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Abstract

In this paper, the linear-quadratic-Gaussian (LQG) optimal control problem is considered and a
robust minimax controller composed of the Kalman filter and the optimal regulator is synthesized to
guarantee the asymptotic stability of the discrete time-delay systems under both parametric
uncertainties and uncertain noise covariances. Designed procedures are finally elaborated with an
illustrative example.
© 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A well-known property of the discrete linear-quadratic-Gaussian (LQG) optimal control
problem is that the optimal regulator, synthesized by the LQ optimal technique, is
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generated from the estimated state which is the output of the Kalman filter. The LQG
optimal control design for a linear stochastic dynamic system requires not only an accurate
description of the statistical characteristic of noise signal but also an exact system model.
Nevertheless, neither noise nor plant parameters may be precisely known in a real control
system. Therefore, it is of interest to consider the robust LQG optimal problem for those
systems whose noise covariances and plant parameters are known only to be within some
classes.

Time delay is commonly encountered in various engineering systems; for example,
systems with computer control have delays, as it takes time for the computer to execute
numerical operations. Besides, remote working, radar, electric networks, transport
process, metal rolling systems, etc. all have delays. The output in these systems responds
only to an input after some time interval. The introduction of time-delay factor is often a
source of instability and generally complicates the analysis. Hence, the problem of stability
analysis of time-delay systems has been one of the main concerns of researchers wishing to
inspect the properties of such systems and there have been several research efforts [1-11] on
this issue. For instance, Basin et al. proposed the optimal control and filtering algorithms
for time-delay systems, and discussed the delay-dependent stability for linear discrete
stochastic systems [10-14].

In this paper, the LQG optimal control problem is considered and Minimax theory and
Bellman—Gronwall lemma are employed to derive a robust criterion which guarantees the
asymptotic stability of the discrete time-delay systems under both parametric uncertainties
and uncertain noise covariances. On the basis of this criterion, a robust minimax controller
composed of the Kalman filter and the optimal regulator is synthesized to stabilize the
uncertain stochastic systems.

The organization of this paper is as follows. The system description is presented in
Section 2. The design procedure of a robust minimax controller is proposed in Section 3.
An example is provided in Section 4 to illustrate our main results. A conclusion is finally
drawn in Section 5.

2. Problem formulation

A discrete time-delay system is depicted by the following difference equations:

m

Xplk + 1) = Aoxp(k) + Ado(k)xy(k) + Y Aixyp(k — i) + > AAik)x,(k — i)
i=1 i=1
+ Byu(k) 4+ AB,(k)u(k) + v(k), (2.1a)

W) = Cpxp(k) + AC,(k)x,(k) + e(k) (2.1b)

where x,(k) is an n x 1 state vector; u(k) is an r x 1 input vector; y(k) is a p x 1 output
vector; v(k) is an n x 1 random process vector; e(k) is a p x 1 random process vector; and
Ay, A;, B, (rank(B,) =r) and C, (rank(C,) = p) are constant matrices with appropriate
dimensions. Moreover, Ady(k), A4;(k), AB,(k) and AC,(k) denote linear time-varying
parametric uncertainties with the following upper norm-bounds:

A4y <o, NAAII<n; i=1,2,....m, [AB,(b)|I<, [AC,(K)<p
2.2)
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where g, 1;, §, and p are given constants. The process noise v(k) and measurement noise
e(k) are uncorrelated random sequences with zero mean. Meanwhile, they have no time
correlation or are “white” noises, that is,

Ew(w' ()} =0 if i#), (2.3a)

Ele(i)e'(j)} =0 if i#j, (2.3b)
and their covariances or “‘noise levels” are defined by

E{o(ky" (k)} = Ry, (2.3¢)

Ef{e(k)e'(k)} = R-. (2.3d)

In (2.3¢)—(2.3d), R; and R, are symmetric, positive definite matrices and have the following
norm-bounds:

Ry — Ryl <ei, (2.3¢)

Ry — Ryl <e2 (2.3)

where ¢, & are given positive constants and Rjy, Ry denote the nominal parts of the
actual covariances of the process noise v(k) and measurement noise e(k), respectively.
By defining an n(m + 1) x 1 new state vector

