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Abstract

Determining panel lengths for slurry walls is an engineering issue that involves complex geotechnical, design, and site considerations. In

practice, the decision is made through a trial-and-error process. Relevant principles extracted from experts are not sufficiently detailed to

generate a solution. This research proposes an inductive learning model for solving this problem. Given a new project whose panel lengths

need to be determined, the model chooses similar cases from existing cases, based on case-based reasoning, performs an inductive learning,

and uses correctness and coverage rates, and then static rules to verify the induced results.
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1. Introduction

Knowledge acquisition is the transformation of problem

solving expertise from knowledge sources such as human

experts, texts, data and documents to another human or

computer program [4]. People are interested in acquiring

knowledge because (1) it may help solve major problems of

today and the future with technological solutions; and (2) it

may satisfy certain needs by filling the gap between what is

at present, and what will be tomorrow [11].

Knowledge acquisition has also been identified as a key

bottleneck in the development of any knowledge-based

system (KBS) [3]. Knowledge acquisition is an expensive

process, and good knowledge engineers are hard to find. In

addition, engineering knowledge sometimes has the habit of

being dynamic, unstable, subjective, incomplete, and con-

flicting in nature.

Slurry wall technology has been used as an independent

construction approach, or in conjunction with ground control

techniques for the temporary support of deep excavations
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and/or as part of the permanent foundation. Slurry walls are

characterized as having a water resistant and high strength

design, and their construction as being a low-noise and low-

vibration construction method. The increased building

density in urban areas has led to a proliferation of slurry

wall systems being used as temporary support of deep

excavations, or as part of a permanent foundation structure.

The advantages of slurry walls include the feasibility of

deeper construction, a reduced and more controllable risk of

disturbance and damage to adjacent buildings, absence of

noise and vibrations, reduced disruption of surface activities,

minimum surface restoration, and in the end often resulting

in the fastest construction time [18].

The pre-construction planning of a slurry wall system

includes the determination of trenching equipment required,

panel length, etc. Optimal engineering decisions involve

complex geotechnical (e.g., groundwater and soil chemis-

try), design (e.g., wall bracing, settlement, anisotropy), site

(e.g., space availability, existing utilities, transportation)

considerations, as well as complex calculations (e.g., finite

element). In practice, the decision is made through a

repeated process of trial-and-error.

This research proposes an inductive learning model for

acquiring knowledge about the decision making of an

organization for determining panel lengths of slurry walls.
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The inductive learning approach is suitable for such engineer-

ing problem in which human experts rely on past experience,

rule-of-thumbs, or subjective judgment. Given a new project

whose panel length needs to be determined, the model

chooses a set of similar cases from existing cases based on

case-based reasoning, then performs inductive learning, and

uses correctness and coverage rates to verify the induced

rules. This model may be used to assist human experts with

solving a new problem at hand. It can also be used to

generalize the knowledge of existing cases so that this

knowledge can be retained and shared by other engineers.
2. Slurry wall construction

2.1. Typical construction procedure

Slurry walls are prepared from the surface by excavating

a vertical trench which is then supported by slurry, instead

of bracing it to the required depth by a wall. The structure is

constructed in the trench by the simultaneous extrusion of

the supporting slurry. This slurry not only provides stability

to the trench, but it may also become part of the final

structure. A typical construction procedure of a slurry wall

comprises four execution stages: excavation, insertion of

steel tubes, placement of reinforcement cage, and concrete

placement.

The first stage is to excavate a linear trench using one or

more excavating equipment passes. A pass refers to one

cycle of the excavation operation. Fig. 1 shows a typical

three-pass excavated trench using clamshells. The numbers

indicate the excavation sequence. The first pass begins away

from the last concreted panel to allow extra time for the

concrete to set. As the trench is excavated, the excavated

soil is immediately replaced by a suitable bentonite slurry to

provide trench stability. The length of trench prepared for

one cycle of concrete pouring operation is called a panel.

The average panel length is about 5 m for three passes, 7.5

m for five passes, and 10.5 m for seven passes [18].

On completion of the excavation, the next stage is to

insert a round steel tube, called a stop-end tube, to form the

panel joint with the adjacent panel. Panels that are installed

first are referred to as alternative panels (or primary panels
effective length 
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Fig. 1. Typical excavation sequence of a slurry wall construction.
or female panels), and panels that are joined later with the

alternative panels are referred to as intermediate panels (or

secondary panels or male panels). By connecting several

panels, a continuous diaphragm wall can be made.

The third stage is to fabricate a reinforcement cage which

is assembled on the ground according to the structural

requirements, including stiffness necessary for its lifting.

The cage is then lowered into the trench by suitable

equipment and then fastened.

In the last stage, fresh concrete is continuously poured

into the trench using tremie pipes, and the supporting slurry

is simultaneously forced out of the trench due to the

concrete’s gravity. The slurry is pumped into a storage area

for reconditioning and reuse, and the stop-end tube is

gradually withdrawn after a suitable concrete setting time.

