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SUMMARY

We discuss a robust extension of linear mixed models based on the multivariate t distribution. Since
longitudinal data are successively collected over time and typically tend to be autocorrelated, we employ
a parsimonious �rst-order autoregressive dependence structure for the within-subject errors. A score test
statistic for testing the existence of autocorrelation among the within-subject errors is derived. Moreover,
we develop an explicit scoring procedure for the maximum likelihood estimation with standard errors
as a by-product. The technique for predicting future responses of a subject given past measurements is
also investigated. Results are illustrated with real data from a multiple sclerosis clinical trial. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiple sclerosis (MS), one of the most common chronic diseases of the central nervous sys-
tem in young adults, occurs when the myelin around the nerve �bres in the brain
becomes damaged. As yet, the precise causes of MS remain unknown, though abundant re-
search suggests MS may be an autoimmune disease in which the immune system attacks its
own myelin, causing disruptions to the nerve transmissions. There are no drugs to cure MS, but
some treatments are available to ease the symptom. For example, interferon beta-1b (INFB)
was approved by the US Food and Drug Administration in mid-1993 for use in early stage
relapsing-remitting MS (RRMS) patients. For diagnosis, cranial magnetic resonance imaging
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(MRI) is the most preferred tool for monitoring MS evolution in both natural history studies
and treatment trials.
Gill [1] presents a robust approach based on Huber’s � function to a linear mixed model for

the analysis of a data set, called the MS data throughout this paper, from a cohort study of 52
patients with RRMS. The study was a placebo-controlled trial of interferon beta-1b (INFB)
in which patients were randomized to either a placebo (PL), a low-dose (LD), or a high-
dose (HD) treatment. The LD and HD treatments correspond to doses of 1.6 and 8 million
international units (MIU) of IFNB every other day, respectively. Each patient had a baseline
cranial MRI and subsequent MRIs once every 6 weeks over two years. The 6-weekly serial
MRI data were collected from June 1988 to May 1990 at the University of British Columbia
site.
The use of the t distribution in place of the normal for robust regression has been inves-

tigated by a number of authors, including West [2], Lange et al. [3] and James et al. [4].
The linear mixed model with multivariate t distributed responses, called the t linear mixed
model hereafter, was considered by Welsh and Richardson [5], however, they do not explic-
itly discuss or derive the distributions of the random e�ects as well as the error terms. More
recently, Pinheiro et al. [6] incorporated multivariate t distributed random e�ects and error
terms to formulate a normal–normal–gamma hierarchy for the t linear mixed model. They
provide several e�cient EM-type algorithms for maximum likelihood (ML) estimation and
illustrate the robustness with respect to outlying observations using a real example and some
simulation results.
In this paper, we develop additional tools for a simpli�ed version of the Pinheiro et al. [6]

model and use these tools to analyse the MS data. The model considered here is

Yi=XiR+Zibi + ii ; bi | �i ∼ Nm2

(
0;

�2

�i
�
)

ii | �i ∼Npi

(
0;

�2

�i
Ci

)
; �i ∼ Ga(�=2; �=2); (i=1; : : : ; N )

(1)

where i is the subject index, Yi is a pi-dimensional observed response vector, N is the number
of subjects, Xi and Zi are, respectively, known pi ×m1 and pi ×m2 design matrices, R is an
m1 × 1 vector of �xed e�ects, bi is an m2 × 1 vector of unobservable random e�ects, �i is an
unknown scale assumed to be distributed as gamma with mean 1 and variance 2=�, and bi | �i
and ii | �i are assumed to be independent. Furthermore, � is an m2 ×m2 matrix, which may
be unstructured or structured, and Ci is a pi ×pi correlation matrix.
Pinheiro et al. [6] consider a general model where Ci is allowed to depend upon a vector

of parameters and the parameter � is allowed to vary across subgroups of subjects. In this
paper, we exploit the widely used autoregressive structure to model the dependence for the
within-subject errors. As an illustration, we concentrate on the simple case where Ci has an
AR(1) dependence structure that is common to all subjects, i.e.

