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Abstract: Improving the performance of the traditional TCP in wireless IP communications has
been an active research area. The significant cause of packet losses in such heterogenous networks
is no longer limited to network congestion. The performance degradation of TCP in wireless and
wired-wireless hybrid networks is mainly due to its lack of ability to differentiate the packet losses
caused by network congestions from the losses caused by wireless link errors. New variants of TCP
Vegas and TCP Reno named Snug-Vegas and Snug-Reno, respectively, are proposed. By using
random-loss indications marked by base stations, Snug-Vegas and Snug-Reno may detect random
packet losses precisely. Through the packet loss differentiation, Snug-Vegas and Snug-Reno react
appropriately to the losses, and based on the simulation results, it is seen that the throughput of
connection over heterogeneous networks can be significantly improved.

1 Introduction

It is increasingly important to provide ubiquitous mobile
Internet access because of the great advancement in wireless
networking technology and new emerging applications. The
well-known problem in providing transmission control
protocol/Internet protocol (TCP/IP) [1, 2] implementations
over heterogeneous networks (wired/wireless environment)
is how to depart from its original wired network oriented
design and evolve to meet the challenges introduced by the
wireless portion of the network. In the wired networks,
a congestion is indeed a likely reason of packet loss.
Alternatively, a noisy, mobile, and fading radio channel is
the most likely cause of loss in the wireless networks. The
effective bit error rates in wireless networks are significantly
higher than that in wired networks. Since TCP does not
have any mechanism to differentiate between congestion
losses and wireless random losses, the latter may cause a
severe throughput degradation.

The purpose of congestion control is to dynamically
adapt the end-to-end transmission rate of a connection to
the currently available capacity. TCP performs at an
acceptable efficiency over the traditional wired networks
where packet losses are caused by network congestion.
However, when TCP observes random losses, it misinter-
prets such losses and reduces its window size, this causes the
reduction of throughput unnecessarily. Therefore, TCP’s
performance drops rapidly in the presence of frequent
random losses [3, 4].

TCP has several implementation versions (i.e., Tahoe,
Reno, Vegas) that aim to improve network utilisation.

Among these TCP variants, there are two notable
approaches. One is Reno [5], which has been widely
deployed on the Internet; the other is Vegas [6] with a claim
of 37 to 71 percent throughput improvement over Reno
being achieved. The throughput deterioration problem of
TCP over wireless networks has been addressed in [7–18].
However, parts of the solutions are designed especially for
either Reno [7, 8] or Vegas [18], no TCP-based mechanism
is designed for both TCP versions.

In this work, we propose a base station-based random
loss detection mechanism for both TCP Vegas and TCP
Reno (abbreviated as Snug-Vegas and Snug-Reno here-
after, respectively). By using the random loss indications
marked by a base station, Snug-Vegas and Snug-Reno may
detect random losses more precisely than TCP Vegas and
TCP Reno do. Through the packet loss differentiation,
Snug-Vegas and Snug-Reno react appropriately to the
losses, and based on the simulation results, we show that the
throughput of connection over heterogeneous networks can
be significantly improved.

2 Related work

In the all-IP heterogeneous networks, congestion is no
longer the only cause of packet loss. Therefore,
conventional TCP schemes may suffer from a severe
degradation in performance in mixed wired and wireless
environment [3, 19]. For this reason, several approaches
have been proposed to optimise TCP for wireless networks.
The solutions can be categorised into the link layer
mechanisms, end-to-end TCP modifications, and base
station schemes.

Link layer mechanisms: Link layer mechanisms try to
improve the quality of the lossy wireless link. They hide the
characteristics of the wireless link from the transport layer
and try to rectify wireless link errors at the second layer.
The intuition behind link layer mechanisms is to treat the
problem as local, and to solve it locally. Techniques such as
forward error correction (FEC), automatic repeat requestE-mail: cyho@csie.nctu.edu.tw
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(ARQ), and explicit loss notification (ELN) have been
proposed for this class of solutions [9, 10, 16]. However,
such an approach requires protocols at different layers to
interact and coordinate closely, which increases the com-
plexity of protocol implementation.