According to Si [16], the planning for the construction of

a slurry wall includes a site study, facility design, basic plan,

detailed plan, and management plan. The site study includes

an investigation of the following:

& locations of site lines and foundations, and buried or over

ground boulders or man-made obstructions that might

affect or obstruct any excavation or lifting operation;

& site characteristics that might affect the selection of

excavation equipment or help with the evaluation of the

plans, such as surface and bearing capacity of the ground,

soil permeability, underground water table and current

velocity;

& adjacent site characteristics that might affect the quality

of the slurry to be used, such as neighboring wells or

rivers.

The facility design should be further reviewed against the

resultant site investigation. The basic plan should determine

the type and quantity of the excavation equipment to be

used, the length and quantity of the slurry wall panels, the

layout of major equipment and temporary facilities required,

and an emergency plan. This plan also reviews the daily

productivity and its relationship to the master schedule,

stability of the trench and facilitative bracing methods, etc.

The detailed plan describes the operation plan of excavation,

slurry circulation and reconditioning, rebar assembly,

concrete pumping, soil dumping, and the transportation of

equipment, materials and surplus soil. This plan should also

study the design and installation of any special panels such

as corner panels or panels with a special shape or size. The

management plan describes the management of the on-site

construction, quality control, cost, as well as safety.

2.2. Determining the length of the panels

Determining the panel length is a critical decision for an

optimal slurry wall system. Efficiency is maximized if the

panel length is optimized in terms of equipment passes. In

practice, a tentative panel length is first selected to

accommodate trench stability and concreting requirements.
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These requirements are then compared with the available

excavating systems, and checked for other considerations

that may impact upon the project. The panel length is not

finalized until the construction phase, and not until a

sequence has been established [18]. Generally speaking, it

is advantageous to have a wall constructed in longer units,

which reduces the number of operation cycles and the

number of vertical construction joints, and results in lower

operation cost and less water seepage. However, overlong

panels can result in difficulty in controlling the quality of the

concrete pour, and a possible collapse of the excavated

trench. A collapse will endanger the operation safety of

lifting the rebar cage, not to mention create extra work for

clean-up and repairs. At the same time, each panel also has a

minimum allowable length (usually equal to the thickness of

the wall) because a rebar cage can be easily distorted when

lowered into the trench. Any distortion may create further

movement or distortion of the alternative panels due to

lateral earth stress created by the excavation of the adjacent

intermediate panels. Also, a panel cannot be shorter than

one equipment excavation pass.

Based on Xanthakos [18] and our interviews of

professionals experienced in the design and construction

of a slurry wall, it was found that the following factors may

affect the panel length.

2.2.1. Shape and size of the retaining wall

The panel length should be shorter for a wide or deep

retaining wall so that the time required from excavation to

concrete pouring is as short as possible, so as to prevent the

trench from collapsing during excavation. The length of

straight panels should also be adapted to allow for the corner

panels.

2.2.2. Soil characteristics

Longer panels are suitable for more stable soil con-

ditions, and unstable soil requires shorter panels. For

example, clay is more stable than sand and gravel during

excavation. Undesirable permeation may also occur if the

soil contains gravel or if there is a high water table.

2.2.3. Length of the excavating pass

The panel length is related to the effective length (i.e., the

actual usable length of each excavating pass, as depicted in

Fig. 1) of each piece of excavating equipment. The number

of excavating passes for each panel is usually an odd

number, so as to prevent awkward maneuverability,

curvature of the wall, or equipment breakdown caused by

an unbalanced excavation. The excavating length for each

equipment pass is usually not equal to the effective length.

For example, the pass length of the MHL clamshell machine

is 2.5 m while its effective length is only 2.2 m.

2.2.4. Joint type and required space

Each alternative panel is installed first and inserted with a

stop-end tube, which forms the joint with the adjacent
intermediate panel. As shown in Fig. 1, passes 1 and 2

install two alternative panels, and then pass 3 installs the

intermediate panel in between. The space between two stop-

end tubes is the actual space (i.e., effective length) where the

concrete is poured. Taking the joint type as shown in Fig. 1

as an example, the excavation length is greater than the

effective length for an alternative panel (i.e., Pass 1), and

vice versa for an intermediate panel (i.e., Pass 3). The length

difference is the sum of the length of the spliced reinforce-

ment and the required working space to avoid collision

during the adjacent excavation pass, as shown by Eqs. (1)

and (2). The length of the spliced reinforcement ranges from

60 cm to 120 cm, and the working space from 20 cm to 25

cm, depending on the designer.

LA ¼ LAE þ LS þ LW; ð1Þ

LI ¼ LIE � LS � LW; ð2Þ

where LA represents the excavation length for the alternative

panel, LAE denotes the effective excavation length for the

alternative panel, LI denotes the excavation length for the

intermediate panel, LIE denotes the effective excavation

length for the intermediate panel, LS denotes the length of

the spliced reinforcement, and LW denotes the length of the

working space. Note that the excavation length for the

intermediate panel (LI), which is in a latter pass, does not

need to include the LS and LW, which have been excavated

in the preceding passes.

2.2.5. Economic quantity of concrete poured and tremie

pipes used

After the reinforcing cage is lowered into the trench, the

concrete is poured by means of tremie pipes. The tremie

pipes are continuously fed to slowly force the slurry out of

the trench. In practice, each concrete pour should not exceed

4 h to avoid setting of the fresh mix. The panel length

should be coordinated with its width and depth to avoid a

long pouring process.