Ci=Ci(�)= [�|r−s|]; r; s=1; 2; : : : ; pi (2)

The dependence structure of Ci can be extended to a high order autoregressive moving average
(ARMA) dependence as provided by Rochon [7], Lin and Lee [8] and Lee et al. [9].
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In model (1), the marginal distribution of the response Yi, after integrating over bi and �i,
can be expressed as

Yi ∼ tpi(XiR; �2�i ; �) (3)

where �i=�i(�; �)=Zi�Z′
i +Ci(�) and tp(\;�; �) denotes the p-dimensional multivariate t

distribution with location vector \, scale matrix � and degrees-of-freedom (d.f.) �.
In Section 2, we describe computational aspects of both the ML estimation and restricted

maximum likelihood (REML) estimation based on the marginal likelihood of (3). Section 3
describes how to obtain the score test statistic for testing H0 : �=0 for Ci in (2) against the
alternative hypothesis � �=0. Section 4 discusses inferences of random e�ects and prediction
problems. In Section 5, we illustrate the proposed methodologies with the MS data. Finally,
Section 6 o�ers some concluding remarks.

2. ESTIMATION

For notational convenience, let ei=Yi − XiR, �i(R;�; �)= e�i �i(�; �)ei and n=
∑N

i=1 pi

denote the total number of observations. Given independent observations Y1; : : : ;YN , write
the log-likelihood function as

‘ =
N∑
i=1

{
log
(
�
(
�+ pi

2

))
− log

(
�
( �
2

))}
− n
2
log(��2)

−1
2

N∑
i=1
log |�i(�; �)| − 1

2

N∑
i=1
(�+ pi) log

(
1 +

�i(R;�; �)
�2�

)
(4)

To ensure non-negative de�niteness of �, we reparameterize �=F�F by the Cholesky
decomposition, where F is an upper triangular matrix. Let Q=(R; X), where X=(�2; vech(F);
�; �) is the vector of unknown model parameters excluding the �xed e�ects R. Explicit ex-
pressions for the score vector sQ=(s�R ; s

�
X )

� and the Fisher information matrix IQQ are derived
in Appendix A. We employ the Fisher scoring algorithm to obtain the ML estimate. Under
some regularity conditions, the asymptotic variance–covariance estimates can be computed by
plugging the ML estimate Q̂=(R̂; X̂) into the inverse of the Fisher information matrix. The
asymptotic covariance matrix of R̂ and X̂ can be obtained by

var(R̂)= Î−1RR = �̂2
(

N∑
i=1

�̂+ pi

�̂+ pi + 2
X�

i �̂
−1
i Xi

)−1

var(X̂)= Î
−1
XX

(5)

A disadvantage of the ML estimates of variance components is that they are biased down-
ward in �nite samples. REML corrects for the loss of degrees-of-freedom incurred in
estimating the �xed e�ects and produces unbiased estimating equations for the variance com-
ponents. As pointed out by Harville [10], REML can be viewed as the Bayesian princi-
ple of marginal inference. Adopting the prior distribution �(R; X) ∝ 1 and Laplace’s method
as in Welsh and Richardson [5], the t-REML likelihood function can be approximated
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by LR(X)=
∫
L(R; X) dR≈L∗

R(X), where

L∗
R(X) = (�2��)−n=2

∣∣∣∣ N∑
i=1
X�

i HiXi

∣∣∣∣
−1=2 N∏

i=1

�((�+ pi)=2)
�(�=2)

× |�i|−1=2
(
1 +

�i(R̂(X);�; �)
��2

)−(�+pi)=2

(6)

Hi = (�+ pi)

{
�−1

i

�2�+ �i(R̂(X);�; �)
− 2�−1

i êi(X)ê�i (X)�
−1
i

(�2�+ �i(R̂(X);�; �))2

}

êi(X)=Yi −XiR̂(X), and R̂(X) is obtained by solving the following estimating equation:

N∑
i=1
(�+ pi)

X�
i �

−1
i (Yi −XiR)

�2�+ �i(R;�; �)
=0 (7)

The resulting (approximately) REML estimate of X, X̂R, can be obtained by implementing
the Newton–Raphson (NR) algorithm with the ML estimate as the initial value. In the NR
algorithm, the empirical Bayes estimate of R, R̂(X̂R), must be computed at each iteration. It
can be easily obtained by solving the estimating equation (7) with X replaced by current
estimate X̂R.
Appendix B presents the necessary �rst partial derivatives of ‘∗

R (X), the logarithm of L∗
R(X)

in (6), for the NR algorithm. However, the second partial derivatives of ‘∗
R (X) are tedious.

