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We will study the cosmological evolutions of a Weyl-invariant de Rham, Gabadadze, and Tolley (dRGT)
massive gravity theory with a general fiducial metric. In the unitary gauge, this model is equivalent to a
massive gauge field coupled to the dRGTmassive gravity model. The massive gravity terms will serve as an
effective cosmological constant for all metric spaces if the fiducial metric is treated as an auxiliary field.
A further discussion will also be addressed on the bimetric theory. In particular, we will discuss the role
played by the Weyl vector boson in Bianchi type I expanding space.
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I. INTRODUCTION

A linearized massive gravity theory introduced by Fierz
and Pauli (FP) is known to be ghost free since 1939 [1].
This theory propagates 5 degrees of freedom associated
with massive spin-2 graviton in the background of
Minkowski space. Boulware and Deser showed, however,
that the ghost degree of freedom will survive in the
nonlinear level [2]. This additional negative energy degree
of freedom has been known as the Boulware-Deser
(BD) ghost.
Starting in 2009, de Rham, Gabadadze, and Tolley

(dRGT) proposed a comprehensive nonlinear theory that
can be shown to be free of the BD ghost [3,4]. The dRGT
was first shown to be ghost free with the introduction of a
flat reference (or fiducial) metric. [4] It was later shown to
be free of the BD ghost in the fully nonlinear level in the
presence of a general fiducial metric in 2012 [5,6].
Reference [7] published in 2012 provides a detailed and
elegant review on the related progress concerning the
ghost-free massive gravity theory.
Note that a consistent theory of massive gravity can be

applied to accommodate the recent discovery of dark
energy and the cosmological constant problem. Massive
gravity is also a nice resolution to the quest of a generalized
theory of gravity. Research activities studying all possible
implications of this theory to the evolution of the early
Universe have thus attracted lots of attention [5,6,8–23].
For example, Ref. [9] shows that the nonlinear massive

gravity theory does not admit spatially flat homogeneous
and isotropic cosmological solutions. It admits, however, a
set of spatially homogeneous and isotropic cosmological
solutions [10,11] in open space. In addition, anisotropic
solutions [9,12,13] and inhomogeneous solutions [9,14,15]
were also found. The application to black holes physics
also has attracted lots of attention lately [16,17]. Later on, a
ghost-free bimetric theory [20] known as bigravity or
bimetric theory, was also proposed by Hassan and Rosen

[21,22]. For example, ghost-free multimetric theories were
also discussed in Ref. [23].
Note that results presented in Refs. [4–6,8–18,21–23]

focus on the isotropic reference metric space along with the
physical metric space being generalized to the anisotropic
metric spaces. We will thus propose to study a more general
result of the nonlinear massive gravity theory with a more
general reference metric. The reference metric will be
treated first as an auxiliary field here. The variational
equation then chooses the most probable solution to the
reference metric that is compatible with the physical metric.
As a result, we can show that the massive terms serve as an
effective cosmological constant for all possible metric
spaces.
A specific set of fiducial metric solutions can be solved

accordingly for this model. The result is derived from the
fact that the massive terms depend only on the trace of the
field K. As a result, the fiducial metric equations depend
only on the eigenvalues of K. We can therefore diagonalize
K in Jordan normal form without affecting the generic
property of the massive interaction terms. As an interesting
example, we will present a general solution in Bianchi type
I space [22,24–26]. There are also activities exploring all
possible applications of massive gravity theory.[27]
In addition, local scale-invariant (or Weyl-invariant)

theory is a successful model acting as an effective theory
of our physical Universe [28–30]. Evidences also indicate
that scale symmetry should play some important role in
many physical applications of interest before the Higgs
mechanism breaks the scale symmetry [31,32]. Moreover,
the Weyl gauge field or Weyl vector boson has also been
proposed as a possible candidate of dark matter [33–37].
There have been successful attempts to incorporate the

Weyl symmetry as an alternative theory for massive gravity
with the introduction of higher curvature terms [38]. We
will try, however, to generalize the Weyl-invariant massive
gravity theory with the introduction of a Weyl vector meson
Sμ to the dRGT model. It will be shown that the intro-
duction of Weyl symmetry will not affect the ghost-free
picture of the massive gravity theory in the unitary gauge*gore@mail.nctu.edu.tw
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by choosing the scalar field as a constant. The resulting
theory can be shown to be equivalent to a dRGT model
coupled to a massive Uð1Þ gauge field. In addition, we will
also show that theWeyl vector meson in fact plays little role
in Bianchi type I (BI) metric space.
Note that the Weyl transformation is a local scale

transformation relating all physical fields in different length
scales. The transformation property of each field is deter-
mined by its corresponding conformal dimension. For
example, the scalar field ϕ has conformal dimension
one. The metric field gμν acts as a field with −2 conformal
dimension. Therefore, they transform, respectively, as
[32,39]

ϕ → ϕΩ ¼ Ω−1ϕ; ð1:1Þ

gμν → gΩμν ¼ Ω2gμν: ð1:2Þ

In order to preserve Weyl symmetry, the ordinary derivative
∂μ must be replaced by a Weyl-covariant derivative ∇μ in
order to make sure that the transformation property of ∇μϕ
is the same as the scalar field ϕ. To be more specific, the
Weyl-covariant derivative of a scalar field ϕ and gμν are
defined as

∇μϕ ¼ ð∂μ − SμÞϕ; ð1:3Þ

~∂αgμν ¼ ð∂α þ 2SαÞgμν ð1:4Þ

with the introduction of a Weyl gauge field or Weyl vector
meson Sμ. As a result,

∇μϕ → ð∇μϕÞΩ ¼ Ω−1∇μϕ; ð1:5Þ

ð ~∂αgμνÞΩ ¼ Ω2 ~∂αgμν ð1:6Þ

if the Weyl gauge field transforms as

Sμ → SΩμ ¼ Sμ − ∂μ lnΩ: ð1:7Þ

As a result, the Weyl-invariant generalization of the spin
connection

~Γα
μν ¼

1

2
gαβð ~∂μgνβ þ ~∂νgμβ − ~∂βgμνÞ ð1:8Þ

can be shown to be invariant. Indeed, we can show that

ð ~Γα
μνÞΩ ¼ ~Γα

μν ð1:9Þ

under the local scale transformation. Therefore the follow-
ing generalization of gravitational theory can be shown to
be Weyl invariant [5–7,39]:

S ¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2 ~R −

1

2
∇μϕ∇μϕ −

1

4
H2 −

λ

4
ϕ4

�
;

ð1:10Þ

with ϵϕ2 and λϕ4=4 serving as dynamical coupling con-
stantsM2

p and m2
gM2

p=2, respectively. Note that the Sμ field
tensor

Hμν ¼ ∂μSν − ∂νSμ ð1:11Þ

is Weyl invariant by itself. In addition, the Weyl-invariant
Ricci curvature tensor ~Rμν can be defined as

~Rμν ¼ Rμνð∂αgβγ → ~∂αgβγÞ: ð1:12Þ

Consequently, it can be shown that

~Rμν ¼ Rμν − ðDμSν þDνSμÞ −DβSβgμν

þ 2ðSμSν − SβSβgμνÞ: ð1:13Þ

In addition, the Weyl-invariant scalar curvature

~R ¼ ~Rμ
μ ð1:14Þ

is defined as the trace of the Weyl-invariant Ricci curvature
tensor. Similarly, the Weyl-invariant generalization of
matter fields can also be introduced following a similar
method. In particular, when a charged fermion field ψ is
coupled to the system, the action becomes

S0¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2 ~R−

1

2
∇μϕ∇μϕ−VðϕÞþ ψ̄ ½iγμ∇μ−ϕ�ψ

−
1

4
HμνHμν−

1

4
FμνFμν

�
: ð1:15Þ

Here VðϕÞ is the scalar field potential.Fμν is the field tensor
of the electromagnetic vector field Aμ defined as

Fμν ¼ ∂μAν − ∂νAμ: ð1:16Þ

Note that the gauge field Aμ does not transform under scale
transformation. In addition, the covariant derivative of the
fermion field ψ is defined as

∇μψ ¼ ½∂μ − σabebνDμeaν=2 − iAμ�ψ ð1:17Þ

with vielbein ebμ satisfying eaμeaν ¼ gμν.
Note that the conformal dimension of the fermion field ψ

is 3=2. Therefore, it will transform as

ψ → ψΩ ¼ Ω−2=3ψ ð1:18Þ

under Weyl transformation. In addition, eaμ and ∇μψ also
transform as
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eaμ → ðeaμÞΩ ¼ Ωeaμ; ð1:19Þ

