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Abstract Obtaining relative weights in MCDM problems
is a very important issue. The Ordered Weighted Averaging
(OWA) aggregation operators have been extensively adopted
to assign the relative weights of numerous criteria. However,
previous aggregation operators (including OWA) are inde-
pendent of aggregation situations. To solve the problem, this
study proposes a new aggregation model – dynamic fuzzy
OWA based on situation model, which can modify the asso-
ciated dynamic weight based on the aggregation situation
and can work like a “magnifying lens” to enlarge the most
important attribute dependent on minimal information, or can
obtain equal attribute weights based on maximal information.
Two examples are adopted in this paper for comparison and
showing the effects under different weights.
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1 Introduction

Information aggregation can be applied to many situations,
including neural networks, fuzzy logic controllers, expert
systems, and multi-criteria decision support systems [14].
In a vague condition, fuzzy set theory [30] can provide an
attractive connection to represent uncertain information and
can aggregate them properly. The existing aggregation oper-
ators are, in general, the t-norm [26], t-conorm [26], mean
operators [11], Yager’s operator [28] and γ -operator [32].

Multi-criteria decision making (MCDM) models are char-
acterized to evaluate a finite set of alternatives. The main pur-
pose of solving MCDM problems is to measure the overall
preference values of the alternatives. Two reasons reveal the
importance of obtaining relative weights in MCDM prob-
lems. First, numbers of approaches have been proposed to
assess criteria weights, which are then used explicitly to
aggregate specific priority scores [5–7,17,19,23,24,27,31].
Second, some experiments [1,22,25] demonstrate that differ-
ent approaches for deriving weights may lead to different
results [16].

When an attempt is made to solve the MCDM problem
by aggregating the information of each attribute in many
disciplines, a problem of aggregating criteria functions to
form overall decision functions occurs owing to these cri-
teria always being interdependent. One extreme is the sit-
uation in which we hope that all the criteria will be sat-
isfied (“and” situation), while another situation is the case
in which satisfying simple criteria satisfaction is that any
of the criteria is all we desire (“or” situation) [27,29]. In
1988, Yager [27] first introduced the concept of OWA oper-
ators to solve this problem. The OWA operators have the
ability to provide an aggregation lying between these two
extremes, so it more fit the thought of human being (be-
tween the “and” and “or” situations) [27]. O’Hagan [18] is
the first to use the concept of entropy in the OWA opera-
tion, but situation factor has not yet been taken into the con-
sideration of this method. Mesiar and Saminger [15] have
shown that in the class of OWA operators is on the domination
over the t-norm, and the domination of OWA operators and

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 595 842 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: 
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



544 J.-R. Chang et al.

related operators over continuous Archimedean t-norms is
also discussed.

However, these aggregation operators [8,11,28,32] are
independent of their situations and cannot reflect change in
situations [4]. To resolve this problem, this study proposes a
dynamic OWA aggregation model based on the faster OWA
operator, which has been introduced by Fuller and Majlend-
er [8] and can work like a magnifying lens and adjust its
focus based on the sparest information to change the dynamic
attribute weights to revise the weight of each attribute based
on aggregation situation, and then to provide suggestions to
decision maker (DM).

To verify the proposed model, two examples are adopted
in this paper. The first example is to evaluate aggregative
risks in software development with three software projects
[13]. The results of proposed method will compare with Lee
[13] and Chen [2]. The second example is to solve the distri-
bution center selection problem in Taiwan [3], and the results
will also compare with the Chen’s method [3].

The rest of this paper is organized as follows. Section 2
presents a basic concept of the OWA operator. Section 3 intro-
duces the proposed model and a generalized algorithm. The
verification and comparison based on experimental results for
two examples are introduced in Sect. 4. Subsequently, Sect. 5
discuss the finding and give some suggestions. Conclusions
are finally made in Sect. 6.

2 OWA operator

The OWA operator [27,29] is an important aggregation oper-
ator within the class of weighted aggregation methods. Many
related studies have been conducted in recent years. For exam-
ple, Fuller and Majlender [8] have used Lagrange multipliers
to derive a polynomial equation to solve constrained opti-
mization problem and to determine the optimal weighting
vector. Meanwhile, Smolikova and Wachowiak [23] have
described and compared aggregation techniques for expert
multi-criteria decision-making method. Furthermore, Ribeiro
and Pereira [20] have presented an aggregation schema based
on generalized mixture operators using weighting functions,
and have compared it with these two standard aggregation
method: weighting averaging and ordered weighted averag-
ing in the context of multiple attribute decision making. The
main concepts of this approach are derived from the OWA
operators of Yager [27] and Fuller and Majlender [8]. This
section introduces the main content of their methods.

2.1 Yager’s OWA

According to previous studies, t-norm and t-conorm are based
on the theory of logic [26], and the mean operators [11] are
based on the mathematical properties of averaging. However,
in the opinion of Choi [4], these types of aggregation oper-
ators are independent of aggregation situation. Even though

Yager’s operator [28] and γ -operator [32] are suggested as
an aggregation method using parameter, at present, the defi-
nition of such a parameter is still missing [4].

Yager [27] proposed an OWA operator, which had the
ability to get optimal weights of the attributes based on the
rank of these weighting vectors after aggregation process
(reference to Definition 1).

Definition 1. An OWA operator of dimension n is a map-
ping F : Rn →R, that has an associated weighting vector
W = [w1, w2, . . . . . . , wn]T of having the properties

∑

i

wi = 1, ∀wi ∈ [0, 1], i = 1, . . .., n,

and such that f (a1,... .,an) =
n∑

j=1

wj bj (1)

where bj is the j th largest element of the collection of the
aggregated objects {a1,... .,an}

Yager [27,29] also introduced two important character-
izing measures in respect to the weighting vector W of an
OWA operator. The first one was the measure of orness of
the aggregation, which was defined as

Orness(W) = 1

n − 1

n∑

i=1

(n − i) wi (2)

And, the second one, implying the measure of dispersion
of the aggregation, was defined as

Disp(W) = −
n∑

i=1

wi ln Wi . (3)

And it measures the degree to which W takes into account
all information in the aggregation.