It is common to use several tremie pipes during the

concrete pouring to ensure continuous concrete feeding.

Because the effective radius of a tremie pipe is 1.5 m, the

space between tremie pipes should not exceed 3 m. For an

alternative panel, the tremie pipes are laid out evenly to

create an even rise of the poured concrete, so that the

pressure on the stop-end tubes is reduced. For an inter-

mediate panel, concrete is poured next to each stop-end

tube. Thus, a tremie pipe is positioned near each stop-end

tube to balance the existing pressure.

2.2.6. Storage capacity for excavated soil and bentonite

slurry

Soil is excavated during each panel excavation pass. The

excavated soil needs to be temporarily stored and trans-

ported to an appropriate dumpsite. During the excavation,

the bentonite slurry is continuously fed into the trench, and

is later reconditioned for reuse. Because of the continuous
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nature of panel excavation, the storage capacity for

excavated soil and slurry affects the maximum allowable

panel size. The storage capacity for excavated soil should be

greater than the volume of a panel to allow for the expansion

of the compressed soil, the clearance space required by the

excavating equipment, and allow for any partial collapse of

the trench. The storage volume of the slurry should also be

greater than the volume of the excavated trench because of

slurry losses during the slurry feeding and reconditioning

phases.

2.2.7. Weight of reinforcement cage and capacity of lifting

equipment

The reinforcement cage is lifted and lowered into the

excavated trench when the trench is at its most unstable

point (after excavation, but before being filled with

concrete). The panel size determines the total weight of

the reinforcement cage, which of course should not exceed

the safe lifting and handling capacity of the available

equipment.

2.2.8. Length of reinforcement cage

The length of the linear panels is usually affected by the

design of the corner panels, which require a special

assembly procedure. For example, an L-shape reinforcement

cage is more stable when placed on the ground with the long

end of the L on the ground. Also, the assembly work

becomes much more convenient if one wing is substantially

longer than the other. Also, the length of the shorter wing

should be greater than the wall thickness, but should not

exceed 2 m (a height where a worker can still reach the top

from the ground).

2.2.9. Coordination with permanent structure or bracing

system

When the slurry wall system is used as part of the

permanent structure or is to be part of the bracing system,

the panel configuration needs to be coordinated accordingly.

For example, it is preferred that structural columns are

resting on alternative panels so as to end up with a more

precise placement of the reinforcement through the align-

ment of their stop-end tubes. Different configurations result

in different panel lengths.
3. Knowledge acquisition

From the foregoing it can be concluded that determining

the panel length is not a very exact process, but instead

involves the consideration of a host of factors that are

interrelated and may conflict with each other. Generally

speaking, a tentative panel length is first selected to

accommodate trench stability and concreting requirements.

These requirements are then compared with the available

excavating systems, and checked for other considerations

that may impact upon the project. The panel design is not
finalized until the construction phase, and not until the

sequence has been established [18]. In practice, most experts

determine the panel length based on heuristics without

performing detailed calculations or optimization analysis.

Under similar site conditions, different experts may propose

different panel designs depending on their priority (e.g., cost,

safety and quality), past experience, and equipment avail-

able. Such expert knowledge is implicit from the perspective

of corporate knowledge management, and is easily lost

because of change in personnel, retirement, etc.

Knowledge acquisition is a process of acquiring prob-

lem-solving knowledge from human experts, literature,

computer files, and other knowledge sources. Knowledge

acquisition has been recognized by researchers as the key

bottleneck in the development of expert systems [12,15].

Knowledge acquisition is an expensive process, and good

knowledge engineers are hard to find. In addition, engineer-

ing knowledge sometimes has the habit of being dynamic,

unstable, subjective, incomplete, and conflicting in nature.

Determining the panel lengths is such a problem. At first,

developing a rule-based expert system to solve this problem

did not appear feasible, because the explicit rules that we

acquired are only for guidelines, and are not sufficient to

reach a specific solution.

De La Garza and Ibbs [6] also explored the knowledge

acquisition methods in depth. Their methods include

analysis of public domain knowledge; unstructured or

structured interviews; observation of familiar tasks, tasks

with limited information, tasks with constrained processing,

or tough tasks; and induction. In general, knowledge

acquisition methods can also be divided into three catego-

ries: human communication, human–machine interaction,

and machine learning methods [5]. The human–machine

interaction method develops an interactive computer system

such as SALT [8] that helps a knowledge engineer acquire

knowledge from a domain expert. Machine learning

includes rote learning, deductive learning, inductive lear-

ning, learning from observations, learning from analogy,

case-based learning, and neural network-parametric learning

[2,7].

Inductive learning produces generalized rules for solving

a problem based on a set of cases with solutions. ID3

[13,14] and STAR [9] are two inductive learning algorithms

that are commonly used in the field of artificial intelligence.

The ID3 algorithm generalizes a set of examples, and

represents the result as a decision tree, where each branch

layer represents a problem attribute, each node an attribute

value, and each leaf a solution node. Arciszewski et al. [1]

demonstrated the feasibility of inducing rules that predict

plausible construction accidents based on worker’s charac-

teristics and job site conditions using STAR methodology.