X(k) =[x, (k —m) x,(k—m+1) ... x,(k—1) x,;(b)]", (2.4)
system (2.1) can then be transformed into the following system:
X(k + 1) = Ax(k) + AA(k)X(k) + Bu(k) + AB(k)u(k) + v(k), (2.52)
y(k) = Cx(k) + AC(k)%(k) + e(k) (2.5b)
where
[0 I 0 0 0]
0 0 I 0 0
i ,
0 0 0 0 1
A Ap-1 Am—2 Ay Ao | _
[0 0 e —Onxn 0
0 0 0
AA(k) = : 2 : : : (2.6a)
0 0 e 0 0
A Ay () - A Ao |
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T 0 0
0 0
B=|: , AB(k) = : ,
0 0
B AB,(k
L7 Jaxr L p( )_ nxr

C=[00 --- 0 Clyz» ACK)=[00 --- 0 AC,(K)]

where 77 = n(m + 1) and

0

1

nxn

pxn>

(k) = Gu(k),

According to Egs. (2.3c) and (2.6¢), the covariance of 7(k) is given by

E{w(k)o"(k)} = GR,GT = R,

and R; has the following norm-bound:

IR — Rioll <%

where Rjp = GR,oG" and & = & ||G||| G

Lemma 2.1. If rank(B,) = r, the pair {A, B} is controllable.

(2.6b)

(2.6¢)

2.7)

(2.8)

Proof. From Eq. (2.6b), obtained here is rank(B) = rin_lf(ﬁp)- If rank(B,) = r, the pair

{4, B} is then controllable if and only if rank[B, 4B, ..., A"
matrix Uj_, is easily found to have the following form:

Uﬁfr -

00 0 .-~ B,
0 0 0 : AoB,
X

0 B,
0 B, AoB, e
| B, AoB, (Ag+A)B, -  x

X

nx@—r+1)r

"B] = rank(U;_,) = 7 [12]. The

2.9)

and Uj_, has 7 linearly independent columns. Thus, rank(U;_,) = n. The proof is then

complete. [

Lemma 2.2. If rank(C,) = p, the pair {A, C} is observable.
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Proof. From Eq. (2.6¢), obtained here is rank(C) = rank(C,). If rank(C,) = p, the pair
{A, C} is then observable if and only if [15]

r C

Cf

rank : = rank(O;_,) = 7. (2.10)

N

CAI‘I—[]

(n—p+1)pxn
The matrix O;_, is easily observed to have the following form:

0 0 e 0 C,
CpAm CpAm—l tee CpAl CpAo
0y = | CrAodn  Cpdm+ Cpodny - Cpdr+ Cpodr Cpdi + C,A}
x x X x Gi—p+Dpxit
(2.11)

and O;_, has 7 linearly independent rows. Thus, rank(O5_,) =#n. The proof is then
complete. [

3. Robust minimax controller

Prior to discussing the design of robust minimax controller for the uncertain stochastic
system (2.5), its nominal system is first considered (i.e., AA(k) = 0, AB(k) =0, AC(k) =0
and g = & = 0):

X(k + 1) = Ax(k) + Bu(k) + v(k), (3.1a)
y(k) = Cx(k) + e(k). (3.1b)

The performance index to be minimized is chosen as

J =" E{X"(k)Qx(k) + u" (k) Wuk)}! (3.2)
k=0
where Q= Q0'>0, W= WT>0 and the triple {4, F:/z, 0'?} is assumed here to be
controllable and observable. The optimal admissible control up(f), which minimizes the
performance index J in Eq. (3.2) subject to dynamic system (3.1), is given by

Uopt(k) = —Grx(k) (3.3a)
where

G, =(W+B'SB'B's4 (3.3b)

'E(-) denotes the expected value of (-).
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and S is the symmetric positive definite solution of the following discrete Riccati equation:

S=A4 SA+0— B SAH'W +B SB)'(B' 5A). (3.3¢)
Meanwhile, the estimated state X is the output of the Kalman filter:

X(k + 1) = Ax(k) + Bu(k) + F[y(k) — Cx(k)], (3.4a)