O’Hagan [18] suggested a method which combines the
principle of maximum entropy [9,10,12,21] and Yager’s ap-
proach [27] to determine a special class of OWA operators
having the maximal entropy of the OWA weights for a given
level of orness. This approach was based on the solution of
the following problem:

Maximize the function −
n∑

i=1

wi ln Wi

Subject to the constraints α = 1

n − 1

n∑

i=1

(n − i) wi,

0 ≤ α ≤ 1∑

i

wi = 1, ∀wi ∈ [0, 1], i = 1, . . .., n, (4)
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2.2 Fuller and Majlender’s OWA

Fuller and Majlender [8] used the method of Lagrange mul-
tipliers to transfer Yager’s OWA equation to a polynomial
equation, which can determine the optimal weighting vector.
By their method, the associated weighting vector is easily
obtained by (5)–(7).

ln wj = j − 1

n − 1
ln wn +n − j

n − 1
ln w1

⇒ wj = n−1

√
w

n−j

1 w
j−1
n , (5)

and

wn = ((n − 1)α − n) w1 +1

(n − 1)α + 1 − n w1
, (6)

then

w1 [(n − 1) α + 1 − n w1]n

= [(n − 1) α]n−1 [((n − 1) α − n) w1 +1] . (7)

So the optimal value of w1 should satisfy equation (7). When
w1 is computed, we can determine wn from equation (6) and
then the other weights are obtained from equation (5). In a
special case, when w1 = w2 = · · · · · · = wn = 1/n ⇒
disp(W) = ln n which is optimal solution to equation (5) for
α = 0.5.

3 New dynamic OWA aggregation model

3.1 Dynamic fuzzy OWA model

After comparing the operators in [4,8,11,20,23,27,28,32]
with the OWA operator, the paper finds that the OWA oper-
ator has the rational aggregation result, and more closely
fits the thoughts of human beings (between the “and” and
“or” situations) [27]. Moreover, under the circumstances of
maximal information entropy, the OWA operator can get the
optimum result of the aggregation. However, it lacks the abil-
ity to reflect the aggregative situation during the aggregation
process because the previous OWA operators use a common
parameter (i.e. α), but do not view it as the situational factor.
To maintain the useful character of the OWA (rational aggre-
gation result) and correct the shortcomings (lack to reflect
the aggregative situation), this study adds two main concepts
(see Fig. 1):

(1) Facilitating dynamic aggregation result (attribute wei-
ghts) by feedback.

(2) Changing the attribute weights based on situation (with
situation parameter α).

After joining these two characters with the fundamental OWA
aggregation model, this work proposes a new fuzzy OWA
aggregation model, and clarifies the main differences be-
tween the proposed model and other aggregation methods
in Table 1. This new model not only has the ability to mod-
ify forecasting results of functions corresponding with the
aggregative situation, but also can obtain associated attribute

weights that rely on the OWA operator matching the model
of human thoughts.

The first concept of modifying the aggregation dynamic
attribute weights is the process, which is given to experts who
want to evaluate the projects different weights. In this way,
the experts will have different affects on integral result after
evaluation. For example, if the evaluative time is regarded
as a criterion to measure the degree of information quality,
the newly-coming experts will be assigned a higher weight.
This step can enable the newly-coming experts to have more
influence on the attribute weights and individual project eval-
uation. Consequently, different attribute ratings can obtain
dissimilar attribute weights and also different final proposed
solutions for reference by decision makers.

Second, the concept of changing weights of each attribute
“based on situation” is that the decision maker (or project
manager) determines what is the value of parameter α from
information entropy of actual aggregative situation. There-
fore, the proposed model can be used to obtain attribute
weights by rating them after OWA aggregation according
to α. The main advantage of this concept is that the model
can be treated as a magnifying lens to determine the most
important attribute (assign weight = 1) based on the sparest
information (i.e. optimistic and α = 0 or 1) situation. On
the other hand, when α = 0.5 (moderate situation), the pro-
posed model can obtain attribute weights (equal weights of
attributes) based on maximal information.

3.2 Algorithm for the proposed model

The steps of proposed algorithm are as follows:

Step 1 Build hierarchical structure model from determina-
tion problem and number (N) of attributes/criteria.

Step 2 Obtain opinions of domain experts and then collect
their evaluative attribute weights of attributes in re-
spect to the hierarchical structure model.

Step 3 List the feasible projects/alternatives, and request the
experts to evaluate the grades of these projects.

Step 4 If no new expert is available, execute step 5. If the ex-
perts do not have significant orderings, assign equal
weight for evaluation. Otherwise, perform the OWA
aggregation process to obtain the weights of experts
for evaluation.

Step 5 The weights of each expert multiply their evaluative
attribute weights to form the aggregative weights of
attributes.

Step 6 Sort the attribute weights and execute OWA aggrega-
tion (by equations (5)–(7)) to obtain refined attribute
weights.

Step 7 If the aggregative weights of sub-attributes are exist,
to distribute the refined weight(s) of the sub-attri-
butes of each attribute based on the ratio of weights
of these sub-attributes given by the experts.

Step 8 Multiply the weights of the attributes by their pro-
ject grades, and then rank their orderings to make
reference solution to the decision maker.
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Fig. 1 A schematic view of proposed model

Table 1 Main differences between proposed model and other aggregation methods

Yager’s Fuller and Majlender’s Choi’s Lee’s two Chen’s Chen’s [3] Proposed
OWA [27] OWA [8] operator [4] algorithm [13] algorithm [2] algorithm dynamic OWA

Aggregation operator Yes Yes Yes No No No Yes
Situation parameter (α) Partial∗ Partial∗ Yes No No No Yes
Feedback No No No No No No Yes
Fuzzy Input No No No Yes Yes Yes Yes
∗The OWA operators use a common parameter (i.e. α), but they do not view it as the situational factor.