The STAR algorithm generalizes a set of positive

examples (i.e., examples whose solutions match the goal

of interest) and negative examples (i.e., examples whose

solutions do not match the goal of interest). It tries to create

STAR statements, which cover all positive examples, but do
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not cover any of the negative examples. These statements

describe the conditions of examples that lead to the target

solution.
4. IKAS

We recognized that only some principles about determin-

ing the slurry wall panel lengths can be acquired from

experts and be represented in a specific, explicit form. Other

principles are hard to acquire because there may not be a

consensus among the experts on those principles, while

other principles are of dynamic nature and depend on the

characteristics of the project at hand. Our proposed expert

system, named IKAS (Inductive Knowledge Acquisition

System) for slurry wall construction, determines the panel

lengths based on rules. Some of these rules are predefined

static rules, and some are dynamic rules learned by the

system based on case-based and inductive reasoning.

There are some limitations to this research. Because of

the exploratory nature of this research, we investigated only

the slurry walls of buildings, and only focused on the

determination of the length of common panels. In practice,

special panels are sometimes necessary to accommodate the

design of building foundation, column positions, and corner

situations. In addition, the determination of the panel

lengths is only part of the solution to the design of a slurry

wall. This research did not investigate the detailing of the

panel, such as the design of the panel joints and stop-end

tubes, which constitute an important part of the design.

4.1. Static and dynamic rules

In IKAS, both static and dynamic rules are represented

in an If–Then form for easy readability and modification.

The static rules are predefined and maintained by the end

user or knowledge engineer. The dynamic rules are

generated from scratch by IKAS, each time when it is

initiated. Given a new project, IKAS searches for similar

cases whose panel length information is available. It then

induces new rules based on retrieved cases that are similar

to the problem at hand. A screening mechanism is

performed to remove noise information and rules that

conflict with the activated static rules. Both static and

qualifying dynamic rules are then used to determine the

panel lengths for the project. During the course, the user

may save selected dynamic rules as static rules.

4.2. Case

The objective of the case in IKAS is twofold. First, the

case provides a representation form for storing the

information about past projects. Second, the case is also

the foundation for IKAS to perform a similarity calculation

to find similar cases for inducing dynamic rules. A

generalized case is predefined to describe available attri-
butes, types of attribute values, whether the supply of each

value is mandatory, and the weight or the screening

statement associated with each attribute for similarity

calculation. A new project or past projects can be described

by instantiating the generalized case.

The attributes include those used for identifying a project

(e.g., project-name), possibly affecting the determination of

the panel length (e.g., wall-depth), and the solutions (i.e.,

alternative-panel-length and intermediate-panel-length).

The following describes the attributes and their value types.

Project-ID-number (string)

The unique indexing number assigned to the project, e.g.,

‘‘A0001’’.

Project-name (string)

The name of the project, e.g., ‘‘ABC Office Building’’.

Project-location (keyword)

The site location of the project, which can be chosen from

a list of cities and counties in Taiwan; e.g., FTaipei City_.
Number-of-floors-of-superstructure (number)

Number of floors above the ground; e.g., 16.

Number-of-floors-of-substructure (number)

Number of floors below the ground; e.g., 4.

Basement-area (number)

The size of the area enclosed by the slurry walls,

expressed in m2; e.g., 200.

Space-availability-for-reinforcement-assembly (keyword)

Space availability for assembling the reinforcement cage,

which can be Fample_, Fmediocre_, and Fconstrained_. Within

the capacity of lifting equipment, it is more efficient to

assemble the whole cage on the ground and place it with a

single lift and without splicing.

Capacity-of-slurry-mixers (number); capacity-of-slurry-

storage-tanks (number); capacity-of-mud-storage-area

(number)

The mud circulation and preparation plant consists of

slurry mixers, storage tanks, mud separation units, and mud

storage area. They separate the slurry from the soil particles

mixed with it during the excavation operations. All the

capacities are expressed in m3. Estimating the average

volume of slurry to be used for a given panel can be related

to the type of soil, as a rule of thumb; in fine soils of low

permeability the slurry volume is about 1.5 times the trench

volume; for excavations in gravel and relatively pervious

ground, an extra supply of slurry, often 100% of the panel

volume, should be available [18].

Capacity-of-soil-storage-tanks (number)

The size of the storage capacity for excavated soil,

expressed in m3.

Soil-type (keyword)

The type of soil, which can be Fclay_, Fsand_, and

Fgravel_.
Soil-permeability (number)

Expressed in cm/s. Soil with low permeability reduces

slurry loss to the ground. Highly permeable soil may require

slurry controls or an additional slurry supply.

Bearing-capacity-factor (number)



Table 1

Attribute values of five simplified cases

Project-ID-

number

Soil-type Wall-width

(cm)

Wall-depth

(m)

Alternative-panel-

length (m)

A001 Fclay_ 80 30 4.0

A002 Fclay_ 100 45 3.6

A003 Fclay_ 100 43.5 3.6

A004 Fsand_ 80 40 3.6

A005 Fclay_ 80 38 4.0
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The bearing capacity factor N of the soil.

Groundwater-table (number)

The level of the groundwater table, expressed in m.