The entries of the Hessian matrix can instead be approximated numerically.

3. THE SCORE TEST FOR AUTOCORRELATION

It is of interest to test whether autocorrelation exists among the within-subject errors. We
derive a score test statistic which is asymptotically a chi-squared random variable with 1 d.f.
and can be easily computed. In this context, the score test statistic is based on the score
vector and information matrix evaluated under H0 : �=0. The advantage of the score test
over other testing procedures such as the likelihood ratio or Wald tests is that it does not
require comparison with the alternative model. Rejection of the null model does not indicate
that the AR(1) dependence structure is appropriate, however, it provides a simple check for
the presence of possible autocorrelation among the within-subject errors.
Let W=(�2; vech(F); �), so that X=(W; �). Because IRX= 0, the information matrix IQQ of

Q=(R; W; �) can be reexpressed as the block partitioned matrix

IQQ=

⎡
⎢⎢⎢⎣
IRR 0 0

0� IWW IW�

0� I�W� I��

⎤
⎥⎥⎥⎦ (8)
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Let Q̂0 = (R̂0; Ŵ0; 0) denote the ML estimates of R and W under H0 : �=0. The score vector
[@‘=@Q]Q̂0 has all components equal to 0 except the derivative with respect to �. The score
test statistic �s is

�s=
[
@‘
@Q

]�
Q̂0
[IQQ]−1Q̂0

[
@‘
@Q

]
Q̂0
=
[@‘=@�]2Q̂0
[I��·W]Q̂0

(9)

where

@‘
@�
=−1

2

N∑
i=1
tr
(
�−1

i
@Ci

@�

)
+
1
2

N∑
i=1
(�+ pi)

e�i �
−1
i

@Ci
@� �

−1
i ei

�2�+ �i(R;�; �)

I��·W= I�� − I�W�I−1WW IW�

(10)

The detailed expressions for I��, IW� and IWW are given in Appendix A.
When evaluated at Q= Q̂0, we obtain ûi=[�

−1
i ei]Q̂0 =Yi − XiR̂ − Zib̂i, where b̂i=

(Z�
i Zi+ �̂−1)−1Z�

i (Yi −XiR̂) and ûi can be viewed as the vector of residuals from the model
for subject i. In addition, [C−1

i ]Q̂0 = Ipi and [@Ci=@�]Q̂0 =L�
i +Li, where L�

i is a pi ×pi matrix
with the entries of 1 on the �rst super- and sub-diagonals and 0 elsewhere. Applying

�−1
i =(Zi�Z�

i +Ci)−1 =C−1
i −C−1

i Zi(Z�
i C

−1
i Zi + �

−1)−1Z�
i C

−1
i

we obtain [
tr
(
�−1

i
@Ci

@�

)]
Q̂0
= − 2tr((Z�

i Zi + �̂−1)−1Z�
i LiZi) (11)

The score statistic �s can be calculated, from (11), as

�s=

(∑N
i=1 tr((Z

�
i Zi + �̂−1)−1Z�

i LiZi) +
∑N

i=1 (�̂+ pi)
û�
i Liûi

�̂2�̂+ �i(R̂; �̂; 0)

)2

[I��·W]Q̂0

where �i(R̂; �̂; 0)= (Yi −XiR̂−Zib̂i)�ûi.