F=A4PC'[R, + CPC'T! (3.4b)

where the Kalman gain F is chosen to minimize the state reconstruction error X(k) =
X(k) — x(k) and P is the steady-state solution of the following equation:

Pk + 1) = AP(k)A' + R, — AP(k)C ' [R2 + CP(k)C 1 'CP()A". (3.4¢)

The objective here lies in formulating a robust controller for a given controllable and
observable system (3.1) such that the optimal regulator (3.3) still minimizes the
performance index J in Eq. (3.2) and the Kalman filter (3.4) also asymptotically tracks
the actual states in the presence of parametric uncertainties and uncertain noise
covariances.

The approach for the design of a robust controller is divided into two steps. In the first
step, we only consider system (3.1) under uncertain noise covariances, i.e.

X(k 4+ 1) = Ax(k) + Bu(k) + v(k), (3.5a)

y(k) = Cx(k) + e(k), (3.5b)
with

Ry € 81 ={R; : IRl — Ryl <&, R, >0}, (3.5¢)

Ry € S5 ={R: ||Ry — Ryl <&z, Ry >0}. (3.5d)

The design of a robust controller for system (3.5) can therefore be considered as a
saddlepoint problem which treats the uncertain (but bounded) noise covariances problem.
By means of minimax theory, the following lemma is obtained here as:

Lemma 3.1 (Looze et al. [16], Chen and Dong [17]). The robust controller for system (3.5)
is a minimax controller that solves the saddlepoint problem with the worst noise covariances,
Rio +211 and Ry + &1, i.c.

u(k) = —Gyi(k), (3.62)

G, = (W +B SB)'B' 54, (3.6b)

S=4'SA+0— B SOHY(W + B SB)"'(B's4), (3.6¢)
and

%k + 1) = A%(k) + Bu(k) + Fy(k) — Cx(k)], (3.72)

F = APC'[(Ry + &2I) + CPC' 17", (3.7b)
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Pk + 1) = AP(k)A" + (Ryg + 811) — AP(k)C ' [(Rag + e21)
+ CP(k)C T CPU)A". (3.7¢)

The minimax controller in Egs. (3.6) and (3.7) may still not be robust if system (3.5) is
perturbed not only by noise uncertainties but also by parametric uncertainties, i.e. the
uncertain system (2.5) is considered. More constraints must consequently be imposed to let
the minimax controller in Egs. (3.6) and (3.7) become robust under parametric
uncertainties.

Introducing the control law (3.6a) and subtracting (3.7a) from (2.5a) yield

Xk + 1) — 2(k + 1) = %(k + 1) = (A — FO%(k) + (A4(k) — AB(k)G; — FAC(k))x(k)

+ AB(k)Grx(k) 4 v(k) — Fe(k). (3.8)
Combining Eq. (2.5a) with (3.8), we have
x(k 4+ 1) = Ax(k) + AA(k)x(k) + Hn(k) (3.9)
where
x(k)
4= |A-BG _BG (3.10b)
0 A-FC| '
AA(k) — AB(k)Gy AB(k)Gy
Ad(k) = AA(k) — AB(k)Gy — FAC(k) AB(k)Gy |’ (3.100)
I 0
H= L —F]’ (3.10d)
(k)
n(k) = [e(k) . (3.10e)

A robust criterion is derived in the following to guarantee the asymptotic stability
of system (3.9). Before proceeding to examine robust stability, Bellman—Gronwall
lemma in discrete form which will be used in the proof of the next theorem is given
below.

Lemma 3.2 (Desoer and Vidyasagar [18]). Let Z denote the set of nonnegative integers:
{0,1,2,...} and u(k), f(k), h(k) be real-valued sequence on Z . Let

h(k)=0, VYkeZ,.
Under these conditions, if

k—1
u(k)<f(k) + > h(u(i), k=0,1,2,..., (3.11)

i=0
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then
k=1 ( k=1
u(k) <f(k) + Z{ [Io+ h(j)]h(i)f(i)}, k=0,1,2,..., (3.12)
i=0 \j=it1
in which H]l:z£r1[1 + h(j)] is set equal to 1 when i =k — 1.
Note that:
(a) If for some constant &y, h(i)<hys, Vi, then (3.12) becomes
k=1
w(k) <f (k) + has > (1 + hae) 1) (3.13)
i=0
(b) If for some constant f,, f(i)<F s, Vi, then (3.12) becomes
k=1
u(lk)<fa [T 11+ A0 (3.14)
i=0

