fields (Step

6 of Fig. 5), the UAP combines un-submitted form fields into the HTML
Fig. 6. Combination of user input.

1258 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
document before replying the target device (Step 9 of Fig. 5). The combination

flow is shown in the right of Fig. 6. The UAP obtains the HTML document

from the UAP�s Content Cache or the original web server, parses the HTML

document, and combines collected user input into corresponding fields accord-

ing to each field�s name. Note that the program code for snooping different

browsers� maintained objects is browser-dependent. In the current state, we
implement only the client programs for Microsoft�s IE of desktop Windows

and Pocket PC.

5.2. Handoff of a web page

Intuitively, a web page can be handed over in form of its content or URL.

Handing over real content data is a convenient and fast choice since the brow-

ser on the target device is unnecessary to send another browsing request in
addition to the handoff request. However, in this way our client program

must save the content data of the page and objects contained in this page

as local files, parse the page, change references of the contained objects in

the page into locally saved files, and notify the browser to open the locally

saved file of the page. As a result, the browser will display the locally saved

file�s name as the page�s URL instead of the original network URL. Further-

more, the extra parsing and reference changing will generate extra load to

user devices.
On the contrary, handing over URL is unnatural and slower since a browser

needs to send additional requests to obtain real content data from the UAP.

These requests result in extra messages exchanged between a user device and

the UAP. However, this way makes the browser on a target device display

the original network URL as the page�s URL and frees the target device

from the extra parsing and reference changing. Thus, our design adopts hand-

off of a web page in the form of its URL.

In our design, handoff of a web page occurs only at the end of session hand-
off stage, while the content of this page is requested during browsing and track-

ing stage. At Step 5 of Fig. 5, the UAP sends the target device the list of URLs

in the session history and also redirects the target device to open the last-

viewed page that we reasonably assume the user would like to view first after

session handoff. With the redirection, the user device will automatically request

the last-viewed page from the UAP without the user�s instruction (at Step 6 of

Fig. 5).

5.3. Handoff of recorded cookies and message bodies

As we have stated previously, to avoid handing over session information

that is not immediately used, our session handoff protocol does not send a tar-

get device cookies and message bodies associated with a session and recorded

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1259
by a UAP during session handoff stage. Instead, we send a target device session

information associated with a particular object only when the target device

requests this object.

The handoff of recorded cookies and message bodies of a session is per-

formed during the browsing and tracking stage of Fig. 5. At Step 6, the target

device sends a browsing request that may not contain the cookies and message
body necessary for accessing the requested object. At Step 7, if necessary, the

UAP appends in the browsing request the cookies and message body for

accessing the requested object and forwards the adjusted browsing request to

the web server. At Step 8, the web server replies the requested object to the

UAP. Steps 7 and 8 can be optional if the UAP can perform content adapta-

tion by using cached files. At Step 9, the UAP appends in the received response

the cookies that it appends at Step 7 and that are associated with the object in

the received response, and then forwards the adjusted response to the target de-
vice. Afterward, subsequent requests from the target device will contain these

cookies. Therefore, the UAP need not append these cookies again until the ses-

sion is handed over again. It should be noted that at Step 9 a recorded message

body is not included in the adjusted response since the standard HTTP proto-

col cannot afford to send a message body in the reverse direction. Although the

target device cannot obtain the message body, the target device is probably

able to proceed to browse without the message body since the same browsing

request of the target device can be satisfied by the content cache of the target
device or the UAP.

5.4. Summary

Table 2 summarizes differences between BSR [3] and our approaches with

and without modification to user devices. Our approach adopts a proxy-based

approach which is inherently different to the client-based approach adopted by

BSR. Besides the basic differences between proxy-based approaches and client-
based approaches, our approach has two main advantages over BSR service:

Handoff Action: BSR service requires source devices to explicitly save brow-

ser state. In contrast, our design has the flexibility that a user can perform

session handoff when he leaves his source device without performing a sav-

ing action.

History and Cookies Handoff: The style of handoff performed by BSR ser-

vice requires transmission of much session information and page content
from a source device to a BSR repository server and then from a BSR repos-

itory server to a target device. Such transmission may be unnecessary since a

user may not re-visit all the web pages of a session. Although BSR service

provides adjustable limit on the history size, such limitation may be imprac-

tical since a user may need different limits for different sessions. In order to

Table 2

Differences between BSR and our approaches

Item Approach

BSR Our approach

Without modification With modification

Modification to

user devices

Substantially

modified browser

No Install a small client program

Session registration Unnecessary By accessing UAP�s web pages By accessing UAP�s web pages;