End-to-end modifications: In the end-to-end modifications
[7, 8, 11], TCP senders and receivers are responsible for the
flow control; hence, the end-to-end semantics of TCP are
preserved. Moreover, the TCP source attempts to handle
the losses in a way that improves the performance of a
connection that runs on wireless networks. In a wireless
environment, the major cause of packet losses is not limited
to network congestion, thus some rules are used to infer the
cause of packet losses. Based on the inferences, a source
may react appropriately to the losses. These approaches do
not need any extra support from the intermediate hops
along the path.

RedVegas [18] uses the innate nature of TCP Vegas
and congestion indications marked by routers to
distinguish between congestion loss and random loss. If
the router detects congestion and marks a congestion
indication bit on all packets in the current buffer,
the consecutive packets of the same connection prior to
the dropped packet will very likely be marked. Based on
the acknowledgments (ACKs) of the marked packets, a
RedVegas source may infer the cause of packet loss
accordingly.

Base station schemes: If only the last hop connecting to a
mobile host is a wireless link, a TCP-aware agent, which
tries to shield the wireless network from the wired network,
can be run on the base station to improve the performance
of connections.

Split connection approaches [12–14, 17] isolate mobility
and wireless related problems from the existing network
protocols. This is done by splitting the TCP connection
between the mobile host and the fixed host into two
separate connections: a wired connection between the fixed
host and the base station, and a wireless connection
between the base station and the mobile host. In this way
the wired connection does not need any change in existing
software on the fixed hosts, and the wireless connection can
use a specialised mobile protocol to provide better
performance.

The snoop protocol [15] introduces a snoop module at
a base station to monitor every packet transmitted through
the connection in either direction. By caching recently
transmitted TCP packets sent to a mobile host and
monitoring the associated acknowledgment packets return-
ing to the source, the snoop module can quickly resend a
cached copy of the lost packet to the mobile host. The
snoop protocol hides the packet loss from the fixed host
and hence avoids the unnecessary invocation of congestion
control mechanism.

In short, the intermediate node of base station schemes,
usually the base station, sets up the connection with the
fixed host and the mobile host, and is responsible for the
recovery of the packet losses caused by wireless links.
However, these approaches require large buffers at base
stations and the end-to-end TCP semantics are sometimes
not preserved.

3 TCP schemes and proposed mechanisms

With the fast growth of Internet traffic, how to efficiently
utilise network resources is essential to a successful
congestion control. In this Section, we first briefly review

the design principles of TCP schemes, and then describe
proposed mechanisms in detail.

3.1 TCP schemes
TCP Reno and TCP Vegas adopt an end-to-end closed-
loop adaptive window congestion control. It is based on
five fundamental mechanisms: slow start, congestion
avoidance, retransmission timeout, fast retransmit, and fast
recovery.

TCP Reno and TCP Vegas use slow start at the
beginning of the connection and whenever a packet loss
is detected via timeout. When the congestion window
reaches a threshold value, called slow start threshold,
TCP Reno and TCP Vegas leave slow start and enter
congestion avoidance. Both protocols can detect packet
losses by means of two mechanisms. If the coarse-grained
timeout (set when the packet is sent) expires, TCP Reno
reduces its congestion window to one packet size [Note 1]
and TCP Vegas decreases its congestion window to
two packet size, then they start again in slow start mode
[Note 2]. Otherwise, if three duplicated acknowledgments
arrive back to the sender before the timeout expiration,
the protocols perform fast retransmit and fast recovery.
During the connection, the TCP receiver can limit the
sender congestion window by advertising the receiver
window value. Because space is limited, please refer to
[5, 6] for details.

TCP NewReno [20] is a modification to the fast
retransmit and recovery. In TCP NewReno, a sender can
recover from multiple packet losses without having to time
out. TCP with selective acknowledgment (SACK) options
[21] also has been proposed to efficiently recover from
multiple packets loss. However, the additive increase and
multiplicative decrease approach (AIMD) of Reno leads to
periodic oscillations in the congestion window size, round-
trip delay, and queue length of the bottleneck node. Recent
studies have shown that the oscillation may induce chaotic
behaviour into the network thus adversely affecting overall
network performance [22, 23].

3.2 Proposed mechanisms
The issue of packet losses differentiation can be divided into
two parts: (1) how to distinguish between congestion loss
and random loss, and (2) how to make use of the
information to refine the congestion window adjustment
process. The success of our proposed mechanisms relies on
the cooperation of the end-hosts and base station. It
assumes that the base station is capable of marking packets
when random packet loss occurs.