∇μψ → ð∇μψÞΩ ¼ Ω−3=2∇μψ ð1:20Þ

under Weyl transformation. This is a very special property
of the covariant derivative ∇μψ and vielbein. The general
covariant structure with vielbein defined in Eq. (1.17) is
Weyl covariant by itself without the introduction of a Weyl
vector meson. See, for example, Ref. [32] for a brief review.
Therefore, the general covariant fermion action is Weyl
invariant by itself.
The scale of the Weyl-invariant theory can be introduced,

for example, by the Higgs mechanism with a spontaneously
symmetry-breaking potential of the form

VðϕÞ ¼ λ

4
ðϕ2 − ϕ2

0Þ2: ð1:21Þ

Alternatively, the scale symmetry can also be broken by a
dynamical approach if V ∝ ϕ4 is scale invariant initially. As
a result, an induced symmetry-breaking potential can be
derived from the radiative corrections [40].
As a result, the vacuum of the theory, with ϕ2 ¼ ϕ2

0 ¼
const, will set the scale of the theory. To be more specific,
the vacuum solution of the theory will take the following
form:

S0 ¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2
0
~R −

ϕ2
0

2
SμSμ þ iψ̄γμ∇μψ − ϕ0ψ̄ψ

−
1

4
HμνHμν −

1

4
FμνFμν

�
: ð1:22Þ

Consequently, the Newtonian constant will be set by the
coupling M2

p ¼ ϵϕ2
0. In addition, the Weyl vector meson

and the fermion field become massive once the vacuum
solution dominates.
This paper is organized as follows: In Sec. I, we briefly

review the motivation of this research, and a more detailed
review of the dRGT theory will be introduced in Sec. II. For
heuristic reasons, a detailed derivation of the field equations
will also be shown in this section. In Sec. III the analysis of
the universal properties associated with a general reference
metric will be presented. In particular, we will show that the
massive terms serve as an effective cosmological constant
in this section. In Sec. IV specific solutions to the effective
cosmological constant will be presented when K is brought
to its Jordan normal form. In Sec. V the fiducial metric
equation will be presented for this model written as a
functional of K. Some useful properties of this equation
will also be shown in this section. In Sec. VI a general
Weyl-invariant dRGT model will be introduced along with
some of its generic properties. In Sec. VII a general
constraint derived from the conservation law will be
presented. In Sec. VIII, some solutions of this model will
be shown in a Bianchi type I physical space. Finally,

concluding remarks and discussions will be given in
Sec. IX. The recurrence relation of the massive
Lagrangian will be given in the Appendix.

II. THE STÜCKELBERG FORMULATION

In this section, we will briefly review the physical origin
of the dRGT model. We can expand the physical metric gμν
around a reference (or fiducial) metric ημν as

gμν ¼ ημν þ hμν ð2:1Þ

with hμν the well-known linearized spin-2 field. hμν is,
however, not covariant under diffeomorphism. In order to
restore the generic diffeomorphism, we can expand the
metric gμν alternatively as [4,8,9]

gμν ¼ Zμν þHμν ð2:2Þ

with respect to a background metric

Zμν ≡ fab∂μϕ
a∂νϕ

b: ð2:3Þ

Here ϕa (a ¼ 0; 1; 2; 3) are the Stückelberg fields. The
Roman letters a; b; c denote flat space indices to be raised
or lowered by the Minkowski metric ηab and ηab, respec-
tively. On the other hand, the Greek letters μ; ν; α denote
curved space indices to be raised or lowered by the physical
metric gμν and gμν, respectively. In addition, ϕa ¼ xa þ πa

is the linear expansion of the Stückelberg field around the
unitary gauge ϕa ¼ xa. This is the unitary gauge asso-
ciated with the diffeomorphism, in contrast to the unitary
gauge of the Weyl symmetry that turns the scalar field as a
constant. As a result, Zμν and Hμν are both covariant under
diffeomorphism with ϕa introduced as scalar fields under
diffeomorphism.
The massive Lagrangian can therefore be written as a

functional of the tensor field Kμ
ν defined by [4,8,9]

Kμ
ν ¼ δμν −Mμ

ν; ð2:4Þ

with [41]

Zμ
ν ≡ gμαZαν ≡ Mμ

ρMρ
ν: ð2:5Þ

These equations can also be written as matrix equations

K ¼ δ −M; ð2:6Þ

M2 ¼ g−1Z ð2:7Þ

with δ the unit matrix. Note that a tensor Aμ
ν and the

corresponding components of the 4 × 4 matrix A is related
by ðAÞμν ≡ Aμ

ν. Consequently, the multiplication of two
matrices is defined as ðABÞμν ¼ ðAÞμαðBÞαν ¼ Aμ

αBα
ν.
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As a result, the most general action of the ghost-free
massive dRGT theory can be shown to be [4–6,8–18,21–23]

S ¼ M2
p

2

Z
d4x

ffiffiffi
g

p fRþm2
gðL2 þ α3L3 þ α4L4Þg; ð2:8Þ

with Mp the Planck mass, Λ the cosmological constant, and
mg the graviton mass. In addition, α3; α4 are free parameters.
g ≡ − det gμν is the determinant of the physical metric gμν.
The massive terms Li (i ¼ 2 − 4) are defined as

L2 ¼
1

2
½K�2 − 1

2
½K2�; ð2:9Þ

L3 ¼
1

6
½K�3 − 1

2
½K�½K2� þ 1

3
½K3�; ð2:10Þ

L4 ¼
1

24
½K�4 − 1

4
½K�2½K2� þ 1

8
½K2�2 þ 1

3
½K�½K3� − 1

4
½K4�:
ð2:11Þ

The bracket notation ½A� ≡ trA ¼ P
iA

i
i denotes the trace of

any matrix A [4,8,9].
The variational equation of the physical metric gμν can be

shown to be

�
Rμν −

1

2
Rgμν

�
þm2

gðXμν þ α4YμνÞ ¼ 8πGTμν; ð2:12Þ

with Xμν and Yμν defined as

Xμν ¼ Kμν − ½K�gμν

− ðα3 þ 1Þ
�
K2

μν − ½K�Kμν þ
½K�2 − ½K2�

2
gμν

�

þ ðα3 þ α4Þ
�
K3

μν − ½K�K2
μν þ

1

2
Kμνf½K�2 − ½K2�g

�

−
α3 þ α4

6
f½K�3 − 3½K�½K2� þ 2½K3�ggμν;

ð2:13Þ

Yμν ¼ −
L4

2
gμν þ

1

6
½K�3Kμν −

1

2
½K�½K2�Kμν þ

1

3
½K3�Kμν

−
1

2
½K�2K2

μν þ
1

2
½K2�K2

μν þ ½K�K3
μν −K4

μν: ð2:14Þ

Note that the massive terms have been shown to remain
ghost free in the presence of a more general fiducial metric
fab. We will therefore consider the effect of the dRGT
model with a more general fiducial metric in this paper.
As a result, an additional set of field variables fab and

hence more degrees of freedom are introduced to the
system. The resulting massive Lagrangian is now a func-
tional of the physical metric gμν, the Stückelberg fields ϕa,

and the fiducial metric fab. The Stückelberg fields ϕa and
the fiducial metric fab will be treated equally as field
variables here. Note also that when a kinetic term of fab are
introduced, the theory becomes a bimetric theory.
For simplicity, we will not introduce the kinetic terms for

the fiducial metric for the moment. The fiducial metric will
be treated as an auxiliary field until we return to the
bimetric theory later in this paper. Consequently, a com-
plete set of field equations can be derived from the variation
of gμν, ϕa, and fab.
Note, however, that any change of the Stückelberg fields

ϕa can be thought of as a coordinate transformation of the
fiducial metric fab

fμν ¼ fabdϕadϕb ¼ f0abdϕ
0adϕ0b: ð2:15Þ

Therefore, we can simply take the unitary gauge ϕa ¼ xa

for simplicity. The dynamics of the Stückelberg fields ϕa

can thus be absorbed as parts of the dynamics represented
by the general fiducial metric fab. As a result,

Zμν ¼ fabδaμδbν ¼ fμν: ð2:16Þ

For convenience and economy of notation, we will simply
write Zμν as fμν from now on. In contrast to the bimetric
theory with R̂ðfμνÞ ≠ 0, the auxiliary field treated here
does not have a kinetic term. Therefore, a simple constraint
can be obtained from the variational equation of fμν.
Consequently, this constraint will force the massive terms
to behave as an effective cosmological constant.
The reference metric can be shown to act compatibly

with the physical metric in order to satisfy the constraint
equation of fμν. Indeed, we can show that [39,42]

δð ffiffiffi
g

p
LMÞ ¼

1

2

ffiffiffi
g

p
LMgμνδgμν þ

ffiffiffi
g

p δLM

δKμ
ν
δKμ

ν

¼ 1

2

ffiffiffi
g

p
LM½g−1δg� −

ffiffiffi
g

p ½M−1AδM�; ð2:17Þ

with Aμ
ν ≡ Mμ

αδLM=δKν
α and LM ¼ L2 þ α3L3 þ α4L4.