Theorem 1. Assume that the matrix A in Eq. (3.10b) is diagonalizable and Hurwitz (i.e., all
the eigenvalues of A are inside the unit circle) so that the state transition matrix A* satisfies
the inequality:

A | <M*2, k=0,1,2,..., (3.15)
in which M =1 and 0<r<1. If the following inequality holds:
1 +h<l (3.16)
with
M

h= : (3.17)

7

2<a+ Zm) +451Grll + pIIF|
i=1

=

then system (3.9) is asymptotically stable. Namely, the minimax controller in Egs. (3.6) and
(3.7) is a robust LQG optimal controller under both parametric uncertainties and
uncertain noise covariances.

Proof. See Appendix. [

4. Example

A fourth-order model of a fluid catalytic cracking unit (this model was obtained by
linearization, followed by normalization, of the Lee and Kugelman [19] model around a
nominal stable operating point, as described in Oliveira [20]) is given to illustrate the
designed procedures. Using a sampling time 7 = 0.05s leads to the following discrete

zIfk A is a gqxgq diagonalizable and Hurwitz matrix, the following result is obtained: A% =
INA"N-Y<ININA N~ | < M* where 4 = diag(4i, 42,...,4¢) and M = INNINT] (the condition number
of A). The ith column of N is an eigenvector corresponding to 4;. Moreover, r is chosen as the distance from the
origin to the eigenvalue (of the matrix A4) nearest to the unit circle.
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model:
Xp(k + 1) = Aox,(k) + A1x,(k — 1) + Byu(k) + AAo(k)x, (k) + AAd(k)x,(k — 1)
+ AB,(k)yu(k) + v(k), (4.1a)
y(k) = Cpx,(k) + AC,(k)x, (k) + e(k), (4.1b)
with
r0.07362 0.1148 0.01044 0.4390
y 0.03940 0.1492 0.00894 0.8111
7 1027940 —0.7511 —0.003253 —6.127 |’
10.04545  0.1559 0.009798  0.8384
r0.0014 0.0498 0.0085 —0.0022
4 0.0166 0.0058 0.0043 —0.0011
1 == 9

0.0027 0.7024 0.0017 —5.0004
1 0.0005 0.0034 0.0202 —0.8006

T—0.2495 0.6030
B 0.0168  0.2505 c _{0 1 0 o]
P —5785 7213917 "o 0 1 0)
| 0.01157 0.1217

and
0.019 0.01 —0.004 0.002
ik 0.004 0.008sin(k) 0 ~0.0026
o =1 9002 0.003 0.009  0.006 exp(—k) |’
0.001cos(k)  —0.003 0 0.021
0.0064 —0.01  0.0027cos(k) 0.0041
ik 0.0038sin(k)  0.0035 0 ~0.0012
AR = 40015 0.002 0.001 0 ’
—0.003  0.004sin(k) 0.005 0.0089
0.015cos(k) 0.013 —0007 0 1"
AB,(k) = ,
~0.02  0.011 0 ~0.013
0.01  0.023sin(k) 0 —0.014
AC,(k) = . (4.2)
~0.012 0 —0.023cos(k)  0.011

InEq. (4.1), x, =[Csc Tix Crg Trg]T and u =[F, FC]T. Here C,. denotes the coke content
in the spent catalyst, 7., the reactor bed temperature, C,, the coke content in the
regenerated catalyst and 7', is regenerator bed temperature. The manipulated variables
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are F, (air flow rate) and F. (catalyst circulation rate). Moreover,
E{o(k)} = Efe(k)} =0, E{v(kp' ()} = R, Ele(k)e' (k)} = R, (4.3a)
where
015 0 0 0

o
e
—
i
o
o

RieS =<¢R:Ry— 0 0 <Ri< Ry

+ , (4.3b)