4. INFERENCES FOR RANDOM EFFECTS AND PREDICTION

We consider empirical Bayes estimates of the random e�ects, which are useful in explain-
ing subject-speci�c deviations and helpful in predicting future measurements. If values of
Q=(R; �2;�; �; �) were known, the conditional mean of bi given Y is

b̂i(Q)= [Im2 −Wi(Wi + �)−1]b∗
i (Q) (12)

where Wi=(ZiC−1
i Z

�
i )

−1 and b∗
i (Q)=Wi(�)Z�

i C
−1
i (Yi −XiR). The resulting error covariance

matrix is

E((b̂i(Q)− bi)(b̂i(Q)− bi)�)= ��2

� − 2 [Wi −Wi(Wi + �)−1Wi] (13)
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see Appendix C. As in Reference [11], substituting the ML estimate Q̂ into (12) leads to the
empirical Bayes estimate b̂i= b̂i(Q̂).
Furthermore, we are interested in the prediction of yi, a future q× 1 vector of measurements

of Yi, given the observed measurements Y=(Y�
(i);Y

�
i )

�, where Y(i) = (Y�
1 ; : : : ;Y

�
i−1;Y

�
i+1;

: : : ;Y�
N )

�. Given Q, the vectors (Y�
i ; y�

i )
� (i=1; : : : ; N ) are independent, so it is only nec-

essary to consider the joint distribution of Yi and yi in predicting yi.
Let xi and zi denote q×m1 and q×m2 matrices of prediction regressors corresponding to

yi. We thus have [
Yi

yi

]
∼ tpi+q(X∗

i R; �2�; �)

where X∗
i =(X�

i ;x�
i )

�, Z∗
i =(Z�

i ; z�i )�, �=Z∗
i �Z∗�

i + C∗
i and C∗

i =[�
|r−s|] for r; s=1; : : : ;

pi + q. Let C∗
i and �i be partitioned conformably with (Y�

i ; y�
i )

�, i.e.

C∗
i =

[
C11 C12

C21 C22

]
; �=

[
�11 �12

�21 �22

]
=

[
Zi�Z�

i +C11 Zi�z�i +C12

zi�Z�
i +C21 zi�z�i +C22

]

where C11 =Ci and C21 =C�
12. The use of

f(yi|Yi) ∝
∫

f(yi|Yi ; �i)f(Yi|�i)f(�i) d�i

leads to

yi|Yi ∼ tq(\i;2·1; !i�22·1; �+ pi)

where \i;2·1 =xiR+�21�
−1
11 (Yi−XiR), �22·1 =�22−�21�

−1
11 �12 and !i=(�2�+(Yi−XiR)��−1

11
(Yi − XiR))=(�+ pi). The minimum MSE predictor of yi is the conditional expectation of yi
given Yi, i.e.

ŷi(Q) = xiR+�21�
−1
11 (Yi −XiR)

= xiR+ zib̂i(Q) +C21C−1
11 (Yi −XiR−Zib̂i(Q)) (14)

where b̂i(Q) is given in (12). Similarly, the error covariance matrix for the predictor (14) is
given by

E((ŷi(Q)− yi)(ŷi(Q)− yi)�)= �+ pi

�+ pi − 2 !i�22·1

where �22·1 can be rewritten as

�22·1 =C22·1 + (zi −C21C−1
11 Zi)(W11 −W11(�+W11)−1W11)(zi −C21C−1

11 Zi)� (15)

with C22·1 =C22 − C21C−1
11 C12 and W11 = (Z�

i C
−1
11 Zi)−1; see Appendix D. The prediction of

yi is obtained by substituting the ML estimate Q̂ into (14), leading to ŷ= ŷ(Q̂).
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5. EXAMPLE