The equation

ðδMÞM þMδM ¼ ðδg−1Þf þ g−1δf ð2:18Þ

is thus the direct result of the definition M2 ¼ g−1f.
Therefore, we have

M−1AδM þM−1AMðδMÞM−1

¼ M−1Aðδg−1ÞfM−1 þM−1Ag−1ðδfÞM−1: ð2:19Þ

The trace of Eq. (2.19) gives
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½M−1AδM� ¼ −
1

2
½Ag−1δg� þ 1

2
½Af−1δf� ¼ −½tδg� − ½t̂δf�;

ð2:20Þ

with the effect of the commuting properties ½A;M� ¼ 0
included. Consequently, we have

1ffiffiffi
g

p δð ffiffiffi
g

p
LMÞ ¼

1

2
LM½g−1δg� þ ½tδg� þ ½t̂δf� ð2:21Þ

with t the symmetric part of Ag−1=2, and t̂ the symmetric
part of −Af−1=2 given explicitly by

t ¼ 1

4
ðAg−1 þ g−1ATÞ; ð2:22Þ

t̂ ¼ −
1

4
ðAf−1 þ f−1ATÞ: ð2:23Þ

For convenience, we can lower the tensor indices with the
help of g and f, respectively, to define

tμν ≡ ðtgÞμν ¼
1

4
ðAþ g−1ATgÞ; ð2:24Þ

t̂μν ≡ ðtfÞμν ¼
1

4
ðAþ f−1ATfÞ ¼ −tμν: ð2:25Þ

Note that the identity

t̂μν ¼ −tμν ð2:26Þ

can be proved by showing that g−1ATg ¼ f−1ATf, or
equivalently,

gAg−1 ¼ fAf−1: ð2:27Þ

Equation (2.27) is true because of the fact that ½A;M2� ¼ 0
and the definition ofM2 ¼ g−1f. Indeed, the above identity
follows from the fact that gAg−1f ¼ gAM2 ¼ gM2A ¼ fA.
Hence we can show that t̂μν ¼ −tμν. Note again that the
field Aμ

ν is defined as

Aμ
ν ≡ Mμ

α
δLM

δKν
α
: ð2:28Þ

III. THE t̂ ¼ 0 EQUATION AND THE EFFECTIVE
COSMOLOGICAL CONSTANT

If we treat the most general fiducial metric fab as
auxiliary fields, the variational equation of the fiducial
field is simply t̂μν ¼ 0. Since we have shown that
t̂μν ¼ −tμν in Eq. (2.26), the vanishing of the fiducial
metric equation t̂μν ¼ 0 implies the vanishing of part of the
energy-momentum tensor tμν ¼ 0. Therefore, we will be
lead to the important result that LM ¼ constant.

Indeed, the metric field equation can be shown to be

�
Rμν −

1

2
Rgμν

�
¼ m2

g

�
1

2
LMgμν þ tμν

�
: ð3:1Þ

Therefore, tμν ¼ 0 implies that the energy-momentum tensor
derived from the massive terms, m2

gLMgμν=2, acts as an
effective cosmological constant Λe ¼ −m2

gLM=2. Indeed,
the Bianchi identity assures that the conservation law

∂νLM ¼ −2Dμtμν ¼ 0 ð3:2Þ

is obeyed. Hence the massive terms do act as an effective
constant. What we need to do now is to compute the explicit
value of the effective cosmological constant.
Recalling that any arbitrary n × n square matrix K can

be brought to the Jordan normal form via a similarity
transformation

~K ¼ S−1KS; ð3:3Þ

with ~K a square matrix in block-diagonal form

~K ≡

0
BB@

J1 0 0 0

0 J2 0 0

0 0 J3 0

0 0 0 � � �

1
CCA: ð3:4Þ

For example, a 3 × 3 Jordan matrix takes the form

Ji ≡

0
@ λi 1 0

0 λi 1

0 0 λi

1
A ð3:5Þ

with λi the degenerated eigenvalue of the matrix K defined
by

Ku ¼ λiu: ð3:6Þ

Since we will focus on four-dimensional metric space, the
number of distinct eigenvalues of the matrix K is less or
equal to 4. In addition, for convenience, a matrix ~K will be
referred to as a Jordan matrix or a matrix in Jordan
coordinate when a matrix K is block diagonalized as
~K ¼ S−1KS in Jordan normal form. From simplicity, we
will name λi ¼ a; b; c; d as four possible equal of unequal
eigenvalues of K.
Note that the massive Lagrangian only has to do with the

trace of Kn. It is also easy to show that

½Kn� ¼ ½ ~Kn� ð3:7Þ

for matrices related by a similarity transformation.
Therefore, the field equations t̂ab ¼ 0 of the fiducial metric
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fab can be solved when K is brought to the Jordan normal
form ~K given by Eq. (3.4).
Moreover, the trace of the Jordan matrix

½ ~K� ≡ Tr

0
BB@

a · · ·
0 b · ·
0 0 c ·
0 0 0 d

1
CCA ¼ aþ bþ cþ d ð3:8Þ

has nothing to do with the off-diagonal component of ~K. In
addition, it is straightforward to show that

½ ~Kn� ≡ Tr

0
BB@

an · · ·
0 bn · ·
0 0 cn ·
0 0 0 dn

1
CCA ¼ an þ bn þ cn þ dn:

ð3:9Þ
Here we have represented all the irrelevant upper block
as · in Eq. (3.9). Therefore, the derivation of the fiducial
equation is related only to the eigenvalues of the matrix
equation (3.6). Note again that we have named λi ¼
a; b; c; d as the eigenvalues of the matrix equation (3.6).
It is also possible that some of the eigenvalues are identical
to each other because the multiplicity of the eigenvalue
equation.

A. The interaction terms

Note that even there are 10 degrees of freedom of a
reference metric fμν that seem to be involved in the
interaction with the physical metric. There are in fact at
most 4 of them, via the eigenvalues of K, interacting with
the physical metric through the massive term LM.
Therefore, only the diagonal part of the Jordan matrix K
is relevant to the interaction. Note that we have written ~K as
K for simplicity by assuming we have block diagonalized
all matrices of interest.
The other components of the Jordan matrix K have

nothing to do with our theory. Therefore, we can freely
assume that t̂μμ ¼ 0 are the only constraint equations. As a
result,

t̂μμ ¼
1

4
ðAμ

μþfμμAμ
μfμμÞ¼

1

4
ð1þfμμfμμÞAμ

μ ¼ 0: ð3:10Þ

Note that μ is an open index here. Hence the constraint
equations t̂μμ ¼ 0 are equivalent to

δLM

δKμ
ν
¼ 0: ð3:11Þ

We have kept ν open in Eq. (3.11); even the ν ≠ μ
components do not contribute to the field equations.
Once the variational equation is obtained, these extra
constraints will automatically disappear.

Note that the constraint equations put a strong constraint
on the relation of f and g via the definition of the matrix
M2 ¼ g−1f. It is known that M2 can always be brought to
the Jordan normal form. The relation of the physical and
fiducial metrics is, however, a little bit more complicated.
Indeed, we can write g ¼ fM−2 to express the physical
metric g. Even we can write M2 as a Jordan matrix by a
similarity transformation such that Md ¼ S−1MS, the
corresponding metrics S−1gS and S−1fS may not be
symmetric any more. Therefore, the block-diagonalized
process cannot be done with a single transformation
matrix S.
The resolution exists only when the metrics g and f are

compatible with the solutions M. To be more specific,
g ¼ fM−2 ¼ fSM−2

d S−1 has to remain symmetric with
some appropriate choice of f. For example, we can start
out with arbitrary diagonal metrics g and f. As a result,M2

is a diagonal matrix without carrying out any similarity
transformation. It is, however, very difficult to find a
symmetric f for our purpose with a given arbitrary M2.
This is the main reason that most solutions to the bimetric
theory can only be found by assuming that f and g are both
in diagonal form. For the same reason, in the later part of
this paper, wewill focus on the metric space with a diagonal
physical metric.
It will be interesting to note that some of the identities

discussed in this paper will be valid for arbitrary g and f.
Therefore, we will focus on the properties related to the
most arbitrary metric g and f before we return to the
bimetric theory.