4 Verification and comparison

In this section, two examples are adopted to illustrate and ver-
ify the proposed model: (1) evaluating the risks of software
development; (2) external evaluation of distribution centers
in logistic. The results and comparisons of each example are
also described.

4.1 Example I: evaluation of software development risk

To compare the fuzzy group decision making methods, this
section first introduces two algorithms developed by Lee for
group decision making structure model of risk in software
development, and then presents the algorithm of Chen. We
also adjust the proposed algorithm in Sect. 4.1.3 to fit this
example.

4.1.1 Lee’s [13] algorithms

Lee [13] assumes that there is a group of n experts (D1,D2,
. . .., Dn) to assess the risks for a project in software develop-
ment. Let the symbol W̃ 2(j,h) denote the relative importance
weight given by expert D j to attribute h, and let W̃ 1(j,h,k),
r̃ (j,h,k) and ĩ(j,h,k)denote the weight, the grade of risk, and

the grade of importance given to the risk item Xhk for expert
Dj ’s assessment data (j = 1, 2,. . ., n; h = 1, 2, . . . , 6;
k = 1, 2, . . ., n(h), and n(h) is the number of risk items
for attributes X h), and (+) and (×) denote the addition and
multiplication operators of triangular fuzzy numbers (TFNs),
respectively. Table 2 shows an example of the contents of the
hierarchical structure model, where

W̃ 2(j,h) = (a2(j,h), b2(j,h), c2(j,h)) (8)

W̃ 1(j,h,k) = (a1(j,h,k), b1(j,h,k), c1(j,h,k)) (9)

r̃ (j,h,k) = (a3(j,h,k), b3(j,h,k), c3(j,h,k)) (10)

ĩ(j,h,k) = (a4(j,h,k), b4(j,h,k), c4(j,h,k)) . (11)

1. Lee’s first algorithm (Algorithm I): This algorithm aver-
ages each parameter individually and then aggregates
the results to produce a final rate of aggregative risk.
The main context of the algorithm is as follows:

i. Calculate the average of each parameter on the
fuzzy data of n decision makers.

ii. First-stage assessment. Establish a fuzzy assess-
ment matrix M̃(Xh) for each attribute X h, and then
use these fuzzy assessment matrices to evaluate the
first-stage aggregative assessment matrix R̃1(h) for
each attribute X h.
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Table 2 The contents of the hierarchical structure model for decision maker D j [13]

Attribute Risk item Weight-2 Weight-1 Grade of risk Grade of importance

X 1 W̃2(j,1)

X11 W̃1(j,1,1) r̃(j,1,1) ĩ(j,1,1)

X 2 W̃2(j,2)

X21 W̃1(j,2,1) r̃(j,2,1) ĩ(j,2,1)

X 22 W̃1(j,2,2) r̃(j,2,2) ĩ(j,2,2)

X23 W̃1(j,2,3) r̃(j,2,3) ĩ(j,2,3)

X24 W̃1(j,2,4) r̃(j,2,4) ĩ(j,2,4)

X3 W̃2(j,3)

X31 W̃1(j,3,1) r̃(j,3,1) ĩ(j,3,1)

X32 W̃1(j,3,2) r̃(j,3,2) ĩ(j,3,2)

X 4 W̃2(j,4)

X41 W̃1(j,4,1) r̃(j,4,1) ĩ(j,4,1)

X42 W̃1(j,4,2) r̃(j,4,2) ĩ(j,4,2)

X43 W̃1(j,4,3) r̃(j,4,3) ĩ(j,4,3)

X44 W̃1(j,4,4) r̃(j,4,4) ĩ(j,4,4)

X5 W̃2(j,5)

X51 W̃1(j,5,1) r̃(j,5,1) ĩ(j,5,1)

X52 W̃1(j,5,2) r̃(j,5,2) ĩ(j,5,2)

X6 W̃2(j,6)

X61 W̃1(j,6,1) r̃(j,6,1) ĩ(j,6,1)

iii. The second-stage assessment. Calculate the aver-
age defuzzified value of W2A(h) (denoted as
GW 2A(h)).

iv. Calculate the final rate of aggregative risk RIK by
the centroid defuzzified method as follows:

RIK1 =
n(DM)∑

j=1

GV (j) × R2(j)

=
∑

j

∑

h

∑

k

GV (j)

×
(

GW2A(h)∑6
q=1 GW2A(q)

)(
GW1A(h,k)∑n(h)

q=1 GW1A(h,q)

)

×V (h, k, j) (12)

2. Lee’s second algorithm (Algorithm II): This algorithm
averages the rate individually and then averages the re-
sults to produce a final rate of aggregative risk.Algorithm
II is very similar to the above algorithm. This algorithm
is further detailed below:

i. Calculate the rate of each project on the n decision
makers’ fuzzy data on each parameter.

ii. The first-stage assessment. Establish a fuzzy assess-
ment matrix for each attribute X h, and then use
these fuzzy assessment matrices to evaluate the
first-stage aggregative assessment matrix R̃1(h) for
each attribute X h.

iii. The second-stage assessment. Calculate the aver-
age defuzzified value ofW2A(h)(denoted asGW 2A(h)).

iv. Evaluate the rate of aggregative risk for decision
makers (D j) first by

RIK(j) =
∑7

m=1 GV (m)R2(j,m)∑7
q=1 R2(j,q)

=
7∑

m=1

GV (m)R2(j,m)

(13)

Then average then, to obtain

RIK2 = 1

n

n∑

j=1

RIK(j)

= 1

n

∑

m

∑

j

∑

h

∑

k

GV (m)