The key idea of our proposed mechanisms is described as
follows. In the base station part, the base station watches
every packet that passes through the connection in either
direction. In the direction of data packet (from the base
station to the destination), the base station gives a sequence
number [Note 3], which is added in an IP option field
(named SNIP), to every data packet of the same flow. For
example, if source A sends data packets to destination B
through a base station C, C will mark number 1 to SNIP
field of the first data packet, number 2 to the second data

Note 1: From now on, we measure the window size in number of packets.

Note 2: Actually, the initial slow start congestion window value depends on the
specific implementation for both TCP Reno and TCP Vegas.

Note 3: This way is like the sequence number of TCP. Further, for a practical
TCP implementation, a sequence number identifies the byte in the stream of
data. In this paper, to ease the description of the proposed mechanism, we use a
sequence number to represent the packet.
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packet, and so on. In the direction of ACK (backward
path), when the base station receives an ACK, it will do two
steps: (1) checks the sequence number, and (2) removes the
SNIP field of every packet. If the sequence number of an
ACK is not continuing with that of last ACK of the same
flow, it means that there is at least one random packet loss.
Then, the base station will mark a reserved bit, called
random-loss indication flag (RI), of ‘Flags field’ in IP
header of this ACK in order to notify the source that
random loss occurred. In the destination part, destination
just copies the sequence number of the SNIP field from the
data packet to the SNIP field of the ACK packet when
acknowledging a received packet. In the source part, the
source checks the RI flag as it receives a duplicate ACK. If
the flag is set, the source will record this message by setting
a boolean number, named random loss value (RLV), to
true, not extend the retransmission timeout (backoff time)
and not reduce the sending rate.

We take Snug-Vegas for example; Snug-Vegas has three
ways to detect packet loss: a triple-duplicate ACK, a fine-
grained timeout, and a coarse-grained timeout, as in Vegas.
Whenever a packet loss is identified by a triple-duplicate
ACK or a fine-grained timeout, Snug-Vegas will try to infer
the cause of loss. When a packet loss is detected and no
duplicate ACK’s RI flag is marked, Snug-Vegas assumes
that the loss is a congestion loss. Otherwise, random loss is
inferred. If the losses are identified by a coarse-grained
timeout, Snug-Vegas does not intend to infer the cause of
losses. Since the losses are severe and the information
carried by the received ACKs may be passed. Snug-Vegas
leaves this part of algorithm to be intact. After the lost
packet is recovered, Snug-Vegas will adjust the congestion
window size according to the loss differentiation. A
connection needs not to reduce the sending rate if the loss
was not caused by congestion. Thus, if the lost packet is
detected as a random loss, the current congestion window
size (CWND) will not be changed, that is, the CWND will
be equal to the congestion window size when the loss is
detected. However, if a congestion loss is perceived, the
same window-adjustment mechanism as that in Vegas will
be adopted.

TCP congestion control is mainly based on the feedback
of ACKs. The control procedure will be triggered whenever
an ACK is received by the connection source. Figure 1
illustrates the detailed procedure of Vegas/Snug-Vegas as it
receives an ACK. Shaded blocks are for Snug-Vegas
especially. The description of variables used in Fig. 1 is
shown in Table 1.

4 Performance evaluation

In this Section, we simulate our proposed mechanism in
order to show the goodput performance, fairness, and
friendliness in mixed wired and wireless networks, with
or without the presence of link loss and congestion.
In addition, we compare the performance among some
TCP variants (Vegas, RedVegas, Reno, Snug-Reno,
and Sung-Vegas) by using the network simulator ns2,
version 2.26 [24].

4.1 Goodput performance
The first-in first-out (FIFO) service discipline is assumed.
All parameter settings of Vegas, RedVegas, and Sung-
Vegas, or of Reno and Snug-Reno are the same. Especially,
a¼ 1 and b¼ 3. The size of each FIFO queue used in
routers is 16 packets, the size of data packets is 1kbyte. To
ease the comparison, we assume that the sources always
have data to send.