B. Constraint equations and the effective
cosmological constant

For heuristic reasons and for completeness, we will
present a brief review of the derivation of the fiducial metric
via the variational equation ofK. We will study some of the
interesting properties associated with the fiducial metric
equation in this form in the next section.
Recall thatLM ¼ L2ðKÞ þ α3L3ðKÞ þ α4L4ðKÞwithLi

defined by Eqs. (2.9)–(2.11). In addition, we will write

fA;B;Cg ¼ Aþ α3Bþ α4B ð3:12Þ
for convenience. Our task now is to solve the fiducial
equation t̂ab ¼ 0 with K given by the Jordan matrix shown
in Eq. (3.4), or simply ignore the off-diagonal components

K ≡

0
BB@

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

1
CCA: ð3:13Þ

Note that the invertible requirement of gμν and fμν puts a
constraint on the possible values of a; b; c; d, namely,
a ≠ 1, b ≠ 1, c ≠ 1, and d ≠ 1. It is easy to show that
the fiducial equation can also be shown as [42]

W. F. KAO AND ING-CHEN LIN PHYSICAL REVIEW D 90, 063003 (2014)

063003-6



2t̂μν¼f½K�−K;L2−ð½K�−KÞK;L3−KL2þð½K�−KÞK2g
¼0: ð3:14Þ

The massive terms are related by the recurrence relations
(see appendix A for a brief review) [42]

δLn

δK
¼ Ln−1δ −

δLn−1

δK
K; ð3:15Þ

with n ≤ 4, L0 ¼ 2, L1 ¼ 2½K�, and δ the unit matrix. In
addition, the recurrence relation ends with

L4δ −
δL4

δK
K ¼ 0 ð3:16Þ

from the fact that L5 ¼ 0. In fact, the fiducial equations can
also be derived from the variation of LM with respect to Ki

i
or equivalently a; b; c; d. First of all, we can show that

L2 ¼ abþ acþ adþ bcþ bdþ cd; ð3:17Þ

L3 ¼ abcþ abdþ bcdþ acd; ð3:18Þ

L4 ¼ abcd: ð3:19Þ

Therefore, the variational equations of the massive
Lagrangian are simply

fbþ cþ d; bcþ bdþ cd; bcdg ¼ 0; ð3:20Þ

faþ cþ d; acþ adþ cd; acdg ¼ 0; ð3:21Þ

faþ bþ d; abþ adþ bd; abdg ¼ 0; ð3:22Þ

faþ bþ c; abþ acþ bc; abcg ¼ 0: ð3:23Þ

It is clear that the field equations do respect the permutation
symmetries among the eigenvalues a; b; c; d. Note that
there are five distinct forms of Jordan matrix ~K, or K, with
(i) a ¼ b ¼ c ¼ d, (ii) a ¼ b ¼ c ≠ d, (iii) a ¼ b ≠ c ¼ d,
(iv) a ≠ b ≠ c ¼ d, and (v) a ≠ b ≠ c ≠ d.
Subtracting any two of the above equations will lead to,

for example,

ða − bÞf1; cþ d; cdg ¼ 0; ð3:24Þ

ða − cÞf1; bþ d; bdg ¼ 0; ð3:25Þ

ða − dÞf1; bþ c; bcg ¼ 0; ð3:26Þ

and three other distinct permutations. Detailed analysis of
the solutions will be presented in the following section.

IV. SOME SOLUTIONS TO THE EFFECTIVE
COSMOLOGICAL CONSTANT

In order to solve the fiducial metric equation for the
effective cosmological constant, we will try to extract some
useful relations between the eigenvalues of K and the
possible effective cosmological constants in this section. If
a ≠ b, we have

f1; cþ d; cdg ¼ 0: ð4:1Þ
This equation is equivalent to the expression

c ¼ −
1þ α3d
α3 þ α4d

¼ fðdÞ: ð4:2Þ

The symmetry between c and d implies

c ¼ fðdÞ ¼ fðfðcÞÞ: ð4:3Þ

Similarly, for any combination of λi ≠ λj, the other two
eigenvalues λk; λl will also be related by the equation

λk ¼ fðλlÞ ¼ fðfðλkÞÞ: ð4:4Þ

Here we have assumed, i ≠ j ≠ k ≠ l. Note that af1;cþ
d;cdg ¼ 0 and faþ cþd;acþadþ cd;acdg ¼ 0 imply
immediately fcþd;cd;0g¼0. Hence af1; cþ d; cdg ¼ 0
and fcþ d; cd; 0g ¼ 0 can be solved to give

c ≠ d ¼ λ� ¼ α3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α4 − 3α23

p
2ðα4 − α23Þ

: ð4:5Þ

Note that this set of solutions exists only when 4α4 ≥ 3α23
and α4 ≠ α23. In particular, this set of solutions becomes

c ¼ d ¼ −
2

α3
ð4:6Þ

in the limit 4α4 ¼ 3α23. Note also that, the condition
α4 ¼ α23 will lead to a contradiction in the field equation.
Hence no solution can be found in this limit. This is, in fact,
the direct result of the condition a ≠ b.

A. a ¼ b ¼ c ¼ d

To demonstrate how to use the results derived above, we
will analyze all possible combinations of solutions case by
case in this subsection. First of all, we will focus on a very
special combination of choice when (A) a ¼ b ¼ c ¼ d. In
this case, the field equation simply gives

að3þ 3α3aþ α4a2Þ ¼ 0: ð4:7Þ
Therefore, we can show that

a ¼ −3α3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
2α4

: ð4:8Þ
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Consequently, the effective cosmological constant ΛM ¼
−m2

gLM with

LM ¼ a2½6þ 4α3aþ α4a2� ¼ a2½3þ α3a�;

¼ −
3

2α34

�
9α43 þ 6α24 − 18α23α4

∓ α3ð3α23 − 4α4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3α23 − 4α4Þ

q �
: ð4:9Þ

Hence the effective cosmological constant is

ΛM ¼ 3m2
g

2α34

�
9α43 þ 6α24 − 18α23α4

∓ α3ð3α23 − 4α4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3α23 − 4α4Þ

q �
: ð4:10Þ

Note that solution exists only when 3α23 ≥ 4α4. In particu-
lar, in the limit 3α23 ¼ 4α4, the effective cosmological
constant will become

ΛM ¼ 4
m2

g

α23
: ð4:11Þ

B. a ¼ b ¼ c ≠ d

For case (B) a ¼ b ¼ c ≠ d, Eq. (3.23) implies

a ¼ b ¼ c ¼ −
2

α3
; 4α4 ¼ 3α23: ð4:12Þ

On the other hand, c ≠ d implies that ðc; dÞ ¼ ðλþ; λ−Þ, or
ðλ−; λþÞ. This immediately implies that c ¼ d ¼ 2=α3 in
the limit 4α4 ¼ 3α23. Therefore the case (B) a ¼ b ¼ c ≠ d
solution never exists.

C. a ¼ b ≠ c ¼ d

For the case (C) a ¼ b ≠ c ¼ d, it is easy to show that
a ¼ b ¼ λ�; c ¼ d ¼ λ∓ are two possible combinations.
Note also that we have shown earlier that solution exists
only when 3α23 ≤ 4α4. Indeed,

LM ¼ ðL2 þ α3L3 þ α4L4Þ ¼ −
1

α4 − α23
: ð4:13Þ

Note further that solution exists only when 3α23 ≤ 4α4. In
particular, in the limit 3α23 ¼ 4α4, b equals c. As a result,
case (C) will be identical to case (A). Indeed, we can also
show that the effective cosmological constant becomes

ΛM ¼ 4
m2

g

α23
ð4:14Þ

when 3α23 ¼ 4α4 is applied to Eq. (4.13). This also shows
that solutions found in both case (A) and case (C) are

consistent in the limit 3α23 ¼ 4α4. In fact, this asserts that
only the case (A) solution will exist if 3α23 ¼ 4α4.

D. a ≠ b ≠ c ¼ d and a ≠ b ≠ c ≠ d

For the case (D) a ≠ b ≠ c ¼ d, and case (E)
a ≠ b ≠ c ≠ d, it is easy to show that we have only two
distinct eigenvalues λ� for the equations derived from
λi ≠ λj. Therefore, there are not enough distinct eigenval-
ues to accommodate the solutions in both case (D) and (E).
In conclusion, the solutions to the fiducial metric

equations depend only on the four distinct eigenvalues
of the K matrix. The results shown in this section further
point out that the positivity of the coupling constants kα ≡
3α23 − 4α4 determines the possible solutions to the refer-
ence metric equation. Indeed, when kα ≥ 0, the only
solution to the t ¼ 0 equation is the case a ¼ b ¼ c ¼ d
solution give by Eq. (4.8):

a ¼ b ¼ c ¼ d ¼ −3α3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9α23 − 12α4

p
2α4

:

If kα ≤ 0, the only solution to the t ¼ 0 equation is the case
a ¼ b ≠ c ¼ d solution given by a ¼ b ¼ λ�; c ¼ d ¼ λ∓.
In particular, the limiting case with kα ¼ 0 will lead both
cases to the same result with a ¼ b ¼ c ¼ d ¼ −2α3. This
result is for the fiducial metric models without kinetic term.