×
(

GW2(j,h)∑6
q=1 GW2(j,q)

)(
GW1(j,h,k)∑n(h)

q=1 GW1(j,h,q)

)

×V (j, h, k, m) (14)

4.1.2 Chen’s [2] algorithms

Chen [2] proposed a new algorithm to evaluate the rate of
aggregative risk in software development under a fuzzy group
decision making environment. Chen also stated that this algo-
rithm has the following advantages: (1) It does not need to
form the fuzzy assessment matrices for attributes. (2) It does
not need to perform complicated defuzzification operations
of fuzzy numbers using the centroid method. This algorithm
involves the following steps:

i. Chen first used a defuzzification method of trapezoidal
fuzzy numbers to get the defuzzified value (denoted as e)

of trapezoidal fuzzy numbers (M̃).
ii. Chen used the defuzzified method to convert fuzzy num-

ber representations of the weights, the grades of risk, and
the grades of importance of risk items into real values.
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Table 3 Linguistic values of grades of risk

Eleven ranks of grade of risk

Notation Linguistic Value TFNs (r̃ (j,h,k))

DL Definitely low (0.0, 0.0, 0.1)
EL Extra low (0.0, 0.1, 0.2)
VL Very low (0.1, 0.2, 0.3)
L Low (0.2, 0.3, 0.4)
SL Slightly low (0.3, 0.4, 0.5)
M Middle (0.4, 0.5, 0.6)
SH Slightly high (0.5, 0.6, 0.7)
H High (0.6, 0.7, 0.8)
VH Very high (0.7, 0.8, 0.9)
EH Extra high (0.8, 0.9, 1.0)
DH Definitely high (0.9, 1.0, 1.0)

Table 4 Linguistic values of relative importance

Five grades of relative importance

Notation Linguistic Value TFNs (W̃ 2(j,h)/W̃ 1(j,h,k))

1. VL Very low (0.0, 0.0, 0.25)
2. L Low (0.0, 0.25, 0.5)
3. M Middle (0.25, 0.5, 0.75)
4. H High (0.5, 0.75, 1.0)
5. VH Very high (0.75, 1.0, 1.0)

iii. Chen calculated average defizzified values of these real
values for decision makers, and also calculated absolute
weights of the risk items for each attribute.

iv. Finally, Chen calculated the final rate of aggregative risk
RIK of the project by aggregating the risks of each attri-
bute.

4.1.3 Adjusted algorithm for Example I

In [13], Lee uses 11 linguistic values for ranking the grades
of risk items (see Table 3), which are represented by triangu-
lar fuzzy numbers. Furthermore, Lee also allows the experts

Table 5 The weights of three projects for two decision makers [13]

Attribute Risk item Weight-2 Weight-1
D1 D2 D1 D2

X1 (0.1, 0.25, 0.35) (0.15, 0.3, 0.5)
X11 (0.7, 0.85, 1) (0.8, 0.9, 1)

X2 (0.3, 0.5, 0.6) (0.25, 0.4, 0.6)
X21 (0.2, 0.3, 0.4) (0.2, 0.35, 0.45)
X22 (0.3, 0.4, 0.5) (0.1, 0.3, 0.5)
X23 (0.15, 0.3, 0.4) (0.2, 0.3, 0.4)
X24 (0.2, 0.35, 0.5) (0.1, 0.3, 0.5)

X3 (0.2, 0.3, 0.4) (0.1, 0.2, 0.3)
X31 (0.1, 0.15, 0.25) (0.35, 0.55, 0.85)
X32 (0.35, 0.5, 0.6) (0.25, 0.55, 0.65)

X4 (0.2, 0.35, 0.5) (0.2, 0.3, 0.4)
X41 (0.3, 0.4, 0.5) (0.2, 0.3, 0.4)
X42 (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)
X43 (0.2, 0.3, 0.4) (0.2, 0.3, 0.4)
X44 (0.2, 0.3, 0.4) (0.2, 0.3, 0.4)

X5 (0.1, 0.25, 0.4) (0.1, 0.3, 0.4)
X51 (0.5, 0.6, 0.7) (0.4, 0.5, 0.6)
X52 (0.4, 0.5, 0.6) (0.6, 0.7, 0.8)

X6 (0.1, 0.3, 0.5) (0.15, 0.3, 0.5)
X61 (0.8, 0.9, 1) (0.9, 1, 1)

to use five linguistic values {i.e. VL, L, M, H, VH} (see
Table 4) represented by triangular fuzzy numbers (TFNs) for
accessing the grades of importance of the risk items.

Decision makers can use either the importance set
W = {VL, L, M, H, VH} with the grade set S = {VL, L, SL,
M, SH, H, VH} or directly rating by normal triangular fuzzy
numbers to access attribute weights, weights of risk items,
and grades of risks.

To verify and compare the model with other methods,
the result obtained here is compared with that obtained by
Lee’s algorithm [13] and Chen’s algorithm [2] to validate
the accuracy of the proposed model. Table 1 introduces the
differences between their methods and the proposed model,
and Sects. 4.1.1 and 4.1.2 describe these three algorithms.

The weights of MCDM, which are obtained by the pro-
posed model, will be revised when a new expert joins or a
decision maker chooses a different α value to fit the current
situation. To verify the proposed model, this study assumes
that a symbol D(Ã) denotes the defuzzification result of this
fuzzy number Ã by the centroid method [13], and uses the
symbol (Table 2) in the research of Lee [13] as an example to
explain each step. The adjusted steps based on section 3.2’s
algorithm are as follows:

Step 1 Build hierarchical structure model from determina-
tion problem and number of attributes (N).
For example, Lee [13] presented the hierarchical
structure model of aggregative risk along with attri-
butes N = 6.

Step 2 Obtain opinions of experts in software development,
and then collect their evaluative attribute weights
in respect to the hierarchical structure model (see
Table 5).