or by the client program

Tracking session

information

Unnecessary By UAP; Unable to track

un-submitted form fields

By UAP; Un-submitted

form fields tracked by client program

Handoff action Source saves to

BSR repository

and then target

retrieves from it

Target retrieves from UAP UAP retrieves un-submitted form fields

from source; Target retrieves from UAP

History handoff Directly loaded into

browser

Sent as a list of web pages Sent as a list of web pages

Web pages handoff Content is directly

loaded into browser

UAP redirects browser

to open URLs

UAP sends URLs to client program

and then browser opens the URLs

Cookie handoff All cookies are sent to

browser

UAP sends necessary cookies to

browser during browsing and

tracking step

UAP sends necessary cookies to browser

during browsing and tracking step

1
2
6
0

M
.-D

.
H
sieh

et
a
l.
/
In
fo
rm

a
tio

n
S
cien

ces
1
7
6
(
2
0
0
6
)
1
2
4
1
–
1
2
6
5

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1261
reduce network traffic, our protocol only hands over URLs of a session so

that a user can follow the URLs to re-visit pages of the session.
6. Implementation and example

This section shows our implementation. We have implemented a UAP on a

Microsoft�s Windows 2000 platform and client programs for performing ses-

sion registration and handoff for Microsoft�s Windows PC and Pocket PC

PDA. Besides, Our system has the flexibility that user devices without our cli-

ent programs can perform session registration and handoff by accessing web

pages on the UAP.

The client program for Microsoft�s Windows PC is implemented as a plug-in
in IE, which is the rectangle toolbar under the address bar in Fig. 7. Using the

program, users can perform session registration and handoff directly in IE�s
main window. The configuration window of this program is shown in the cen-

ter of Fig. 7. This window enables a user to input his username, password, IP

address of a UAP, port number on the UAP for accessing the UAP�s function-
alities, basic user preferences for adaptive browsing (the options: ENGLISH,

PICTURE, VIDEO, GRAY, SOUND, and Waiting-time), and URL of user

profile.
The client program for Microsoft�s Pocket PC PDA provides the same func-

tionalities as a PC�s client program except that the PDA client program is a

standalone one instead of a plug-in. We do not show it for saving space.
Fig. 7. PC client program.

1262 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
The following demonstrates handing over a session for online shopping by

using the implemented system. As shown in Fig. 8, a user first uses a PC to visit

an online shop, places his order, and inputs two form fields: Receiver and Ad-

dress. Afterward, the user uses the client program on the PDA to hand over the

session (Fig. 9(a)), and then the session resumes at the last-viewed page with

the user input. That is, the user inputs in the inputted form fields are also
handed over (Fig. 9(b)). The user then inputs another form field: TEL (Fig.

9(c)). Finally, the session is handed over back to the PC with the user input

in the form field: TEL handed over (Fig. 10).
Fig. 8. A session at a PC.

Fig. 9. Session handoff to PDA.

Fig. 10. Session handoff back to the PC.

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1263
7. Conclusion and future work

This paper proposes a web session handoff system that adopts a proxy-based

approach with optional assistant information from user devices and discusses

ways to track and hand over a variety of session information in detail. Using

proxy-based approaches for session tracking and handoff has several advanta-

ges over using client-based approaches or server-based approaches. The advan-

tages include less modification to user devices, practicability, and fault
tolerance. During handoff, a source device may be unreachable due to lack

of battery or wireless connection. In this case, a proxy-based approach can

hand over a session because this session has been tracked by a proxy while

the user is browsing. Besides, in order to hand over session information that

can not be tracked by a proxy, we let the less modified user devices collect ses-

sion information for assisting the proxy in session tracking. We have imple-

mented a special proxy—UAP and client programs for PC and PDA to

fulfill the session handoff system. The implementation can successfully hand
over not only stateless but also stateful sessions between homogeneous or het-

erogeneous user devices.

There is still further improvement to our implementation. First, we will im-

prove our client program to collect more assistant information so that the UAP

can be more light-weighted and session information can be handed over com-

pletely. Besides, since session tracking generates additional processing and stor-

age load to UAPs, we will perform a quantitative analysis on workload and

storage space problem of UAPs. Furthermore, we will also apply and refer pre-
vious research in scalable hierarchical proxies to design a system that contains

multiple co-operated UAPs.

1264 M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265
Acknowledgement

This work was supported in part by the National Science Council, Republic

of China, under Grants NSC 93-2219-E-009-001, NSC 93-2219-E-009-004, and

NSC 93-2213-E-126-002.
References

[1] H. Schulzrinne, E. Wedlund, Application-layer mobility using SIP, in: Proceedings of IEEE

Conference on Service Portability and Virtual Customer Environments, 2000, pp. 29–36.

[2] R. Bagrodia, T. Phan, R. Guy, A scalable distributed middleware service architecture to

support mobile internet applications in wireless networks, Journal of Mobile Communication,

Computation, and Information (WINET) 9 (4) (2003) 311–320.