E. Existence of isotropic solution

Our result shows that the most favorable solution to the
fiducial metric equation is the one satisfying the variational
equation t̂μν ¼ 0. Hence, fμν has to tune itself to induce the
desired solution t̂μν ¼ 0. As a result, the only role played by
the fiducial metric is to induce an effective cosmological
constant.
Note that it was shown in Ref. [9] that a spatially flat

homogeneous and isotropic solution does not exist for
massive gravity theory if the reference metric is assumed to
be a flat Minkowski metric fab ¼ ηab. The result is
completely different from our approach because the choice
of flat reference metric puts a strong constraint on Zμν,

Zμν ¼ ηab∂μϕ
a∂νϕ

b: ð4:15Þ

For example, in the gauge ϕa ¼ ðfðtÞ; xiÞ [9],

Zμν ¼ diagð _f2; 1; 1; 1Þ: ð4:16Þ

A similar constraint also exists for the open Fiedmann-
Robertson-Walker (FRW) metric case [10] with a
Stückelberg field chosen as ϕa ¼ fðtÞðð1þ x2 þ
y2 þ z2Þ1=2; xiÞ. The constraint becomes

Zμνdxμdxν ¼ −ð _fÞ2dt2 þ f2gijdxidxj ð4:17Þ
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with gij the spatial FRWmetric. As a result, Z00 is related to
Zij and cannot tune itself to accommodate a more general
solution for the massive gravity theory. That is the main
reason that the expanding solution only exits for open FRW
space. Therefore, in contrast to the general reference metric
result here, the chosen fiducial metric in some of the
literatures may not be compatible with the physical metric
gμν. In summary, treating the reference metric as a dynamic
or auxiliary field, extra degrees of freedom are introduced
for fμν to accommodate a compatible solution. Therefore,
we will try to explore possible anisotropic solutions in this
paper. In particular, for a simple demonstration, we will
take the BI metric space as an example.

V. SYMMETRIC FIELD EQUATIONS AND THE
EFFECTIVE COSMOLOGICAL CONSTANT

Although the metric K can be nonsymmetric to start
with, Eq. (3.14) derived from δLM=δK is symmetric by
itself. In fact, there is a hidden constraint that forces a
compatible fiducial metric solution to make K a diagonal
matrix. For heuristic reasons, we will formally demonstrate
this result by deriving the field equation explicitly.
Indeed, we can show that the variational equation of LM,

Eq. (3.14), can be written formally as

δLM ¼ fδL2; δL3; δL4g ð5:1Þ

with ðδLiÞμν ≡ δLi=δKν
μ. Hence we can write

δL4 ¼ −
1

α4
δL2 −

α3
α4

δL3: ð5:2Þ

With the recurrence relation (3.15), we can also show that

KδLM ¼ LM − fδL3; δL4; 0g ¼ 0: ð5:3Þ

Hence we have the expression for the fiducial metric
equation

LMδ ¼
�
1 −

α23
α4

�
δL3 −

α3
α4

δL2 ð5:4Þ

with δ denoting the unit matrix. Moreover, we can write
Eq. (5.4) explicitly as

�
LM −

α4 − α23
2α4

ð½K�2 − ½K2�Þ þ α3
α4

½K�
�
δ

¼ −
α4 − α23

α4
ð½K�K −K2Þ þ α3

α4
K: ð5:5Þ

This implies that the diagonal components of the on-shell
equation

α3K − ðα4 − α23Þð½K�K −K2Þ ð5:6Þ

are proportional to a unit matrix. All diagonal components
are equal, and there is no nonvanishing off-diagonal
component on shell. This indicates that the on-shell
constraint will force the matrix K to be a symmetric matrix
even it is not written in a Jordan coordinate.
For convenience, we will define

λi ¼
αi

α4 − α23
ð5:7Þ

for i ¼ 3; 4. As a result, Eq. (5.4) can be written as

�
Kþλ3− ½K�

2

�
2

¼
�
λ4LMþ1

2
½K2�−1

4
½K�2þλ3

2
½K�þλ23

4

�
δ

≡ A2δ: ð5:8Þ

Hence the solution of K to Eq. (5.8) is

K ¼ 1

2
ð½K� − λ3Þ þ AJ; ð5:9Þ

with matrix J the solution to the matrix equation J2 ¼ δ.
Note that the matrix J is a diagonal matrix
J ¼ diagðκ1; κ2; κ3; κ4Þ, with κi ¼ �1 the eigenvalues of
J. We can take the trace of Eq. (5.9) and obtain the result

½K� ¼ 2λ3 − A½J�: ð5:10Þ

Therefore, we have

K ¼ 1

2
ð½K� − λ3Þ þ

1

½J� ð2λ3 − ½K�ÞJ ð5:11Þ

if ½J� ≠ 0. This completes the proof that the variational
equation of K implies that K is a diagonal matrix.
We can further extract the information of ½K2� and derive

the following expression for LM

LM ¼ 1

λ4

��
1

4
−

1

½J�2
�
ð½K� − 2λ3Þ2 −

3

4
λ23

�
: ð5:12Þ

For example, we can show that J ¼ δ corresponds to
the case a ¼ b ¼ c ¼ d in Sec. IVA. And it also leads
to the correct effective cosmological constant shown
in Eq. (4.10).
On the other hand, if ½J� ¼ 0, then ½K� ¼ 2λ3. Hence we

can show that

K ¼ 1

2
λ3 þ AJ: ð5:13Þ

Therefore, we have

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α4 − 3α23

p
2ðα4 − α23Þ

: ð5:14Þ
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This agrees with the result in Sec. IV C for the case
a ¼ b ≠ c ¼ d with

LM ¼ ðL2 þ α3L3 þ α4L4Þ ¼ −
1

α4 − α23
: ð5:15Þ

VI. WEYL-INVARIANT MASSIVE BIGRAVITY

Note that the Weyl transformation is a local scale
transformation relating all physical fields in different length
scales. The transformation property of each field will be
determined by its corresponding conformal dimension.
Therefore the following generalization of the dRGT theory
can be shown to be Weyl invariant [5–7,39]:

S¼
Z

d4x

� ffiffiffi
g

p �
ϵ

2
ϕ2 ~RðgμνÞ−

1

2
∇μϕ∇μϕ−

1

4
H2−

λ

4
ϕ4LM

�

þ
ffiffiffi
f

p 1

2
ϵ1ϕ

2 ~RðfμνÞ
�
: ð6:1Þ

Here ϵϕ2 and λϕ4=4 serve as M2
p and m2

gM2
p=2 dynamical

coupling constants, respectively, in the dRGT theory. Note
that the term ~RðfÞ denotes the kinetic curvature term of the
fiducial metric fμν. In addition, hatted notation, e.g. R̂, will
be used, when necessary, to denote the physical field
evaluated solely as a functional of fμν.
Similar to Eq. (1.12), the explicit expression of the Ricci

curvatures can be shown as

~RμνðgÞ ¼ RμνðgÞ − ðDμSν þDνSμÞ −DβSβgμν

þ 2ðSμSν − SβSβgμνÞ; ð6:2Þ

~RμνðfÞ ¼ R̂μνðfÞ − ðD̂μSν þ D̂νSμÞ − D̂βSβfμν

þ 2ðSμSν − SβSβfμνÞ: ð6:3Þ

Note that the Weyl transformation of the fiducial metric is
given by

fμν → fΩμν ¼ Ω2fμν: ð6:4Þ

We would like to remark here that there is no change in the
massive terms LM required for the Weyl symmetry. The
massive terms respect the local scale transformation by
itself because the coupling of the metric through the
interaction of the form M2 ¼ g−1f. This is in fact a very
interesting built-in property of the dRGT theory that
deserves more attention.
We will now show that the Weyl-invariant bimetric

theory is in fact equivalent to the bimetric generalization
of dRGT theory coupled to a massive gauge field. Indeed,
we can take the unitary gauge of the Weyl symmetry,
ϕ ¼ ϕ0, by choosing a gauge parameter Ω ¼ ϕ=ϕ0. As a
result, the Weyl-invariant bimetric theory will be equivalent
to the following effective theory with S ¼ R

d4x
ffiffiffi
g

p
L1:

S ¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2
0R −

1

2
κ2SμSμ −

1

4
H2 −

λ

4
ϕ4
0LM

þ
ffiffiffi
f

pffiffiffi
g

p
�
ϵ1
2
ϕ2
0R̂ðfÞ −

1

2
κ21ŜμŜ

μ

��
; ð6:5Þ

or equivalently,

S ¼
Z

d4x
ffiffiffi
g

p �
ϵ0

2
R −

1

2
κ2SμSμ −

1

4
H2 −

λ0

4
LM

þ
ffiffiffi
f

pffiffiffi
g

p
�
ϵ01
2
R̂ðfÞ − 1

2
κ21ŜμŜ

μ

��
: ð6:6Þ

Here ϵ0 ≡ ϵϕ2
0, ϵ01 ≡ ϵ1ϕ

2
0, λ0 ≡ λϕ4

0, κ2 ≡ ð1þ 6ϵÞϕ2
0

and κ21 ≡ 6ϵ1ϕ
2
0.