Step 3 List the feasible projects, and request the experts to
evaluate the grades of these projects in respect to the
risk items (see Table 6).
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Table 6 The grades of risk of three projects for two decision makers
[13]

Attribute Risk item Grade of risk

D1 D2

X1
X11 (I) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7)

(II) (0.6, 0.7, 0.8) (0.7, 0.8, 0.9)
(III) (0, 0.1, 0.2) (0, 0, 0.1)

X2
X21 (I) (0.2, 0.3, 0.4) (0.2, 0.3, 0.4)

(II) (0.6, 0.7, 0.8) (0.8, 0.9, 1)
(III) (0.1, 0.2, 0.3) (0.2, 0.3, 0.4)

X22 (I) (0.3, 0.4, 0.5) (0.2, 0.4, 0.6)
(II) (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)
(III) (0, 0, 0.1) (0, 0.1, 0.2)

X23 (I) (0.2, 0.4, 0.5) (0.3, 0.5, 0.6)
(II) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9)
(III) (0.1, 0.2, 0.3) (0, 0.1, 0.2)

X24 (I) (0.5, 0.6, 0.7) (0.1, 0.2, 0.3)
(II) (0.6, 0.7, 0.8) (0.8, 0.9, 1)
(III) (0.1, 0.2, 0.3) (0.2, 0.3, 0.4)

X3
X31 (I) (0.25, 0.35, 0.45) (0.35, 0.45, 0.55)

(II) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9)
(III) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3)

X32 (I) (0.4, 0.6, 0.8) (0.2, 0.4, 0.6)
(II) (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)
(III) (0.2, 0.3, 0.4) (0.1, 0.2, 0.3)

X4
X41 (I) (0.2, 0.3, 0.4) (0.25, 0.4, 0.55)

(II) (0.6, 0.7, 0.8) (0.7, 0.8, 0.9)
(III) (0.2, 0.3, 0.4) (0.2, 0.3, 0.4)

X42 (I) (0.1, 0.2, 0.3) (0.2, 0.3, 0.4)
(II) (0.6, 0.7, 0.8) (0.7, 0.8, 0.9)
(III) (0.1, 0.2, 0.3) (0, 0.1, 0.2)

X43 (I) (0.3, 0.4, 0.5) (0.3, 0.4, 0.5)
(II) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9)
(III) (0.1, 0.2, 0.3) (0.2, 0.3, 0.4)

X44 (I) (0.2, 0.3, 0.4) (0.2, 0.3, 0.4)
(II) (0.6, 0.7, 0.8) (0.6, 0.7, 0.8)
(III) (0.2, 0.3, 0.4) (0.1, 0.2, 0.3)

X5
X51 (I) (0.2, 0.3, 0.4) (0.2, 0.3, 0.4)

(II) (0.5, 0.6, 0.7) (0.6, 0.7, 0.8)
(III) (0.2, 0.3, 0.4) (0.1, 0.2, 0.3)

X52 (I) (0.3, 0.4, 0.5) (0.3, 0.4, 0.5)
(II) (0.7, 0.8, 0.9) (0.7, 0.8, 0.9)
(III) (0.2, 0.3, 0.4) (0.1, 0.2, 0.3)

X6
X61 (I) (0.4, 0.5, 0.6) (0.4, 0.5, 0.6)

(II) (0.5, 0.6, 0.7) (0.5, 0.6, 0.7)
(III) (0.1, 0.2, 0.3) (0.2, 0.3, 0.4)

Step 4 If no new expert is available, execute step 5. Other-
wise, if the experts do not have significant orderings,
assign the same weight for evaluation. Meanwhile,
perform the OWA aggregation process to obtain the
weights for evaluation, and then execute steps 2 and
3 by the result of this step. (This study assumes that
these two experts have equal weights, denoted as
We1 =We2 =0.5).

Step 5 The weights of each expert are used to multiply their
evaluative attribute weights. The Centroid method
[13] then is used to defuzzify the aggregation result
of the attribute weights.

This step can be divided into two branch steps——

Step 5.1 Aggregate the attribute weights according to
each expert (The aggregation weight of attri-
bute h (denoted as W̃ 2A(h)) is calculated by
using equation (15)).

Let W̃ 2A(h) = 1

n
(×)

[
W̃2(1,h)

(+)W̃2(2,h)(+)· · ·· · ·, (+)W̃2(n,h)

]

= (a2A(h), b2A(h), c2A(h)) (15)

where a2A(h) = 1

n

n∑

j=1

a2(j,h), b2A(h)

= 1

n

n∑

j=1

b2(j,h), and c2A(h)

= 1

n

n∑

j=1

c2(j,h)

Step 5.2 The Centroid method [13] is used to defuzz-
ify these weights.

The Centroid method is used to defuzzify any kind
of fuzzy sets, such as triangular fuzzy numbers, trap-
ezoidal fuzzy numbers, and so on. In the present
example, only triangular fuzzy number is used. The
defuzzified value of the weight of attribute h thus is

D
(
W̃2A(h)

)
= 1

3
× (a2A(h) + b2A(h) + c2A(h))

(16)

Step 6 Sort the defuzzified attribute weights and execute
OWA aggregation to obtain refined attribute weights
(denoted as W ′

2A(1) ∼ W ′
2A(m)). The results are shown

in Table 7.
This step can be divided into two branch steps——

Step 6.1 Choose an appropriate sorting method to sort
the defuzzified attribute weights.

Step 6.2 Use equations (5)–(7) to obtain the OWA
weights, and replace the attribute weights with
these refined weights according to the sorting
result. The distribution of the refined weights in
Example I under different α’s values is shown
in Fig. 2.