To illustrate the methodology, we next analyse the MS data. More details of the clinical trial
leading to the MS data is described by D’yachkova et al. [12]. The PL, LD and HD treatment
groups involve 17, 18, and 17 patients, respectively. Of the 52 patients, 3 patients were not
included in the analysis since two of them (one in each of groups LD and HD) dropped out
very early and one in group LD had 3 measurements of zero on MRI scans. All but 5 of the
remaining patients have a complete set of 17 scans: one dropped out from PL after completing
14 visits, two dropped out from LD after completing 13 visits, and two dropped out from
HD after completing 12 visits. We will analyse the data of the 49 patients. Our analyses will
assume these early dropouts are ignorable [13]. Of these 49 patients, six patients have one
or two isolated MRI scans missing. We impute these missing observations using the mean of
two adjacent values as in Reference [1].
The disease burden, the total area (in mm2) of MS lesions on all slices of an MRI scan,

for the ith patient at time point j is denoted by Area(i; j), with j=0 as the baseline time
point. The corresponding log relative burden (LRB) is LRB(i; j)= log(Area(i; j)=Area(i; 0)),
which is used as the response variable Yij due to strong skewness of the untransformed burden
measurements. Figure 1 depicts the LRB evolution of the 49 patients from various groups.
Apparently, the MS data involve many outlying observations, especially for PL and LD.
We model the average evolution of LRB as a linear function of time and carry out the anal-

yses separately for the 3 treatment groups. For the �xed e�ects, we set R=(�0; �1)� with the
corresponding design matrix Xi=[1pi ki], where 1pi =(1; 1; : : : ; 1)

� and ki=(1; 2; : : : ; pi)�.
To explore the autocorrelation among the within-subject errors, we start by �tting model (1)
with random intercepts (Zi= 1pi) and white noise errors (�=0), denoted by M1.
Table I lists the resulting ML estimates with their standard errors in parentheses obtained

from (5), Akaike’s Information Criteria (AIC= − 2×maximized log-likelihood + 2m, where
m is the number of model parameters), along with the values of the score test statistic �s for
the three groups. The score tests are all highly signi�cant compared with the �21 distribution,
indicating that there exists autocorrelation among the within-subjects errors. Moreover, the
estimates of the d.f. �’s are quite small, which justify the modelling e�ort via the t distribution.
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Figure 1. Longitudinal trends in LRB of 49 patients from three treatment groups.
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Table I. ML estimation results and score test statistics for M1, where f is such that �=f2.

Group �0 �1 �2 f � AIC �s

−0:0076 0.0185 0.0143 1.8290 1.82
PL −99:02 16.91

(0.0460) (0.0015) (0.0042) (0.272) (0.59)

−0:0048 0.0122 0.0132 0.9462 2.08
LD −145:58 21.30

(0.0325) (0.0015) (0.0039) (0.194) (0.71)

−0:0846 0.0143 0.0128 1.0856 4.58
HD −251:44 49.58

(0.0356) (0.0015) (0.0027) (0.2185) (1.87)

Table II. ML estimation results for M2, where f is such that �=f2.

Group �0 �1 �2 f � � AIC

−0:0036 0.0176 0.0154 1.8290 0.3164 1.81
PL −116:26

(0.0476) (0.0020) (0.0046) (0.7322) (0.0685) (0.59)

−0:0040 0.0125 0.0137 0.8734 0.3584 1.97
LD −167:10

(0.0343) (0.0021) (0.0043) (0.1994) (0.0712) (0.67)

−0:0814 0.0137 0.0174 0.8348 0.5587 6.79
HD −310:38

(0.0400) (0.0027) (0.0040) (0.2192) (0.0689) (3.15)

As a note in passing, the REML estimates are somewhat similar to the ML estimates and
hence are omitted for the rest of the paper.
We further �t an alternate model with random intercepts and an AR(1) dependence struc-

ture for the within-subject errors, denoted by M2. The corresponding ML estimation results
and AICs are shown in Table II. Based on smaller AIC values, M2 is preferred to M1.
Figure 2 displays the pro�le likelihood function of � and f, where f satis�es �=f2. Ob-
viously, all three plots are unimodal and exhibit signi�cant serial correlations, indicating that
the AR(1) model is a possible dependence structure for modelling the MS data.
In some cases, however, a more general random e�ects model may be useful for the

interpretation of autocorrelation among the within-subjects errors. For comparison purposes,
we �t a model, denoted by M3, with random intercepts and slopes (Zi=Xi) and white noise
errors. The associated ML estimation results are given in Table III. The AIC values did not
improve over M2. In addition, all elements of F12 and F22 are relatively small (compared
with their standard errors) with the exception of F22 for HD, indicating negligible variation in
slopes except for HD. Based on this, we check the expanded model that combines the random
intercepts, random slopes and an AR(1) dependence structure for HD. The value of AIC is
−309:13, slightly higher than AIC= − 310:38 for M2. Thus, among the models considered,
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Figure 2. Pro�le likelihood functions of (�; f) from three treatment groups.