Note that the hatted tensor fields, such as Ŝμ ¼ fμνSν, are
to be raised or lowered by fμν and fμν, respectively. On the
other hand, the unhatted tensor fields, such as Sμ ¼ gμνSν,
will be raised or lowered by gμν and gμν, respectively.
The generic structure of the dRGT theory does not

change very much in the unitary gauge. The resulting
theory in the unitary gauge is identical to a theory with a
massive gauge field. As a result, the results and analysis
shown in this paper are also true for the conventional theory
with a massive gauge field. We will therefore focus on the
interesting applications of this model in the BI expanding
Universe.
The Sμ equation is

DμHμν ¼ κ2Sν þ
ffiffiffi
f

pffiffiffi
g

p κ21Ŝ
ν ð6:7Þ

with a consequent constraint equation derived from apply-
ing a derivative to Eq. (6.7):

κ2DμSμ þ κ21Dμ

� ffiffiffi
f

pffiffiffi
g

p Ŝμ
�

¼ 0: ð6:8Þ

The metric field equations can be shown to be

ϵ0Gμν ¼ ϵ0
�
1

2
gμνR − Rμν

�

¼ λ0

2
tμν þ

�
1

2
κ2SαSα þ

1

4
H2 þ λ0

4
LM

�
gμν

− κ2SμSν −HμαHν
α; ð6:9Þ

ϵ01Ĝ
μν ¼ ϵ1

�
1

2
fμνR̂ − R̂μν

�

¼ λ0
ffiffiffi
g

p
2

ffiffiffi
f

p t̂μν − κ21Ŝ
μŜν þ 1

2
κ21ŜαŜ

αgμν; ð6:10Þ

with the energy-momentum tensor given by
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tμν ¼ δLM

δgμν
; ð6:11Þ

t̂μν ¼ δLM

δfμν
: ð6:12Þ

Recalling that we have shown that t̂μν ¼ −tμν earlier with
tμν ¼ tμαgαν and t̂μν ¼ t̂μαfαν. Alternatively, the metric
equation can also be written as

ϵ0Rμν ¼
�
λ0

4
LM −

1

4
H2

�
gμν þ κ2SμSν þHμαHν

α

−
λ0

2
tμν þ

λ0

4
tgμν ð6:13Þ

by eliminating the trace R from the metric equation (6.9).
Note that the metric equations are not completely

independent. They are known to be related by the
Bianchi identities DμGμ

ν ¼ 0 and D̂μĜ
μ
ν ¼ 0. The result-

ing constraint equations known as the energy-momentum
conservation laws are in fact the direct result of the field
equations. We have two independent metric fields here in
the bimetric theory. Therefore, it will be interesting to study
the relations between these two seemly independent con-
servation laws. The result should be intuitive and they
should both lead to the same constraint equations reflecting
the conservation properties of the on-shell solutions. For
heuristic reasons, we will provide a simple proof for the
consistent conservation laws. This is also an alternativeway
to make sure no error is committed during the derivation of
the field equations.
Indeed, the Bianchi identity DμGμ

ν ¼ 0 implies the
energy-momentum conservation law of the following form:

λ0

2

�
Dμtμνþ

1

2
∂νLM

�
¼−

ffiffiffi
f

pffiffiffi
g

p κ21ðD̂μŜ
μSνþ ŜμHμνÞ: ð6:14Þ

On the other hand, the Bianchi identity D̂μĜ
μ
ν ¼ 0 leads

the energy-momentum conservation law of the following
form:

λ0

2
D̂μ

� ffiffiffi
g

pffiffiffi
f

p t̂μν

�
¼ κ21ðD̂μŜ

μSν þ ŜμHμνÞ; ð6:15Þ

with the fact that Ĥμν ¼ Hμν. Therefore, the Bianchi
identities DμGμ

ν ¼ 0 and D̂μĜ
μ
ν ¼ 0 lead to the existence

of a seemingly new constraint equation of the following
form:� ffiffiffi

g
pffiffiffi
f

p
��

Dμtμν þ
1

2
∂νLM

�
¼ −D̂μ

� ffiffiffi
g

pffiffiffi
f

p t̂μν

�
: ð6:16Þ

This constraint equation is in fact the direct result of the
field equations that has to do with the structure of the g−1f
interacting pattern in the massive Lagrangian LM.

Indeed, we can show, from the definition f ¼ gM2 that

D̂μ

� ffiffiffi
g

pffiffiffi
f

p tμν

�
¼

� ffiffiffi
g

pffiffiffi
f

p
�
ðDμtμν þ ðΓα

μν − Γ̂α
μνÞtμαÞ: ð6:17Þ

We can also chain-differentiate the massive Lagrangian LM
to show that

∂νLM ¼ δLM

δKα
β
∂νKα

β ¼ tαβ∂νgαβ þ t̂αβ∂νfαβ

¼ 2ðΓα
μν − Γ̂α

μνÞtμα: ð6:18Þ

As a result, we reach the following identity:

D̂μ

� ffiffiffi
g

pffiffiffi
f

p tμν

�
¼

� ffiffiffi
g

pffiffiffi
f

p
��

Dμtμν þ
1

2
∂νLM

�
: ð6:19Þ

This completes the proof that two seemingly indepen-
dent Bianchi identities lead to the same conservation law.
This result also indicates that the massive interaction term
LM couples the metrics g and f in a consistent way without
offering any other extra constraint to the field equations.
The result can also be put in a short statement: “DμTμ

ν ¼ 0
if and only if D̂μT̂

μ
ν ¼ 0.” Here Tμ

ν and T̂μ
ν are the

generalized energy-momentum tensors derived with respect
to the variation of the metric gμν and fμν, respectively. This
property also has to do with the fact that there are at most
four different eigenvalues of K, related by f and g in the
massive interaction Lagrangian. And the result remains true
with or without the presence of the Sμ field.
Note that in the absence of the dynamical term R̂, only

the diagonal part of the matrixM, for example in the Jordan
coordinate, is relevant to the physics of the massive gravity
theory. In the presence of the dynamical term R̂, some off-
diagonal terms of M will also play a role in the bigravity
theory. But the rest of the f metric in fact acts as a free field.
Therefore, they will not affect any physics of the system.
These terms can be thought of as irrelevant to the
interaction terms that are present in LM. Therefore, for
simplicity, we can assume that gμν is a general metric, and
only parts of the fiducial metric fμν contributing to the
diagonal part of M is relevant to our theory.
An observation also quickly finds it difficult to extract

the physically relevant part of the f metric. This is because
the matrix S to bring M̂ ¼ SMS−1 into a Jordan matrix
cannot, in general, diagonalize f and gmatrices at the same
time unless they are all commuting with each other. Even
worse, the new matrix ĝ ¼ SgS−1 and f̂ ¼ SfS−1 cannot
remain symmetric unless St ¼ S−1.
Therefore, for simplicity, we will assume that M̂ is

a diagonal matrix and M commutes with f and g. We can,
however, show that the only possibility is that f̂ and ĝ are
both diagonal matrices. Also for convenience, we will be
working on the Jordan coordinate and remove the
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hatted notation from now on. Therefore, the g, f, and
P ¼ M2 will be assumed to be gμν ¼ diagðg20; g21; g22; g23Þ;
fμν ¼ diagðf20; f21; f22; f23Þ; Pμ

ν ¼ diagðP0; P1; P2; P3Þ,
respectively. As a result, Pμ ¼ fμ=gμ from the definition
P ≡ M2 ¼ g−1f.
With the t matrix taking the following form

tμν ¼ tνδμν; ð6:20Þ

the conservation equation can be reduced to

∂νLM ¼ 2ðΓμ
νμ − Γ̂μ

νμÞtμ ¼ −
X
μ

ð∂ν lnPμÞtμ ð6:21Þ

for diagonal metric f and g. It is apparent that LM is an
effective cosmological constant if and only ifP

μð∂ν lnPμÞtμ ¼ 0. For example, in two different cases
with (a) tμ ¼ 0∀μ or (b) Pμ ¼ constant∀μ, both lead to the
same conclusion that LM ¼ constant. We are unable to find
a systematic way to solve the bimetric equations. The only
exception is the solutions under the condition t̂μν ¼ 0.
Therefore, for the remainder of this paper, we will focus on
this special set of solutions to the system that is more or less
equivalent to the model without a dynamical term R̂.