Wall-depth (number)

The depth of slurry wall panel, expressed in m.

Wall-width (number)

The width of the slurry wall panel, expressed in cm.

Required-splice-length (number)

The required splice length between intermediate and

alternative reinforcement cage, expressed in m.

Excavating-equipment-type (keyword)

Type of equipment used to excavate the trench for slurry

walls; e.g., FMHL 60100_ or FMHL 80120_. Commonly

used excavating equipment for slurry wall may be catego-

rized as bucket-and-grab, percussion, rotary-drilling, and

reverse-circulation [18].

Number-of-passes-for-alternative-panel (number); num-

ber-of-passes-for-intermediate-panel (number)

The number of equipment passes for alternative and

intermediate panels, respectively. The numbers are usually

odd numbers (e.g., 3, 5).

Number-of-tremie-pipes-for-alternative-panel (number);

number-of-tremie-pipes-for-intermediate-panel (number)

The number of tremie pipes planned to be used for

concrete pouring in the excavated trench.

Alternative-panel-length (number)

The length of the alternative panel, expressed in m.

Intermediate-panel-length (number)

The length of the intermediate panel, expressed in m.

All of these attributes have a value for each existing

case with panel length information. A new project has no

value for the attributes intermediate-panel-length and

alternative-panel-length, which may be determined by

IKAS.

4.3. Inductive learning

Conventional inductive learning applied in common

sense learning (e.g., identifying geometric shape) usually

performs a generalization based on the entire amount of

examples that are available. In this research, an Fexample_
is termed a Fcase_ and comprises several attributes. To

reduce the search space and reasoning time, the IKAS

allows its user to screen cases before they are genera-

lized, by specifying a screening criteria. For example, one

may ask IKAS to select cases whose soil-type is either

Fclay_ or Fsand_, and cases where the soil-bearing-

capacity-factor is smaller than 15. IKAS may also

automatically select similar cases based on case-based

reasoning.

The foundation of the IKAS’ inductive learning is

based on the STAR algorithm [9]. Another commonly

used algorithm is ID3 [13,14]. We chose STAR over ID3

because STAR’s induced result is represented as rules,

whereas ID3’s are represented as a decision tree, which is

not as easy to comprehend and modify for human beings
given the large number of attributes involved in a case. In

addition, STAR’s reasoning ability is better than ID3

when the cases may contain incomplete information,

which is the situation we encountered when transforming

the collected projects into cases. The attributes with

continuous values (e.g., wall-depth, capacity-of-slurry-

mixers) in a case also make the tree representation

unnatural. The primary disadvantage of STAR is its

comparatively slow reasoning speed.

The following uses simplified cases to describe the

algorithm. Assume that each case comprises only five

attributes: project-ID-number, soil-type, wall-width, wall-

depth, and alternative-panel-length, where the last attribute

represents the solution to the problem. Table 1 lists the

attribute values of five exemplified cases.

The algorithm represents the knowledge of each case

as a STAR statement. For example, case A001 can be

represented as a STAR statement, which comprises an If

statement (on the left) and a Then statement (on the right)

as follows: (soil-type = Fclay_) and (wall-width =80) and

(wall-depth =30)`(alternative-panel-length =4.0), which

can be further simplified as follows:

‘clay’; 80; 30ð Þ` 4:0ð Þ: ðSTAR-1Þ

STAR-1 states that for a project whose soil type is clay,

with designed panel width for the slurry wall being 80 cm,

and a panel depth of 30 m, the length for the alternative

panel is 4.0 m.

Suppose we try to find all case conditions that will

lead to a final decision of a 4.0 m long panel. Cases

whose panel lengths are 4.0 m are called positive cases

(i.e., cases A001 and A005), and others are called

negative cases (i.e., cases A002, A003, and A004). The

goal of the reasoning is to find a STAR statement that

covers all positive cases (called completeness condition),

but does not cover any of the negative cases (called

consistency condition).

If an initial STAR statement cannot satisfy both

completeness and consistency conditions, it has to be either

generalized or specialized. For example, STAR-2 and

STAR-3 are two statements generalized from STAR-1.

STAR-2 states that for a site whose soil type is clay, and

where the designed panel width for the slurry wall is 80 cm,

the recommended panel length is 4.0 m. STAR-3 states that
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for a site whose soil type is either Fclay_ or Fsand_, the
recommended panel length is 4.0 m.

‘clay’; 80; allð Þ` 4:0ð Þ ðSTAR-2Þ

‘clay’; ‘sand’f g;all;allð Þ` 4:0ð Þ ðSTAR-3Þ

If a case satisfies a STAR statement, it must satisfy all of

its generalized statements. However, a case that satisfies a

generalized statement does not necessarily satisfy the

original statement from which the statement is generalized.

Thus, if a STAR statement cannot satisfy the completeness

condition, it must be further generalized until it covers all

positive cases.

Specialization is a reverse process of generalization.

For example, STAR-2 is a specialized statement of STAR-

3; and STAR-1 is a specialized statement of STAR-2. If a

case satisfies a statement, the case does not necessarily

satisfy its specialized statement. However, if a case

satisfies a specialized statement, it must satisfy the

original statement from which the statement is specialized.