Step 7 Like the process of step 5, the aggregative weights
of each risk items are obtained by equation (17) (de-
noted as W̃ 1A(h,k)), and these aggregative weights are
defuzzified in equation (16) (denoted as D(W̃1A(1,1))

∼ D(W̃1A(6,1))). Equation (19) then is used to dis-
tribute the refined weight(s) of the risk item(s) of
each attribute based on the ratio of weights of these
risk item(s) given by the experts (denoted as W ′

1A(1,1)
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Table 7 The weights of attributes after OWA aggregation

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

Personnel (W1) 0.16666 0.14614 0.11416 0.07229 0.02548 0
System requirement (W2) 0.16666 0.24676 0.34747 0.47811 0.66372 1
Schedules and budgets (W3) 0.16666 0.10308 0.05437 0.02053 0.00290 0
Developing technology (W4) 0.16666 0.20721 0.23977 0.25473 0.22396 0
External resource (W5) 0.16666 0.12274 0.07876 0.03851 0.00860 0
Performance (W6) 0.16666 0.17401 0.16543 0.13571 0.07559 0

Fig. 2 The distribution of the refined weights in Example I

∼ W ′
1A(6,1)). The results are shown in Table 8.

Let W̃ 1A(h,k) = 1

n
(×)

[
W̃1(1,h,k)(+)W̃1(2,h,k)

(+)· · ·· · ·, (+)W̃1(n,h,k)

]

= (a1A(j,h,k), b1A(j,h,k), c1A(j,h,k)) (17)

w′
ij = wij∑

j
wij

× wi, i = number of attributes;

j = number of risk items
(18)

So, W ′
1A(h,k) = D(W̃1A(h,k))∑n(h)

j=1 D(W̃1A(h,j))
×W ′

2A(h) (19)

where
n(h)∑

j=1

D(W1A(h,j)) 	= 0

Step 8 Multiply the weights of the risk items by their pro-
ject grades, and then rank their orderings to make
reference solution to the decision maker.
This step can be divided into two branch steps——

Step 8.1 Calculate the aggregative risk value of each risk
item towards a select project using equation
(20).

r̃A(h,k) = 1

n
(×)[r̃(1,h,k)

(+)r̃(2,h,k)(+)· · ·· · ·, (+)r̃(n,h,k)]

= (a3A(h,k), b3A(h,k), c3A(h,k)) , (20)

where a3A(h,k) = 1
n

n∑
j=1

a3(j,h,k),

b3A(h,k)= 1
n

n∑
j=1

b3(j,h,k), c3A(h,k) = 1
n

n∑
j=1

c3(j,h,k)

Their defuzzified values then are:

D
(
r̃A(h,k)

) = 1

3

[
a3A(h,k) + b3A(h,k) + c3A(h,k)

]

(21)
Step 8.2 Multiply the refined weights of risk items by

their project grades. Finally, the aggregative re-
sult of project P is

Agg Result (P ) =
n∑

h=1

n(h)∑

k=1

[
W ′

1A(h,k)

×D(rA(h,k))
]

(22)

where P = 1, 2, . . .., n(P ), n is the number of
attributes, n(h) is the number of risk items, and
n(P ) is the number of projects.

4.1.4 Results for Example I

Because the proposed system has the same results of α =
0.5 + δ and α = 0.5 − δ (0 ≤ δ ≤ 0.5), it merely shows the
data of α ≥ 0.5 to represent the total result. For example, the
aggregation results are the same when α = 0.7 and α = 0.3.
Besides, even if parameter α is a continuous value in inter-
val [0,1], this study merely illustrates the output values when
α = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. According to the entropy
of information after OWA aggregation of the input data, the
output weights of the attributes and risk items are summa-
rized in Tables 7 and 8, respectively. From the last column in
Table 7, the proposed model can be viewed as a magnifying
lens to determine the most important attribute based on the
situation of sparest information (i.e. optimistic and α = 0 or
1). In the second column of Table 7, when α = 0.5 (mod-
erate situation), the proposed model can obtain the attribute
weights (equal weights) based on maximum information.

Similarly, we take α value from 0.5 to 1.0 as the parame-
ter for execution according to our algorithm for the purpose
of verification in respect to proposed model, and the results
are presented below in Table 9.

To verify the validity of the proposed model, this study
compares the result of the proposed algorithm with the algo-
rithms in Lee [13] and Chen [2]. However, the aggregation
results will be changed corresponding with α’s value, thus the
extreme values of α are chosen for representation purposes.
Therefore, Table 10 selects two extreme points to summa-
rize the aggregation results of three projects (i.e. maximum
(α=0.5) and minimum information (α=1 or 0) entropy).

Table 10 reveals that the rank of the proposed algorithm
is the risk of Project (II) > Project (I) > Project (III), which
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Table 8 The weights of risk items after OWA aggregation

Attribute Risk item α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

Personnel
Personnel shortfalls, key person(s) quit (W11) 0.16666 0.14614 0.11416 0.07229 0.02548 0

System requirement
Requirement ambiguity (W21) 0.04112 0.06098 0.08574 0.11797 0.16377 0.24675
Developing the wrong software function (W22) 0.04545 0.06729 0.09476 0.13039 0.18101 0.27272
Developing the wrong user interface (W23) 0.03787 0.05608 0.07897 0.10866 0.15084 0.22727
Continuing stream requirement changes (W24) 0.04220 0.06249 0.08799 0.12108 0.16808 0.25324

Schedules and budgets
Schedule not accurate (W31) 0.07281 0.04503 0.02375 0.00897 0.00126 0
Budget not sufficient (W32) 0.09385 0.05804 0.03061 0.01156 0.00163 0

Developing technology
Gold-plating (W41) 0.05072 0.06306 0.07297 0.07752 0.06816 0
Skill levels inadequate (W42) 0.02898 0.03603 0.04170 0.04430 0.03895 0
Straining hardware (W43) 0.04347 0.05405 0.06255 0.06645 0.05842 0
Straining software (W44) 0.04347 0.05405 0.06255 0.06645 0.05842 0