The network configuration for the goodput simulations is
shown in Fig. 2, in which the bandwidth and delay of each
full duplex link are depicted. Sources, destinations, and
routers are expressed as Si, Di, and Ri, respectively. The link
between R2 and D1 is a wireless link on which we assume all
random losses occur. Typically, wireless links are subject to
fading phenomena, which results in random loss in bursty
manner. However, if random losses appear in bursty
manner, it is easy for Snug-Vegas and Snug-Reno to
recognise them. It is because Snug-Vegas and Snug-reno
take a packet loss to be random loss when there is a packet
to be marked. Therefore, we use a more complicated case,
uniformly distributed loss model, to evaluate our proposed
mechanisms. In wireless environments, if the bit error is
uniformly distributed, the larger a packet is, the more likely
the packet will be corrupted. Keeping this in mind, when we
apply a random loss rate to data packets, we always set the
proportional random loss rate to ACKs.

A TCP connection is established from S1 to D1, and a
variable bit rate (VBR) source is used to generate cross
traffic from S2 to D2. Complying with the study of Internet
simulating [25], the VBR source is a Pareto distribution
ON-OFF source with shape parameter 1.5. During ON
periods, the VBR source sends data at 1.6Mbit/s. In the
following simulations, unless stated otherwise, the execution
time of each sample point is 12hours.

4.1.1 Basic behaviour: The design goal of Snug-
Vegas and Snug-Reno is to improve performance for TCP
Vegas and TCP Reno over heterogeneous networks. It is
obvious that if the packet losses are the result of congestion,
the behaviour of Vegas and Snug-Vegas, or Reno and
Snug-Reno should be the same. In this Section, we examine
the average goodputs among the five TCP variants with
different cross traffic loads. The difference between the
throughput and goodput is that the latter only counts those
packets effectively received once. Each TCP variant is
examined separately and the results can be found in Fig. 3.

With the increasing cross traffic load, the average
goodputs of all TCP variants degrade accordingly. Note
that the goodputs of Vegas and Snug-Vegas, or Reno and
Snug-Reno are always identical. The results demonstrate
that the behaviour of Vegas and Snug-Vegas, or Reno and
Snug-Reno is the same when there is no random loss. It
implies that Sung-Vegas and Sung-Reno do not misinter-
pret congestion loss as random loss in such simulation
scenarios. From the simulation results, Vegas always
surpasses Reno in goodput with different cross traffic
loads, this conforms to the previous studies [6, 18, 26–28].

4.1.2 Impact of random loss: In this Section, we
compare the average goodputs among the five TCP variants
with different random loss rates. No cross traffic is
introduced in the simulations. By observing the results
shown in Fig. 4, Vegas, RedVegas, and Snug-Vegas can
fully utilise the bottleneck link when the random loss rate is
zero. However, Reno cannot maintain such high goodput
with the same condition. This is because Reno needs to
create packet losses by itself to probe the available
bandwidth along the path. Therefore, a certain amount of
goodput is lost.

When the random loss rate is increased, the goodput
improvements of Sung-Vegas and Snug-Reno become
obvious. When the random loss rate is 5%, the goodput
of Snug-Vegas is about 1.51 times higher than that of
Vegas, 1.17 times higher than that of RedVegas, and 3.31
times higher than that of Reno. Similarly, the goodput of
Snug-Reno is about 2.07 times higher than that of Reno.
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When the random loss rate is between 3 and 15%, Snug-
Vegas always keeps a goodput improvement of larger than
25.6% in comparison with Vegas. Notably, with 12%

random loss rate, the goodput improvement is up to
105.77%. With the same condition, Snug-Reno always
keeps a goodput improvement of larger than 40% in
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Fig. 1 Flowchart to illustrate the procedure of Vegas/Snug-Vegas as it receives an ACK
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comparison with Reno. The goodput improvement is up
to 102.5%, especially, when there is 15% random loss
rate in the wireless link. Additionally, in a severe random
loss rate, the goodputs of Snug-Vegas and Snug-Reno
are still not bad. For example, the goodput improvement
of Snug-Vegas is 83.33% as compared with Vegas, and
the goodput of Snug-Reno is about 2.03 times higher than
that of Reno.

4.1.3 Impact of random loss and cross
traffic: TCP connections over heterogeneous networks
may experience both random losses and congestion losses.