Table III. ML estimation results for M3, where F is the Cholesky decomposition of �.

Group �0 �1 �2 F11; F12; F22 � AIC

−0:0139 0.0190 0.0129 1:1255; 0:0352; 0:0480 1.76
PL −108:20

(0.0358) (0.0023) (0.0038) (0:2629; 0:1022; 0:0323) (0.57)

−0:0070 0.0125 0.0114 1:0115;−0:0264; 0:0663 1.97
LD −153:68

(0.0319) (0.0025) (0.0040) (0:5310; 0:2712; 0:0344) (0.67)

−0:0857 0.0140 0.0113 0:9412;−0:0136; 0:0989 5.49
HD −273:26

(0.0299) (0.0032) (0.0023) (0:2665; 0:1216; 0:0253) (2.39)

M2 is our preferred model for the MS data since it has the smallest AIC. Furthermore, it
incorporates the autocorrelation and is parsimonious.
Based on the analysis so far, we found that the ML estimates of the d.f. �’s for the MS data

are all relatively small, especially for PL and LD. To assess further the adequacy of normal
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Table IV. ML estimation results for M4, where f is such that �=f2.

Group �0 �1 �2 f � AIC

0.0368 0.0244 0.0826 1.1329 0.2208
PL 141.34

(0.0897) (0.0042) (0.0078) (0.2163) (0.0651)

0.0326 0.0089 0.0619 0.8953 0.2717
LD 40.26

(0.0685) (0.0039) (0.0063) (0.1868) (0.0682)

−0:0040 0.0125 0.0137 0.8734 0.3584
HD −299:30
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Figure 3. Normal quantile plots for residuals from �tting M4.

modelling for the MS data, we �t a normal version of M2 (obtained by setting �=∞),
denoted by M4. The ML estimation results and AICs are reported in Table IV. Compared
to Table II, we found that the �xed e�ects are rather di�erent and have consistently larger
standard errors. The substantially larger AICs indicate that M4 is not suitable for the PL and
LD groups, although the AICs are comparable for the HD group.
Figure 3 displays the corresponding normal quantile plots for the residuals from M4. Obvi-

ously, the residuals of PL and LD seriously deviate from normality, con�rming the presence
of longer-than-normal tails. In contrast, the departure from normality for HD is minor. Based
on these �ndings, it appears that M4 might be adequate for HD.
We next compare the prediction accuracy of M2 and M4. We use the predictive sample

reuse procedure of Geisser [14] sequentially by removing the last few points of each response
vector as the true values to be predicted. As a measure of precision we use the MARD, which
is de�ned as the mean of absolute relative deviations |(yjp − ŷjp)=yjp|, where p is the time
point being forcast.
We restrict our attention to the one-step-ahead forecasts by setting p=13–17. To predict

Yip, we use Yi1; : : : ; Yi;p−1 and Y(i) as the sample to obtain the ML estimate Q̂ and plug it into
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Table V. Comparison of one-step-ahead forecast accuracy in terms of MARD.