VII. CONSERVATION LAWS OF THE
WEYL-INVARIANT MASSIVE GRAVITY

It is clear that the dynamics of the f metric in the
bigravity theory is generally very complicated. Therefore,
we will focus on the local scale-invariant theory in the limit
ϵ1 → 0 for the moment. To be more specific, we will focus
on the theory with R̂ ¼ 0. Recall that the action of this
model is

S ¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2 ~R −

1

2
∇μϕ∇μϕ −

1

4
H2 −

λ

4
ϕ4LM

�
:

ð7:1Þ

We can derive the variational equation of Sμ as

2∇νHνμ þ ð1þ 6ϵÞ∇μϕ2 ¼ 0: ð7:2Þ

Hence a further covariant derivative∇μ to Eq. (7.2) leads to
the constraint equation

∇2ϕ2 ¼ 0: ð7:3Þ

This equation imposes a strong constraint on Sμ and ϕ.
Moreover, we can also show that the metric equations take
the following form:

Lgμν − ϵϕ2 ~Rμν þ
ϵ

2
ð∇μ∇νϕ

2 þ∇ν∇μϕ
2Þ þ∇μϕ∇νϕ

þHμαHν
α ¼ 0 ð7:4Þ

with the result shown in Eq. (7.3) included. Note that we
have also taken into account the fact that tμν ¼ 0, which is a
direct result of the Stückelberg field equation t̂μν ¼ 0. In
addition, the variational equations of ϕ can be shown to be

ϵϕ2 ~R ¼ λϕ4LM − ϕ∇2ϕ: ð7:5Þ

Note that the constraint∇2ϕ2 ¼ 0 has also been included in
deriving Eq. (7.5). Eliminating the trace of Eq. (7.4), or
equivalently Eq. (7.5), we obtain the following equivalent
form of the metric equation:

~Rμν ¼
�
λ

4ϵ
ϕ2LM −

H2

4ϵϕ2

�
gμν þ

1

2ϕ2
ð∇μ∇νϕ

2 þ∇ν∇μϕ
2Þ

þ 1

4ϵϕ4
∇μϕ

2∇νϕ
2 þ 1

ϵϕ2
HμαHν

α: ð7:6Þ

Note that the metric equation (7.4) can be written as

�
1

2
~Rgμν − ~Rμν −Hμν

�
þ Lmgμν þ

1

ϕ2
∇ν∇μϕ2

þ 1

4ϵϕ4
∇μϕ2∇νϕ2 þ 1

ϵϕ2
HμαHν

α ¼ 0 ð7:7Þ

with the help of the identity

½∇μ;∇ν�ϕ2 ¼ −2ϕ2Hμν ð7:8Þ

and the new definition of Lm

Lm ¼ −
1

8ϵϕ4
∇μϕ

2∇μϕ2 −
1

4ϵϕ2
H2 −

λ

4ϵ
ϕ2LM: ð7:9Þ

Recall that the equation t̂μν ¼ 0 implies that tμν ¼ 0. As a
result, the energy-momentum conservation law implies that
LM acts as an effective cosmological constant in the
absence of the Weyl-invariant terms.
We can also show that the energy-momentum conserva-

tion law also enforces LM to act as an effective cosmo-
logical constant in the Weyl-invariant model. The reason is
quite obvious by observing the structure of the effective
potential term −λϕ4LM=4. Indeed, we can show that the
conservation law holds if LM ¼ constant in the Weyl-
invariant model with or without the massive gravity terms.
The proof is quite straightforward. For heuristic reasons,

we will provide a brief but detailed proof of the con-
servation law. First of all, we can show that

∇μ

�
1

2
~Rgμν − ~Rμν −Hμν

�
¼ 0: ð7:10Þ

Hence the energy-momentum conservation law becomes
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∇μ

�
Lmgμνþ

1

ϕ2
∇ν∇μϕ2þ 1

4ϵϕ4
∇μϕ2∇νϕ2þ 1

ϵϕ2
HμαHν

α

�

−
λ

4ϵ
ϕ2∂νLM¼0: ð7:11Þ

Furthermore, we can use the Jacobi identity

∇μHνα þ∇αHμν þ∇νHαμ ¼ 0 ð7:12Þ

to show that

∇μ

�
1

ϵϕ2
HμαHν

α −
1

4ϵϕ2
H2gμν

�

¼ 1

4ϵϕ4
H2∇νϕ2 −

1

ϵϕ4
∇μϕ

2HμαHν
α þ

1

ϵϕ2
∇μHμαHν

α:

ð7:13Þ

With the help of the following identity

∇μ∇ν∇μϕ2 ¼ ð ~Rμν − 2HμνÞ∇μϕ
2; ð7:14Þ

we can show that the energy conservation law becomes

∂νLM ¼ 0: ð7:15Þ

Note that, in deriving these equations, we have also used an
identity and a definition of the equation

∇μ∇νϕ
2¼ðDμ−3SμÞ∇νϕ

2−Sν∇μϕ
2þgμνSα∇αϕ2; ð7:16Þ

∇μ
~Rμν ¼ ðDμ þ 2SμÞ ~Rμν − Sν ~R: ð7:17Þ

Hence this result is consistent with the Stückelberg field
equation t̂μν ¼ 0. This shows that the Weyl-invariant
extension of massive gravity is a self-consistent model.
To be more specific, we have shown that the condition
tμν ¼ 0 and LM ¼ constant is also compatible in the Weyl-
invariant model. The Weyl-invariant massive gravity theory
will then be identical to the conventional Weyl-invariant
theory given by

S ¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2 ~R −

1

2
∇μϕ∇μϕ −

1

4
H2 −

λ0

4
ϕ4

�
;

ð7:18Þ
with λ0 ≡ LM.

VIII. BIANCHI TYPE I SPACE IN THE ϵ1 ¼ 0 LIMIT

We can take the unitary gauge of the Weyl symmetry,
ϕ ¼ ϕ0, by choosing a gauge parameter Ω ¼ ϕ=ϕ0.
Here ϕ0 is a constant parameter. Once a solution is found
in the unitary gauge, we can obtain a whole class of a
gauge equivalent set of solutions related by gauge

transformations. Therefore, we will focus on the solution
in the unitary gauge from now on.
The Weyl-invariant theory can be shown to be equivalent

to the following effective theory:

S ¼
Z

d4x
ffiffiffi
g

p
L1

¼
Z

d4x
ffiffiffi
g

p �
ϵ

2
ϕ2
0R −

1

2
κ2SμSμ −

1

4
H2 −

λ

4
ϕ4
0LM

�
;

ð8:1Þ

with κ2 ≡ ð1þ 6ϵÞϕ2
0 in the unitary gauge.

Note also that the choice of the parameter ϕ0 in the
unitary gauge Ω ¼ ϕ=ϕ0 is expected to be the symmetry-
breaking scale ϕ0 shown in Sec. I, for example, by the
dynamical symmetry-breaking potential introduced in
Ref. [40]. As a result, the solutions for the metric field
gμν in this section are to be interpreted as the physical
metric from the point particle point of view. In particular, a
different choice of ϕ ¼ ϕ1 only scales the metric field by a
constant scale g0μν ¼ gμνðϕ0=ϕ1Þ2. Here ϕ1 ≠ ϕ0 represents
another constant scale.
It was shown earlier that the fiducial equation t̂ ¼ 0

naturally leads to the result t ¼ 0. This set of consistent
solutions will hence imply the result LM ¼ constant. As a
result, the contribution from the massive terms simply acts
as an effective cosmological constant. Therefore, we only
need to compute the exact value of the effective cosmo-
logical constant Λe ¼ −m2

gLM=2. The most general sol-
utions and resulting LM have been listed in Sec. V. We will
hence turn our attention to the metric equation and the Weyl
vector meson equation.
The metric equation is

L1gμν − ϵϕ2
0Rμν þ κ2SμSν þHμαHν

α ¼ 0: ð8:2Þ

In particular, we are interested in the role of the Weyl vector
meson in anisotropically expanding universes. For a
simple demonstration, we will focus on the solutions
in the presence of a physical metric space such that
Rμ