Following the previous examples, the most generalized

statement is (all, all, all), which cannot be further

generalized. STAR-1 is an example of the most specific

statement, which cannot be further specialized. The STAR

algorithm attempts to find the most generalized statement

that includes all positive cases but excludes all negative

cases.

4.4. Search strategy

Inductive learning is a search problem. Based on

Mitchell [10], search strategies can be classified into two

categories: data driven and goal driven. The depth-first,

breadth-first, and version space search strategies are

examples of data driven search strategies. The general-to-

specific and specific-to-general are examples of goal

driven search strategies. Table 2 compares these five

search strategies.

Based on Table 2, the version space strategy seems to

be a good strategy for our research. However, the search

path of this strategy is generally long, and the collections

of specific and general cases tend to be large. As a result,

the reasoning process will require more time and
Table 2

Comparisons of five search strategies

Item Strategy

Depth-first Breadth-first Version

Need for backtracking yes no no

Need for re-testing yes yes no

Required memory for search little medium much

Search starting point most specific most specific both

Search space smaller larger larger
computing memory. In addition, the case in our research

comprises attributes whose values are continuous, which

make it difficult for the strategy to reach the convergence

of the specific and general spaces.

The IKAS uses both general-to-specific and breadth-

first search strategies. The system starts from the most

general STAR statement, and continues to specialize the

statement(s) until all negative cases are excluded. When all

negative cases are excluded from the statements in

memory, each statement is checked, and the statements

that do not include all positive cases are removed.

Our strategy has the following characteristics:

(1) Compared to the version space strategy, the search

path is shorter and the number of STAR statements

kept in memory are fewer on average.

(2) Backtracking is not necessary, and each case needs to

be checked only once.

(3) The strategy guarantees to find all STAR statements

that satisfy the search goal.

(4) The strategy removes a statement only when at least

one negative case proves it is wrong. Thus, the

resulting statements may include incorrect state-

ments but will not miss any correct statements. It

has the advantage of possibly providing good

information that human experts never thought of.

Incorrect statements can be removed by the user

through inspection.

4.5. Noise

Noise in this research refers to the cases whose

solutions are not satisfactory. Because our cases are

collected in real life, they may contain noises (i.e., the

panel length used in the past is not recognized as a

‘‘good’’ decision by the expert), it is hard to obtain a

useful result if the STAR algorithm must rigidly meet the

completeness and consistency conditions. To remedy this

problem, the completeness condition is considered to be

met as long as some threshold conditions are met.

However, the consistency condition still has to be rigidly

met. We use the correctness rate and coverage rate as

two thresholds. The rates are commonly used in the field

of signal detection [17]. The following defines two

terms.
space General to specific Specific to general Our strategy

yes yes no

yes yes no

little little medium

most general most specific most general

smaller smaller larger
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Fig. 2. The flow chart for IKAS’ induction.
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For any STAR statement S:

Correctness rate ¼ P4þ N4

P þ N
ð3Þ

Coverage rate ¼ P4

P
ð4Þ

P*: the number of positive cases included in S, N*: the

number of negative cases excluded from S, P: the number of

positive cases, N: the number of negative cases.

The IKAS allows the user to adjust the thresholds for

the correctness and coverage rates. A STAR statement is

considered to meet the completeness condition if both its

correctness and coverage rates exceed the user’s defined

thresholds. In other words, a STAR statement is legitimate

if its correctness and coverage rates exceed the thresholds,

and the consistency condition is met. Appropriate thresh-

old values depend on the quality and the number of the

cases. In general, if the thresholds are too high, the

induction may result in no rule. If the thresholds are too

low, the induction may result in too many useless or

nonsense rules. The user may start with 100% and

gradually lower the thresholds until a satisfactory number

of rules are generated. The default threshold values are

(P�1) / (P +N).

4.6. Induction goal

The IKAS allows induction learning with or without a

specific goal. The purpose of learning with a specific goal is

to solve a particular problem at hand. On the other hand,

learning without a specific goal is to induce a set of general

knowledge about each type of panels based on the cases

available in the system.

The following describes IKAS’ reasoning steps for

learning with a goal (shown in Fig. 2).

(1) Determine the learning goal based on the new case.

(2) Determine the search space based on a user’s

specification or case-based reasoning.

(3) Generate the most generalized STAR statement, (all,

all, . . .), and keep it in the STAR pool.

(4) Randomly select a negative case, and check each

statement in the STAR pool. If the statement covers

the negative case, go to Step (5). If the statement does

not cover the negative case, continue with the next

statement. If no statement in the pool covers the

negative case, go to Step (7).

(5) Specialize the selected statement. For each resulting

specialized statement, continue to specialize the

statement if it still covers the negative case. The

statement is removed if it is covered by other

statements currently kept in the pool. The resulting

statements are those that do not cover the negative

case and whose coverage does not overlap with those

currently in the pool.
(6) Remove the statements that do not cover the learning

goal. The resulting statements are those that do not

cover the negative case but cover the learning goal.

(7) Go to Step (4) unless all negative cases have been

checked.

(8) For each kept statement, compute its correctness

rate and coverage rate. Keep only those statements

for which both rates exceed the user’s specified

thresholds.