Group The time point being forecast M4 M2

13 0.532 0.414
14 1.186 1.020

PL 15 1.825 1.610
16 0.818 0.702
17 0.717 0.675

Average 1.016 0.884

13 0.528 0.504
14 1.044 1.010

LD 15 0.580 0.591
16 0.716 0.484
17 0.302 0.287

Average 0.634 0.575

13 0.803 0.817
14 0.245 0.220

HD 15 0.414 0.382
16 0.765 0.741
17 0.412 0.397

Average 0.528 0.511

Overall average 0.726 0.657

the predictor (14). Since the predictions are done sequentially for each subject and for each
p, the procedure is termed prequential by Dawid [15]. Table V shows prediction results from
these two models. The t-based model has a much smaller MARD than the normal model for
PL and LD; the relative improvement percentages are 13 and 9.3 per cent, respectively. On
the contrary, the prediction performance for HD is only slightly better (3.2 per cent). The
t-based model not only provides better model �tting, it also yields smaller forecast errors for
the MS data; the overall improvement is 9.5 per cent.

6. CONCLUDING REMARKS

There are rather extensive approaches to robustifying linear mixed models, see for example,
References [16–19]. The t linear mixed model provides an alternative robust way of dealing
with longitudinal data when some outlying observations are present. Moreover, the explicit
derivative-based estimation and score testing procedures developed in this paper can be easily
implemented with low computational burden.
As shown by Lee [20] and Chi and Reinsel [21], inclusion of the simple AR(1) dependence

could lead to an appropriate representation of dependence structure and may reduce the need
for including complex random e�ects in the model. From our illustrated MS data it is encour-
aging that the use of t linear mixed model coupled with AR(1) structure o�ers better �tting
as well as better prediction performance than the normal counterpart. It may be worthwhile
comparing with other dependence structures, such as higher order AR, MA or ARMA.
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Finally, as one referee pointed out, the current model does not allow simultaneous �tting
for all three treatment groups of the MS data set and it may be of interest to extend the
model in that direction.

APPENDIX A: THE SCORE FUNCTION AND FISHER INFORMATION MATRIX

The score vector s	 is the vector of the �rst derivatives of (4) with respect to Q=(R; �2; �;�),
where �=(vech(F); �) and F is the Cholesky decomposition of �

sR =
N∑
i=1
(�+ pi)

X�
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−1
i ei
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where �̇ir = @�i=@!r , for r=1; : : : ; g; g=(m22 +m2 +2)=2 and 
(x)= d
dx log(�(x)) denotes the

digamma function.
The Fisher information, obtained by the negative expectation of the second derivative of (4),

has the following components:

IRR =
N∑
i=1
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�2(�+ pi + 2)
X�

i �
−1
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for r; s=1; : : : ; g, where  (x)= d2

dx2 log(�(x)) denotes the trigamma function.

APPENDIX B: THE FIRST PARTIAL DERIVATIVES OF ‘∗
R

The �rst partial derivatives of ‘∗
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APPENDIX C: PROOFS OF (12) AND (13)

Recall that �i=Zi�Z�
i +Ci. With some algebraic manipulations, we can get
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The error covariance matrix of b̂i(X) is
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APPENDIX D: PROOF OF (15)

Recall that �11 =Zi�Z�
i +C11, then

�−1
11 =C

−1
11 −C−1

11 Zi(W11 −W11(�+W11)−1W11)Z�
i C

−1
11

It su�ces to show that

�22·1 = �22 −�21�
−1
11 �12

= zi�z�i +C22 − (zi�Z�
i +C21)

× (C−1
11 −C−1

11 Zi(W11 −W11(�+W11)−1W11)Z�
i C

−1
11 )(Zi�z�i +C12)

= C22 −C21C−1
11 C12 + zi�z

�
i − zi�(�+W11)−1�z�i

− zi�(�+W11)−1W11Z�
i C

−1
11 C12 −C21C−1

11 ZiW11(�+W11)−1�z�i

+C21C−1
11 Zi(W11 −W11(�+W11)−1W11)Z�

i C
−1
11 C12

Since

zi�z�i − zi�(�+W11)−1�z�i = zi(W11 −W11(�+W11)−1W11)z�i

zi�(�+W11)−1W11Z�
i C

−1
11 C12 = zi(W11 −W11(�+W11)−1W11)(C21C−1

11 Zi)�

and

C21C−1
11 ZiW11(�+W11)−1�z�i =C21C

−1
11 Zi(W11 −W11(�+W11)−1W11)z�i

we have
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This completes the proof.
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