[3] H. Song, H.-H Chu, N. Islam, S. Kurakake, M. Katagiri, Browser state repository service, in:

Proceedings of International Conference on Pervasive Computing, 2002, pp. 253–266.

[4] C. Perkins, IP Mobility Support for IPv4, IETF Internet draft, June 2004.

[5] R. Jan, et al., Enhancing survivability of mobile internet access using mobile IP with location

registers, IEEE Infocom 1 (1999) 3.

[6] A. Di Stefano, C. Santoro, NetChaser: agent support for personal mobility, IEEE Internet

Computing 4 (2) (2000) 74–79.

[7] M. Roussopoulos, et al., Person-level routing in the mobile people architecture, in:

Proceedings of the USENIX Symposium on Internet Technologies and Systems, 1999, pp.

165–176.

[8] Appenzeller et al., The mobile people architecture, Technical Report CSL-TR-99-777,

Stanford University, 1999.

[9] R. Liscano et al., Integrating multi-modal messages across heterogeneous networks, in:

Proceedings of ENM-97 In conjunction with the ICC-97, 1997, pp. 45–53.

[10] C.-H. Herman et al., iMobile: a proxy-based platform for mobile services, in: Proceedings of

the first workshop on Wireless mobile internet, 2001, pp. 3–10.

[11] A.-P. Kanerva et al., P920 deliverable 1: VHE concept description, scenarios and protocols,

2000.

[12] K. Raatikainen, Middleware for future mobile networks, in: Proceedings of IEEE Interna-

tional Conference on 3G Wireless and Beyond, 2001, pp. 722–727.

[13] T. Richardson, et al., Virtual network computing, IEEE Internet Computing 2 (1) (1998)

33–38.

[14] M. Nilsson, J. Hjelm, H. Ohto, Composite capabilities/preference profiles: requirements and

architecture, W3C Working Draft, 2000. Available from <http://www.w3.org/TR/2000/

WD-CCPP-ra-20000721/>.

[15] F. Reynolds, C. Woodrow, H. Ohto, Composite capability/preference profiles (CC/PP):

structure and vocabularies, W3C Working Draft, 2003. Available from <http://www.w3.org/

TR/2003/WD-CCPP-struct-vocab-20030325/>.

[16] H. Ohto, J. Hjelm, CC/PP exchange protocol based on HTTP extension framework, W3C

Note, 1999. Available from <http://www.w3.org/TR/NOTE-CCPPexchange>.

[17] R. Fielding et al., Hypertext transfer protocol—HTTP/1.1, IETF RFC2616, 1999.

[18] T.C. Sung, Inter-device handoff for WWW service, Master Thesis, Department of CSIE of

National Chiao-Tung University, 2002.

[19] K. Moore, N. Freed, Use of HTTP state management, IETF RFC2964, 2000.

[20] D. Kristol, L. Montulli, HTTP state management mechanism, IETF RFC2965, 2000.

http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/
http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/
http://www.w3.org/TR/2003/WD-CCPP-struct-vocab-20030325/
http://www.w3.org/TR/2003/WD-CCPP-struct-vocab-20030325/
http://www.w3.org/TR/NOTE-CCPPexchange

M.-D. Hsieh et al. / Information Sciences 176 (2006) 1241–1265 1265
[21] J. Newmarch, HTTP session management, Electronic Commerce Technical Issues. Available

from <http://jan.netcomp.monash.edu.au/ecommerce/session.html>.

[22] Netscape Support Documentation, Persistent client state—HTTP cookies. Available from:

<http://wp.netscape.com/newsref/std/cookie_spec.html>.

[23] S. Kent, R. Atkinson, Security architecture for the internet protocol, IETF RFC2401, 1998.

[24] T. Dierks, C. Allen, The TLS Protocol Version 1.0, IETF RFC2246, 1999.

[25] E. Rescorla, A. Schiffman, The secure hypertext transfer protocol, IETF RFC2660, 1999.

http://jan.netcomp.monash.edu.au/ecommerce/session.html
http://wp.netscape.com/newsref/std/cookie_spec.html

	Stateful session handoff for mobile WWW
	Introduction
	Related work
	Previous work
	Server-based, client-based, and proxy-based approaches

	System overview
	Proxy session handling
	Registration
	Browsing and tracking
	Session handoff

	UAP architecture

	Proxy session tracking
	Session history tracking
	Multiple browser processes on a user device
	HTML document containing other objects
	A request with a message body

	Session state treatment
	Hidden form fields and URL rewriting
	Cookies

	Un-submitted form fields tracking
	Violation of RFC rsquo s cache-control directives

	Stateful session handoff
	Handoff of user input in un-submitted form fields
	Handoff of a web page
	Handoff of recorded cookies and message bodies
	Summary

	Implementation and example
	Conclusion and future work
	Acknowledgement
	References