Use the five cases in Table 1 again as an example. Given

a new case whose attribute values for soil-type, wall-width,

and wall-depth are Fgravel_, 80, and 40, respectively.

Assume the learning goal is 3.6 m (alternative-panel-

length). In Step (4), assume that Case A001, (Fgravel_, 80,
30), is the randomly selected negative case, which is

covered by (all, all, all). Statement (all, all, all) is

specialized and results in the following specialized state-

ments that do not cover (Fgravel_, 80, 30).

‘sand’; ‘gravel’f g; all; allð Þ ðSTAR-4Þ



Table 3

Correctness and coverage rates for example statements

STAR statements Positive cases Correctness Coverage

A002 A003 A004

({Fsand_, Fgravel_}, all, all) ( 3/5 1/3

(all, all, (38 45)) ( ( ( 5/5 3/3

Table 4

IKAS’ average induction time (seconds)

N* P*

1 2 3 4

1 2.0 1.7 1.2 1.1

2 13.9 7.2 6.1 5.9

3 48.2 30.6 26.5 23.1

4 201.2 135.4 106.6 85.4
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all; 80 100ð �; allð Þ ðSTAR-5Þ

all; all; 30 45½ �ð Þ ðSTAR-6Þ

Go to Step (4), and select another negative case A005

(Fclay_, 80, 38). STAR-4 and STAR-5 do not cover case

A005, but STAR-6 does. STAR-6 is specialized, and the

resulting statements that do not cover case A005 are as

follows.

‘sand’; ‘gravel’f g; all; 30 45ð �ð Þ ðSTAR-7Þ

all; 80 100ð �; 30 45ð �ð Þ ðSTAR-8Þ

all; all; 30 38ð Þð Þ ðSTAR-9Þ

all; all; 38 45ð Þð Þ ðSTAR-10Þ

Among the statements, STAR-7 and STAR-8 are covered

by STAR-4 and STAR-6, respectively, and have to be

removed. In Step (6), the statements that do not cover the

learning goal (i.e., 3.6 m) are removed. Therefore, only

STAR-4 and STAR-10 are kept in the pool. In Step (7), all

negative cases have been checked and the pool does not

change. In Step (8), IKAS uses all positive cases to calculate

the correctness and coverage rates for the statements in the

pool (shown in Table 3).

Assuming the threshold for both correctness and cover-

age rates is 0.4, (all, all, (38 45]) is the only satisfactory

STAR statement for 3.6 m long alternative panels. Next,

IKAS performs another similar process for the other

learning goal, 4 m, and finds no satisfactory statement.

Therefore, the solution to our new problem is 3.6 m.

The reasoning steps for learning without goals are similar

to those for learning with goals except that there is no Step

(6), i.e., no need to remove the statements that do not cover

the learning goal. Using the same example and thresholds,

the result is (all, (80 100], all) and (all, all, (38 45]) for 3.6

m long alternative panels; and ({Fsand_, Fgravel_}, [80 100),

all), ({Fsand_, Fgravel_}, all, (30 43.5)), and (all, all, [30

40)) for 4 m.
Table 5

IKAS’ average number of induced rules

N* P*

1 2 3 4

1 11.6 8.3 5.2 4.7

2 61.5 25 15.5 10.2

3 129.7 72.4 32.3 22.3

4 199.2 136.2 73.0 51.2
5. Experiment

The IKAS’ database currently includes 25 real life cases

about slurry wall construction, which are located in the

northern part of Taiwan. We tested IKAS and found that the

number of selected cases used for induction greatly affects

the required time for induction and the number of induced
rules. We tried different combinations of number of positive

and negative cases used for induction in each experiment.

For a given experiment setting (e.g., 4 positive cases and 2

negative cases), we first randomly selected an induction

goal (e.g., alternative-panel-length=3.6). Then we randomly

selected required positive cases and negative cases accord-

ing to the experiment setting, and performed the induction.

We repeated the process 10 times (i.e., 5 times for the

alternative panel and 5 times for the intermediate panel), and

recorded the average induction time, and the number of

induced rules as the experiment result. The experiments

were conducted on a Microsoft Windows XP platform with

Intel Pentium 2.4 GHz CPU and 1 GB RAM.

Tables 4 and 5 list the average induction time and

number of induced rules in various experimental settings.

The columns represent the number of selected positive

cases, and the rows represent the number of selected

negative cases. For example, when there are 4 positive

cases and 2 negative cases that are considered relevant to the

induction goal and are used for the induction, the average

induction time is 5.9 s, and the average number of induction

rules is 10.2. Figs. 3 and 4 illustrate the same data in a

histogram.

Fig. 3 indicates that raising the number of negative cases

greatly increases the induction time, but raising the number

of positive cases can greatly reduce the induction time. Fig.

4 indicates a similar result where raising the number of

negative cases results in a greater number of induced rules,

but raising the number of positive cases results in a smaller

number of induced rules. Comparing Figs. 3 and 4 shows a

positive correlation between the number of induced rules

and the induction time. Understanding this phenomenon

helps an IKAS user to determine the appropriate search

criteria for the case screening process.