023 0 023 0
Rz € S2 = R2 . R20 — <R2<R20 + 5 (43C)

022 0 0 0

0 027 0 0 035 0
Ro=1149 0 o2 o | F»= { 0 0.43} (43d)
0 0 0 0.02
Meanwhile, the weighting matrices are assumed here to be
20 0 0 0 0 0 07
02000000
001 00 0 0O
0001 0O0O0UO0 12 0
0= and W = { } 4.4
00001 0O0TO0 0 12
0000 O0OT1O0TUO0
0000 O0O0OT1FPO
LOO 00 0 0 0 1]

It is desired to design a robust LQG optimal controller to stabilize the uncertain stochastic
time-delay system (4.1).
Solution: By defining a new state vector

x(k) = [Tk — 1) X (4.5)
the system (4.1) is transformed into the following system:

X(k + 1) = Ax(k) + AA(k)x(k) + Bu(k) + AB(k)u(k) + v(k), (4.6a)

y(k) = Cx(k) + AC(k)x(k) + e(k) (4.6b)
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where
_To I
=14 4
r oo 0 0 0 1 0 0 0 ]
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
~ 100014 00498 0.0085 —0.0022 007362 0.1148 001044 04390
0.0166 0.0058 0.0043 —0.0011 0.03940 0.1492  0.00894  0.8111
0.0027 0.7024 0.0017 —5.0004 027940 —0.7511 —0.003253 —6.127
0.0005 0.0034 0.0202 —0.8006 0.04545 0.1559  0.009798  0.8348 |
(4.7a)
B 0 0
AA(k) = ,
AAdy(k)  AAo(k)
_ 0 0 0 0 0 06030 0255 72139 01217 1"
B= = , (4.7b)
B, [o 0 0 0 —02495 0.0168 —5.785 0.01157
00007100 01"
AB(k) = , wk)=Guk), G= 0 0000100 . (470
AB,(k) 000000O0T1 0
0000000 1
c=10 cp]z[o 0.0 0010 0, AC(k) = [0 AC,(k)). (4.7d)
000O0O0O0T 0

The pairs (4, B), (4, C) are definitely observed from the fact of Lemmas 2.1 and 2.2 to be
controllable and observable, respectively.
Based on Lemma 3.1, the minimax controller is described as follows:

u(k) = —Grx(k), (4.8a)
X(k + 1) = AX(k) + Bu(k) + F[y(k) — Cx(k)] (4.8b)
where

0.0017 0.0545 0.0065 —0.5871 0.0402 0.0024 0.0092 —0.2879
77 10.0011 —0.0453 0.0061 0.1219 —0.0008 0.1053 0.0081 0.6084
(4.8¢)
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and

—0.0451 —0.0474 09732 —0.0288 —0.0121 —0.0237 0.6607 —0.05317"
T 100356 04535  —0.0540 0.1063  0.1020  0.1554 —1.2869 0.1098 | °

(4.8d)

The condition number M = 2.7752° and r = 0.2926 obtained here through substituting Gy
and F into Eq. (3.10b) to obtain the matrix 4 and then applying the inequality (3.15).
In accordance with Egs. (2.2) and (4.2), we have ¢ = 0.023, 5, = 0.015, 6 = 0.032 and
p = 0.03. Substituting ||G/|| and [|F| into (3.17) yields h = (M /r)[2(c + 1) + 4311 G/|| +
plIF|l]=2.1715 and then r(1 + /) = 0.928 <.

The robust stability condition (3.16) is hence satisfied. Namely, the minimax controller
in Eq. (4.8) is a robust LQG optimal controller in the presence of parametric uncertainties
and uncertain noise covariances. The result of simulation is shown in Fig. 1.