External resource
Shortfalls in externally furished components (W51) 0.07971 0.05870 0.03767 0.01841 0.00411 0
Shortfalls in externally performed tasks (W52) 0.08695 0.06403 0.04109 0.02009 0.00449 0

Performance
Real-time performance shortfalls (W61) 0.16666 0.17401 0.16543 0.13571 0.07559 0

Table 9 The aggregation result of our algorithm

α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

Project (I) 0.42598 0.41974 0.41098 0.39971 0.38725 0.38668
Project (II) 0.71018 0.71362 0.71848 0.72527 0.73548 0.74545
Project (III) 0.20332 0.20254 0.20208 0.20094 0.19657 0.17727

Table 10 The evaluation results for Example I

Algorithm
Project

(I) (II) (III)

Algorithm 1 by Lee [13] 0.19650 0.50917 0.09112
Algorithm 2 by Lee [13] 0.19648 0.50930 0.09173
Algorithm by Chen [2] 0.18541 0.51086 0.05767
Our proposed algorithm (α = 0.5) 0.42598 0.71018 0.20332
Our proposed algorithm (α = 1 or 0) 0.38668 0.74545 0.17727

is the same as the ratings of the projects calculated by the
algorithm of Lee [13] and Chen [2]. The proposed model
thus can be validated.

4.2 Example II: evaluation of distribution centers in logistic

In this section, we adopted an example introduced by Chen
[3]. This example discusses the distribution center selection
through the evaluation of external performance in one con-
venience store of Taiwan.

4.2.1 Chen’s [3] algorithm

The membership function for linguistics values is the same
as definition in Table 4. Chen [3] proposed an algorithm of
multi-person multi-criteria external performance evaluation
in logistics with fuzzy approach can be expressed by the fol-
lowing steps:

Step 1 Construction of hierarchical structure
Step 2 Evaluate the importance weight of extracted criterion

(use fuzzy Delphi method)

Step 3 Construction of linguistic scales for linguistic vari-
ables

Step 4 Aggregation of fuzzy appropriateness indices
Step 5 Computation of fuzzy overall evaluation
Step 6 Defuzzificaion of fuzzy overall evaluation
Step 7 Analysis and decision

4.2.2 Adjusted algorithm for Example II

To verify the proposed model, we use the data in Chen [3] as
an example to explain each step, and the adjusted steps based
on section 3.2’s algorithm are as follows:

Step 1 Build hierarchical structure model from determina-
tion problem and number of attributes (N).
After factor analysis, six criteria were extracted: (1)
Efficiency (C1); (2) Customer (C2); (3) Stockouts
(C3); (4) Delivery (C4); (5) Order (C5); (6) Person-
nel (C6). [3]

Step 2 Obtain opinions of domain experts and then collect
their evaluative attribute weights of attributes in re-
spect to the hierarchical structure model (see Table 11
[3]).

Step 3 List the feasible alternatives, and request the experts
to evaluate the grades of these projects.
The six commonly used distribution centers in this
case are: A1 = Wong Chuan Logistics Corp., A2 =
Da Je Tong Lo-Support International, A3 = Shen
Hong
Logistics Corp., A4 = Retail Support International,
A5 = Ta Jung Transportation and A6 = Chiao Tai
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Table 11 The aggregative importance of criteria

Criteria Weight (Triangular Fuzzy Number)

Efficiency (C1) W̃1 = (0.2887, 0.2992, 0.3118)
Customer (C2) W̃2 = (0.1047, 0.1204, 0.1348)
Stockouts (C3) W̃3 = (0.1947, 0.2040, 0.2099)
Delivery (C4) W̃4 = (0.0425, 0.0590, 0.1086)
Order (C5) W̃5 = (0.0425, 0.0480, 0.0507)
Personnel (C6) W̃6 = (0.2325, 0.2639, 0.2975)

Table 12 The fuzzy appropriateness indices of the six alternatives under
each criterion [3]

Ri

Alternatives
A1 A2

C1 (0.4168, 0.8025, 0.9714) (0.4011, 0.7814, 0.9571)
C2 (0.4156, 0.8000, 0.9506) (0.3950, 0.7731, 0.9256)
C3 (0.3756, 0.7444, 0.9500) (0.3688, 0.7344, 0.9506)
C4 (0.3600, 0.7225, 0.9750) (0.3913, 0.7663, 0.9750)
C5 (0.4200, 0.8075, 1.0000) (0.4550, 0.8550, 1.0000)
C6 (0.2875, 0.6188, 0.9250) (0.3538, 0.7163, 0.9500)

A3 A4
C1 (0.3893, 0.7643, 0.9650) (0.4211, 0.8086, 0.9786)
C2 (0.4044, 0.7856, 0.9500) (0.3994, 0.7775, 0.9381)
C3 (0.3606, 0.7231, 0.9256) (0.3913, 0.7663, 0.9506)
C4 (0.3913, 0.7663, 0.9750) (0.3763, 0.7450, 0.9500)
C5 (0.4200, 0.8075, 1.0000) (0.4200, 0.8075, 1.0000)
C6 (0.3413, 0.6975, 0.9500) (0.3263, 0.6763, 0.9500)

A5 A6
C1 (0.3939, 0.7707, 0.9650) (0.3896, 0.7646, 0.9507)
C2 (0.3800, 0.7519, 0.9381) (0.3931, 0.7713, 0.9375)
C3 (0.3675, 0.7331, 0.9506) (0.3375, 0.6906, 0.9506)
C4 (0.4075, 0.7888, 0.9750) (0.2975, 0.6350, 0.9250)
C5 (0.3850, 0.7600, 0.9500) (0.4200, 0.8075, 1.0000)
C6 (0.3263, 0.6763, 0.9250) (0.3138, 0.6575, 0.9250)

Logistics Corp. The grades of these alternatives un-
der each criterion are shown in Table 12 [3].