In this Section we introduce random losses and cross traffic
into the simulation to examine the goodputs of five TCP
variants. The results are shown in Figs. 5 and 6.

Figure 5 depicts the goodputs of the five TCP variants
with the random loss rate varying from 0 to 15% and the
VBR source with 800kbit/s averaged sending rate to
generate cross traffic. The simulation results demonstrate
that both Snug-Vegas and Snug-Reno can always maintain
higher goodputs than their original version (i.e., Vegas
and Reno), respectively. As compared with Vegas, when the
random loss rate is greater than 2%, Snug-Vegas always

Table 1: Variables description

Variable Description

NumDupACK number of duplicate ACK

RTO duration of the coarse-grained retransmission
timer

FGRTO duration of the fine-grained retransmission timer

CWNDCT last congestion window adjustment time owing
to a packet loss detection

SendTime sending time of the lost packet

Delta amount of extra data

NumTransmit number of transmission times of the lost packet

NewCWND congestion window size that will be used as a
lost packet is recovered

IncrFlag a flag used to adjust congestion window every
other round-trip time

IncrAmt increment amount of congestion window size
for each new ACK is received

WorriedCtr a counter used to check FGRTO after a lost
packet is recovered

S1

R1

1.6 Mbit /s, 20 ms

10 Mbit /s, 1 ms

S2 D2

R2

D110 Mbit /s, 1 ms

Fig. 2 Network configuration for the goodput simulations
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Fig. 5 Average goodput against random loss rate for TCP variants
with cross traffic load of 0.5
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with random loss rate of 0.05

IEE Proc.-Commun., Vol. 153, No. 2, April 2006 173



achieves more than 11% goodput improvement. In
particular, when the random loss rate is 7%, the goodput
improvement of Snug-Vegas reaches 39.8%. Similarly,
Snug-Reno always keeps a goodput improvement of larger
than 21.17% in comparison with Reno when the random
loss rate is between 3 and 15%. Notably, with 6% random
loss rate, the goodput improvement is up to 39.35%.

As the random loss rate is fixed at 5% and the cross
traffic load varies from 0 to 0.9, the simulation results also
illustrate that the goodputs of Snug-Vegas and Snug-Reno
are respectively higher than Vegas and Reno as shown in
Fig. 6. Compared with Vegas, the goodput improvement of
Snug-Vegas is kept between 17.5 and 48.9%; while it is kept
between 17.5 and 231.3% compared with Reno. Moreover,
the goodputs of Snug-Reno are from 1.04 to 2.07 times
higher than those of Reno when the cross traffic load is
between 0.9 and 0.

4.2 Fairness
Another important issue of TCP is the fairness. Multiple
connections of the same TCP scheme must interoperate
nicely and converge to their fair shares. We use the fairness
index fuction (1), proposed in [29], to justify the fairness of
TCP schemes. The fairness index function is expressed as

F ðxÞ ¼
P

xið Þ2

n
P

x2ið Þ ð1Þ

where xi is the throughput of the ith connection, and n is the
number of connections, F(x) ranges from 1/n to 1.0. A
perfectly fair bandwidth allocation would result in a fairness
index of 1.0. On the contrary, if all bandwidth are
consumed by one connection, (1) would yield 1/n.

We set up the simulation as shown in Fig. 7, where a
total of 20 (m+n) same TCP flows share a 20Mb bottle-
neck link, and the R2 connecting to each destination (from
D1 to D20) is a wireless link. We run the simulation for
different TCP schemes and compare their fairness index; the
results are summarised in Table 2. All TCP variants
including our proposed mechanisms achieve fairly satisfac-
tory fairness index. The fairness index only demonstrates
the whole situation, so we show the detailed average
throughtput of all TCP variants in Table 3. From Table 3,
we find that the average throughputs of Snug-Vegas

(or Snug-Reno) are higher than those of Vegas (or Reno),
especially in a severe random loss rate.