Raising the number of negative cases exponentially

increases the induction time, because IKAS may need to

specialize all intermediate STAR statements to remove the

negative case from the coverage of the original statement.
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Fig. 3. IKAS’ average induction time (seconds).
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Specialization results in more STAR statements, which

means a larger search space. For an attribute whose value is

a keyword, specialization of a STAR statement generates

only a new STAR statement. For example, to remove the

coverage of a negative case whose soil-type is (Fsand_) from
a STAR statement whose soil-type is ({Fclay_, Fsand_,
Fgravel_}), the soil-type of the specialized statement is

({Fclay_, Fgravel_}) while other attributes remain unchanged.

For an attribute whose value is a number, specialization

of a STAR statement generates at most two statements for

‘‘search without goal’’, and one statement for ‘‘search with

a goal’’. For example, to remove the coverage of a

negative case whose wall-depth is 30 m from a STAR

statement whose wall-depth is [10 50) (i.e., 10 mowall-

depth <50 m), the wall-depth of the specialized statements

are [10 30) and (30 50] for ‘‘search without goals’’. For

‘‘search with a goal’’, only one statement can be true

because the goal can only satisfy one of the mutually

exclusive statements.

The IKAS’ case has 25 attributes. Except for project-ID-

number and project-name that are used only for identifica-

tion and not for reasoning, there are four attributes whose

values are keywords, and 19 attributes whose values are

numbers. Thus, a STAR statement may generate at most

(4+19�2)=42 for ‘‘search without goals’’, and (4+19)=23
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Fig. 4. IKAS’ average number of induced rules.
for ‘‘search with a goal’’. The generated statements may also

generate another set of statements for the next negative case.

Therefore, without counting the covered statements, e.g.,

[10 30 m) is covered by [10 40), the maximum number of

STAR statements generated for ‘‘search without goals’’ is:

Xn

k¼1
C43
k ; nV42;where n is the number of negative cases:

ð3Þ

For ‘‘search with a goal’’, the maximum number is:

Xn

k¼1
C24
k ; nV23;where n is the number of negative cases:

ð4Þ

This large search space is one of the reasons for

IKAS’ slow induction process. Another bottleneck for

reducing the induction time is the coverage checking

among the statements. For example, given 10 statements

currently kept in the system memory, the newly generated

11th statement needs to be checked against the 10

statements for coverage, the 12th statement needs to be

checked against the 11 statements, and so on. That

means, when there are n statements kept in memory,

IKAS has performed at least n times of coverage

checking. The screening mechanism of IKAS provides a

means to reduce the search space. The following experi-

ment demonstrates the effect of the reduced search space

through screening.

Suppose Case A0006 is the new case, and IKAS has 25

cases whose alternative-panel-lengths were 5.6 m or 6 m,

and intermediate-panel-lengths are 4 m or 4.4 m. After CBR

screening, only 4 cases were used for induction as opposed

to 25 cases when screening was not used. Table 6 compares

the results of two experimental settings. With screening,

IKAS performs considerably faster, and also produces a

lesser number of rules and target rules (the rules used to

derive the solution). Fewer rules make it feasible for experts

to modify or verify the induction results.
Table 6

Comparison of results of induction with and without screening

Screening No screening

Time (search without goal) 19.2 s 4091 s

Time (search with goal) 1.5 s 111.3 s

Number of solutions

(alternative-panel-length)

4 4

Number of rules

(alternative-panel-length)

42 116

Number of target rules

(alternative-panel-length)

4 26

Number of solutions

(intermediate-panel-length)

6 6

Number of rules

(intermediate-panel-length)

38 92

Number of target rules

(intermediate-panel-length)

4 9
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6. Conclusions

Determining panel lengths for slurry wall construction is

a complex engineering problem. Some principles can be

extracted from experts. However, they are not sufficiently

detailed to generate a solution. They can only be used as

guidelines to a solution. This research proposed an inductive

learning model, IKAS, for determining the panel lengths.

The solution is generated by induced rules and is verified by

static rules. Static rules are based on our survey of the

literature and on interviews. Induced rules are created

during the run time, based on the STAR algorithm. IKAS

also has a screening mechanism, specified by either the user

or based on case-based reasoning, in order to reduce the

search space of the induction process, and to increase the

relevance of induced rules of the problem at hand. IKAS

also uses correctness and coverage rates to deal with the

noise of cases. Two induction modes are available in IKAS.

Inducing rules with a specific goal helps experts determine

the panel lengths for a new slurry wall project. Inducing

rules without goals transforms a company’s past experiences

(i.e., cases) into a set of rules, which helps the company

manage their knowledge and share it, and ensure minimum

quality by providing a base for double-checking new

solutions. The experiments also demonstrated an improved

induction performance in both time and result by using the

case-screening mechanism.

The proposed model is suitable for those engineering

problems where human experts rely on past experience,

rule-of-thumbs, or subjective judgment. However, it is

difficult to prove the usefulness of the induction outcomes

because of the heuristics nature of the problem. IKAS’ cases

are ones that were successful in the past, but that does not

guarantee them to be economically optimal; therefore the

same can be said for its induced solution. IKAS’ induced

results may be useful to an inexperienced engineer, but may

not be so to an experienced one. Nevertheless, IKAS’

induced results do represent a true snapshot of patterns of

decision making in an organization.
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