Step 4 If no new expert is available, execute step 5. If the ex-
perts do not have significant orderings, assign equal
weight for evaluation. Otherwise, perform the OWA
aggregation process to obtain the weights of experts
for evaluation.

Step 5 The weights of each expert multiply their evalua-
tive attribute weights to form the aggregative weights
of attributes. (In this example, steps 4 and 5 can be
skipped.)

Step 6 Sort the attribute/criteria weights and execute OWA
aggregation (by equation (5)–(7)) to obtain refined
attribute weights.
The ranking order of the defuzzified values in Table 11
is W̃1 > W̃6 > W̃3 > W̃2 > W̃4 > W̃5. Then, the
distribution of refined weights for each criterion after
OWA is shown in Fig. 3.

Step 7 If the aggregative weights of sub-attributes are exist,
to distribute the refined weight(s) of the sub-attri-
butes of each attribute based on the ratio of weights
of these sub-attributes given by the experts. (In this
example, this step can be skipped.)

Step 8 Multiply the weights of the attributes by their pro-
ject grades, and then rank their orderings to make

Fig. 3 The distribution of the refined weights in Example II

Fig. 4 The overall results under α = [0.5, 1.0]

reference solution to the decision maker.
The ranking orders and defuzzified values of the fuzzy
overall evaluation for each alternative based on the
algorithms of proposed model (α = 0.5, 0.6, 0.7, 0.8,
0.9, 1.0) and Chen’s method are shown in Table 13.
The overall evaluation values of alternatives under
different α’s values is as Fig. 4. The ranking orders
of proposed method will be consistent with Chen’s
method under α = [0.63, 0.78].

5 Discussion

After the experiments in Sect. 4, we find the proposed model
having the following characteristics:

A. Sensitivity and Robustness

Due to the evaluating grades of risk for each project are
clearly having trend (i.e. Project (II) > Project (I) > Pro-
ject (III) in almost risk items), we find that the ranking order
of projects in Example I is robust under different α’s val-
ues (see Table 9). However, the ranking order in Example II
will change based on different α’s values (see Table 13 and
Fig. 4). This is because the evaluating values of criteria for
several alternatives are approximate in the in Example II (see
Table 12), and the overall evaluating results will easily affect
by the refined weights (OWA weights).

B. Effect of “magnifying lens”

From Table 7 and Figs. 2 and 3, if the α value changes from
0.5 to 1.0 (or 0), the weights of attributes will be changed from
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Table 13 The evaluation results for Example II

Overall evaluation values Ranking order
A1 A2 A3 A4 A5 A6

Proposed method

α = 0.5 0.7099 0.7240 0.7150 0.7191 0.7052 0.6872 A2 >A4 >A3 >A1 >A5 >A6
α = 0.6 0.7059 0.7185 0.7099 0.7175 0.7024 0.6851 A2 >A4 >A3 >A1 >A5 >A6
α = 0.7 0.7039 0.7150 0.7063 0.7177 0.7008 0.6851 A4 >A2 >A3 >A1 >A5 >A6
α = 0.8 0.7052 0.7140 0.7047 0.7204 0.7011 0.6877 A4 >A2 >A1 >A3 >A5 >A6
α = 0.9 0.7141 0.7174 0.7075 0.7288 0.7061 0.6954 A4 >A2 >A1 >A3 >A5 >A6
α = 1.0 0.7483 0.7303 0.7207 0.7542 0.7251 0.7174 A4 >A1 >A2 >A5 >A3 >A6

Chen’s method [3] 0.6109 0.6236 0.6147 0.6256 0.6089 0.5940 A4 >A2 >A3 >A1 >A5 >A6

distributed (equal weights) to centralized (the most important
attribute).

When dealing with the problems in management, we usu-
ally just need to face the key problem, which can help us with
overcoming the difficult situation. So, we can use this model
to search out the critical attribute of the problem when the α
value given by the project manager is 0 or 1 (i.e. under the
minimal entropy). Therefore, the proposed model would be
a useful tool if the project manager wants to find the most
important attribute (or criterion).

After analysis the results of Examples I and II, we suggest
the decision maker can adjust α’s value under the following
situation:

1. No preference: When a decision maker has no preference
toward the criteria, we can assign these attributes equal
weight. Under this circumstance, the suggesting α’s value
is 0.5.

2. Partial preference: We suggest the range of α’s values
is [0.6, 0.9], when a decision maker has collected cri-
teria weights from domain experts and want to execute
sensitivity analysis for making final decision based the
opinions of experts.

3. Single preference: If the decision maker is confident and
believe in the most important criterion, we suggest to
assign α = 1.0. This can enlarge the effect of this single
preference criterion.

6 Conclusion

This study has proposed a dynamic fuzzy OWA model to deal
with problems of group multiple criteria decision making.
The proposed model can help users to solve MCDM prob-
lems under the situation of fuzzy or incomplete information.
The advantages of this study are:

(1) The proposed approach can modify associated dynamical
weights based on the aggregation situation (information
capacity).

(2) The fuzzy linguistic variables are used to help the deci-
sion maker to obtain the criteria weights more flexibly
and reasonably (based on situation).

(3) The fuzzy OWA model can work like a “magnifying
lens” to enlarge/find the most important attribute, which is
dependent on the sparest information (i.e.optimistic case:

situation parameter α = 0 or 1), or obtain equal weights
of attributes based on maximal information (i.e.moderate
case: situation parameter α = 0.5).

Future studies may find that the applications of some other
group MCDM problems. Or, the proposed model can be
adapted to fuzzy neuron network (FNN) for achieving a bet-
ter solution to uncertain problems. Fuzzy rule base of FNN
can be combined with the fuzzy OWA model presented here,
which can help accelerate the convergence of the fuzzy rule
base.
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