4.3 Friendliness
A friendly TCP scheme should be able to coexist with other
TCP variants and not cause them starvation. To verify the
friendliness of our proposed mechanisms, we construct a
mixed wired and wireless network, where Snug-Vegas
coexists with Vegas, or Snug-Reno coexists with Reno.
The reason is that when a Vegas user competes with other
Reno users, it does not receive a fair share of bandwidth

S(1) D(1)

R1 R2
20 Mbit /s
20 ms

S(m ) D(m )

S(m+1)

S(m+n )

D(m+1)

D(m+n )

10 Mbit /s
1 ms

10 Mbit /s
1 ms

10 Mbit /s
1 ms

10 Mbit /s
1 ms

10 Mbit /s
1 ms

10 Mbit /s
1 ms

Fig. 7 Simulation network for obtaining fairness index and verifying friendliness

Table 2: Fairness comparison

Error Rate Vegas Snug-Vegas Reno Snug-Reno

0.0 0.98 0.98 0.99 0.99

0.1 0.99 0.99 0.99 0.99

0.5 0.99 1 0.99 1

1.0 1 1 0.99 0.99

5.0 0.99 0.99 0.99 0.99

10.0 0.97 0.98 0.97 0.98

The fairness index is calculated based on a total of 20 TCP
connections running the FTP application. Error rate is in units of
percentage of packet drops. Link error rate varies from 0 to 10%

Table 3: Average throughput (kbits/s) comparison

Error Rate Vegas Snug-Vegas Reno Snug-Reno

0.0 999.33 999.33 951.58 951.58

0.1 998.20 998.75 950.85 950.90

0.5 994.14 996.46 946.71 949.23

1.0 988.72 992.34 942.32 945.14

5.0 767.92 801.22 354.67 403.64

10.0 192.49 251.13 123.02 143.72

The average throughput is calculated based on a total of 20 TCP
connections running the FTP application. Error rate is in units of
percentage of packet drops. Link error rate varies from 0 to 10%
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owing to the conservative congestion avoidance mechanism
used by Vegas. It is because Reno continues to increase the
window size until a packet is lost. This would occur mainly
owing to buffer overflow (if the queue management
algorithm is drop tail). This bandwidth estimation mechan-
ism results in a periodic oscillation of window size and
buffer-filling behaviour of Reno. Thus, while Vegas tries to
maintain a smaller queue size, Reno keeps inserting many
more packets into the buffer, and stealing more bandwidth
[26–28].

The simulation network is shown in Fig. 7. The
bandwidth of access links is 10Mbit/s, and propagation
delays are 1ms. In addition, the access link from R2 to Di,
i¼ 1, 2 ,y, (m+n), is a wireless link. The bandwidth of
connection link is 20Mbit/s, and propagation delay is
20ms. There are 20 paris of connections, of which m
are Snug-Vegas (or Snug-Reno) connections and n are
Vegas (or Reno) connections. We vary the proportion of
these two TCP schemes in the network by adjusting the
variables m and n. Without the presence of congestion and
link loss, all 20 connections are expected to share the
bottleneck bandwidth equally, i.e., roughly 1Mbit/s per
connection.

From Section 4.1.1, we know the behaviour of Vegas and
Snug-Vegas, or Reno and Snug-Reno is the same when
there is no random loss. Therefore, we omit the simulation
with 0% link error rate at the wireless links. We only set the
link error rate to 0.1% at the wireless links in our simulation
environment. The throughput results are listed in Table 4
and Table 5. Our proposed mechanisms achieve a slightly
higher throughput than original TCP versions (i.e., Vegas
and Reno) when a lossy link exists, but within a tolerable
range. The mean throughput of both TCP schemes is still
close to the fair share.

5 Conclusions

In this study, we have proposed a base station-based scheme
for both TCP Vegas and TCP Reno, called Snug-Vegas and
Snug-Reno, respectively, to improve the TCP performance
in the heterogeneous network consisting of wired and
wireless links. With the ability of random loss detection,
Snug-Vegas and Snug-Reno react appropriately to the loss
that is either caused by network congestion or transmission
error, and consequently enhances the goodput of a
connection over heterogeneous networks. Our simulations
show that our proposed mechanism is a viable solution to
the TCP performance degradation in wireless IP commu-
nications. However, there is still room for improvement.
The bandwidth of the bottleneck link is under-utilised when
the random loss rate is high; therefore, a new approach of
the fast recovery mechanism would be one of our future
works. Also, our future research in this direction would be
to improve Snug-Vegas and Snug-Reno so that the sender
could further differentiate various types of wireless packet
losses such as losses caused by random errors, fading, and
mobile handoff processes.
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