5. Conclusion

In this paper, the LQG optimal control problem is considered and Minimax theory and
Bellman—Gronwall lemma are employed to derive a robust criterion which guarantees the
asymptotic stability of the discrete time-delay systems under both parametric uncertainties
and uncertain noise covariances. On the basis of this criterion, a robust minimax controller
composed of the Kalman filter and the optimal regulator is synthesized to stabilize the
uncertain stochastic systems. Designed procedures are finally elaborated with an
illustrative example.
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Appendix

The solution x(k) to Eq. (3.9) is expressed as

k—1 k—1
x(k) = A x(0) + > AT AAG)xG) + DAY Higy). (A.1)
j=0 j=0
Taking norms on both sides of Eq. (A.1), we obtain
k—1 k—1
IxGoll = || 4*x(0) + > A7 AAG)X(G) + > Ak—-f—lHn(j)H
J=0 J=0

k—1 k—1
<A IO+ 1A HAADIXG) + D 1A IIH G (A2)
j=0 j=0

3 . . . . .
Euclidean norm case is considered in this example.
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Similarly, taking norms on both sides of Egs. (3.10c)—(3.10e), we have the following
inequalities:
IAAK)I < IIAA(K) — AB(K)Gy || + |AA(k) — AB(k)Gy — FAC(k)|l + 2| AB() ||| Gy |
<[IAAK) |+ IABER)INI G|l + IAAK)| + IABK) Gl + IFINACK)|
+ 2|AB) I Gyl
<S2|AA(K)| + HIABE) Gyl + IFINACH)|

<2>IA4(R) + 4IAB, (K Gy | + IFIIIAC, (k)|

i=0
<2<o—+2ni> + 431Gyl + plI . (A3)
i=1
IHI<2+1IFI, (A4)

In(k)ll < TR + lleColl < lv) | + lle(k)ll <[tr(Rio + &11)]'/* + [tr(Rag + e2D)]'/>.

(A.5)
Substituting Eq. (3.15) and inequalities (A.3)—(A.5) into Eq. (A.2) yields
k—1 ) m .
llx(k) | < M| x(0)]| + ZMV]“’*l 2<0 + m-) + 401Gyl + pILF | IxG) I
=0 =1
k-1 ' _
+ - MA@ FID{tr(Rio + D] + [tr(Ra + 2]/}, (A.6)
=0
Multiplying both sides of Eq. (A.6) by ¥ leads to
k—1 ) m .
lx(k) lr~* < M| x(0)]| + ZM"_j_l 2 (0 + Zm) + 401 Grll + pIlFIl | IIx()I]
=0 i=1
k=1 ' _
+ Y M Q4 [FIDtr(Rig + e D] + [tr(Ryp + e2D]'2). (A
=0

Inequality (A.7) can be changed to

1 — %

Ix() Ilr~* < MIx(0)I| + M Q2 + IFItr(Rio + &1 D] + [tr(Rag + e21)]'/*}

k-1
+ Z Mr~!
J=0

r—1

Xl (A8)

2<0+ 11,) + 491 Grll + plIF|
1

i=
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Applying Lemma 3.2 to Eq. (A.8), we obtain the following inequality:

1 — %

— QHIFDItr(Rio + e D]/ + [tr(Rap + 22)] )
+ M[xO)I[(1 + h)* — 1]+ "M Q2 + [ FID{[tr(Ryo + & 1)]"/

lx(k) || =* < M| x(0)|| + M

1+hf =1 r(1+h)F =k
Ry + &21)]'/? ( — A.
+ [tr(Ra + &21)] }{ -1 G-DpadTh=1( (A.9)
where
M m _
) | + 451G, Fll.
h== <0+;n,> + 40| Grll + plIF|
Multiplying 7* to both sides of Eq. (A.9), we get the following result:
k _ 1 o
6 < M1 + M =2 + IFIr(Rio + &1 D] + [tr(Roo + 821)]")
+ M xO)[F(1 + T — M x(0)]| + M2 + | FID{[tr(Ryo + &11)]'/?
1+ W)= _
R + o0 PR T oy F R + 1)
Wr(1 + h)r —r)
1/2 A
+ [tr(Ryo + &21)] }(r R+ =1 (A.10)
Since 0<r<1 and r(1 + h) <1, ||x(k)|| will approach to a certain value
F M2 " o)+ 4 F
MQ+IFD || 260+ Zim) +4NGA+pUEIL | op
1—r r4+ M[2(c + > 7L n) + 461 Grll + pllFIIT — 1
+ [tr(Rao + &2 D]/}, (A.11)

as k — oo. Thus, system (3.9) is asymptotically stable.
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