ν ¼ Rμ
μδ

μ
ν. Note that μ; ν are both open indices in this

expression. Bianchi type I (BI) metric spaces, with the
metric given by

ds2 ¼ − dt2 þ exp½2α1�dx2 þ exp½2α2�dy2 þ exp½2α3�dz2
¼ − dt2 þ exp½2α − 4σþ�dx2
þ exp½2αþ 2σþ þ 2

ffiffiffi
3

p
σ−�dy2

þ exp½2αþ 2σþ − 2
ffiffiffi
3

p
σ−�dz2; ð8:3Þ

is a simple example. Here αðtÞ; αiðtÞ; σ�ðtÞ are functions of
time only. In fact, it can be shown that BI space is the only
Bianchi type metric space with the property Rμ

ν ¼ Rμ
μδ

μ
ν.
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Another famous example is the spherically symmetric
metric spaces with the metric given by

ds2 ¼ − exp½2AðrÞ�dt2 þ exp½2BðrÞ�dr2 þ r2dΩ: ð8:4Þ

For all metric spaces that Rμ
ν ¼ Rμ

μδ
μ
ν, the metric equa-

tion becomes

κ2SμSν þHμαHν
α ¼ 0; ∀ μ ≠ ν: ð8:5Þ

In addition, the Sμ equation is

DμHμν ¼ κ2Sν: ð8:6Þ

The ν ¼ 0 component equation of Eq. (8.6) gives the
constraint

ð∂1 þ Γ1ÞH10 ¼ κ2S0 ð8:7Þ
for all metric spaces with Rμ

ν ¼ Rμ
μδ

μ
ν. This equation

implies immediately that

S0 ¼ 0: ð8:8Þ
Therefore, we are left with three-component equations

DμHμi ¼ κ2Si: ð8:9Þ

This equation is equivalent to

∂μð
ffiffiffi
g

p
HμiÞ ¼ ffiffiffi

g
p

κ2Si: ð8:10Þ

The result is hence

∂tð
ffiffiffi
g

p
H0iÞ ¼ ffiffiffi

g
p

κ2Si: ð8:11Þ

Note that a further derivative to Eq. (8.6) leads to the
constraint equation DμSμ ¼ DiSi ¼ 0. Consequently, we
have

∂ið
ffiffiffi
g

p
SiÞ ¼ 0: ð8:12Þ

For BI metric space, Eq. (8.12) is automatically satisfied if
Sμ ¼ SμðtÞ is a function of time only.

A. Bianchi type I physical metric space

The homogeneity, isotropy, and flatness of the observed
Universe have led to the proposal of the inflationary
scenarios [43]. Most models acquire a positive cosmological
constant to induce a fast expansion of the cosmic scale factor.
To be more specific, the field equations of a gravitational
system with a cosmological constantΛ can be represented as

Gμν ¼ Tμν − Λgμν: ð8:13Þ

Here Gμν is the Einstein tensor and Tμν is the energy-
momentum tensor.

Gibbons and Hawking [44], Hawking and Moss [45] had
conjectured that all models with a positive cosmological
constant will approach a late time de Sitter space. This
conjecture has been known as the cosmic no-hair theorem
for Einstein gravity. One of the important progresses was an
analytic proof to support this conjecture given by Wald in
Ref. [46]. It was shown that any model with a positive
cosmological constant will drive, at least locally, the late-
time evolution towards the de Sitter spacetime. It was
shown that this result remains valid for all nontype-IX
Bianchi spaces if the matter sources obey (i) the dominant
energy condition

Tμνtμtν ≥ 0 ð8:14Þ

and (ii) the strong-energy condition�
Tμν −

1

2
gμνT

�
tμtν ≥ 0 ð8:15Þ

for any timelike vector tμ [46]. Note that T denotes the trace
of the energy-momentum tensor of all possible fields
coupled to the gravitational system. The proof also holds
for the type IX Bianchi space if Λ is sufficiently large [46].
Many literatures favored the existence of some con-

straints on the field parameters for its occurrence [46–55]. It
is also known, however, that counterexamples do exist
where these energy conditions do not hold exactly [56–58].
Some of these solutions had later been shown to be unstable
[51,59–61]. It is therefore important to pay more attention
to the effect of this conjecture. It was shown that the Weyl-
invariant massive gravity with a general reference metric can
be shown to act as a Weyl-invariant theory with a cosmo-
logical constant. The resulting theory also acts as a gravita-
tional theory with a massiveWeyl vector meson in the unitary
gauge. Therefore, it will be interesting to study whether the
no-hair conjecture holds for this model. In particular, we will
focus on the effect of the Weyl vector meson in the presence
of the BI metric space in this subsection.
Note that all nonvanishing components of the Riemann

curvature tensor for BI metric space can be written as

Rti
ti ¼ _Hi þH2

i ; ð8:16Þ

Rij
ij ¼ HiHj; ∀ i ≠ j; ð8:17Þ

with Hi ≡ _αi. Therefore all nonvanishing components of
the Ricci tensor Rμ

ν and scalar curvature R can be shown as

Rt
t ¼ 3 _H þ

X
i

H2
i ; ð8:18Þ

Ri
i ¼ _Hi þ 3HHi; ð8:19Þ

R ¼ 6 _H þ 9H2 þ
X
i

H2
i ; ð8:20Þ

W. F. KAO AND ING-CHEN LIN PHYSICAL REVIEW D 90, 063003 (2014)

063003-14



respectively, with 3H ≡ H1 þH2 þH3. Finally, the
Einstein tensor defined by Gμ

ν ¼ Rgμν=2 − Rμ
ν becomes

Gt
t ¼ H1H2 þH2H3 þH3H1; ð8:21Þ

G1
1 ¼ _H2 þ _H3 þH2H3 þH2

2 þH2
3; ð8:22Þ

G2
2 ¼ _H1 þ _H3 þH1H3 þH2

1 þH2
3; ð8:23Þ

G3
3 ¼ _H2 þ _H1 þH2H1 þH2

1 þH2
2: ð8:24Þ

It is apparent that off-diagonal components of Rμ
ν vanish

for the BI metric space. Therefore, we have the constraint
that

ð∂t þ 3_αÞH0i ¼ κ2Si; and ð8:25Þ

κ2SμSν þHμαHν
α ¼ 0; ∀ μ ≠ ν: ð8:26Þ

Assuming that Sμ ¼ SμðtÞ only, we can show immediately
that Hij ¼ 0. Hence the ðμ; νÞ ¼ ð0; iÞ component of
Eq. (8.26) becomes

S0Si ¼ 0: ð8:27Þ

Since we already know that S0 ¼ 0 holds for the BI metric
space, Eq. (8.26) is satisfied automatically. Note that the
ðμ; νÞ ¼ ði; jÞ component of Eq. (8.26) implies

κ2SiSj ¼ _Si _Sj ð8:28Þ

for all i ≠ j. Therefore we obtain the result

Si ¼ ðk1; k2; k3Þ exp½�κt� ð8:29Þ

if S1S2S3 ≠ 0. Here ki represents some nonzero integration
constants.
On the other hand, the solutions will be different if some

components of Si vanish. In order to discuss all possible
solutions to Eq. (8.26), we can classify the solutions into
four different cases: (i) S1S2S3 ≠ 0, (ii) S1S2 ≠ 0 and
S3 ¼ 0, (iii) S1 ≠ 0 and S2 ¼ S3 ¼ 0, and (iv) S1 ¼
S2 ¼ S3 ¼ 0. We would like to make a remark on the
choice of the nonvanishing components here. For example,
we can choose S2 as the nonvanishing component for case
(iii). The result will be the same if we rename g22 as g11 and
g11 as g22. As a result, the physics will not be affected by the
choice of the nonvanishing components. Therefore, all
possible solutions can be classified as (i) all Si are non-
vanishing, (ii) two of the Si are nonvanishing, (iii) one of
the Si is nonvanishing, and (iv) Si ¼ 0 for all i.

B. Solution for the case (i) S1S2S3 ≠ 0

Let us focus on the first case S1S2S3 ≠ 0 for the moment.
The Sμ equation DμHμi ¼ ð∂t þ 3_αÞH0i ¼ κ2Si implies

ð3_α − 2_αi � 2κÞSi ¼ 0 ð8:30Þ

for all i. If S1S2S3 ≠ 0, this equation implies that 2_αi ¼
3_α� 2κ for all i. This is equivalent to the solution
2ðαi − αið0ÞÞ − 3ðα − αð0ÞÞ ¼ �2κt. Therefore we have

αi ¼ αið0Þ ∓ 2κt: ð8:31Þ

This solution indicates that the condition S1S2S3 ≠ 0 will
force the BI metric space to evolve isotropically. Hence this
is not an interesting solution. In addition, the other
components of the Einstein equation will also relate the
coupling constants κ and LM under a strong constraint.
Indeed, the metric equation can be written as

L1gμν − ϵ0Rμν þ κ2SμSν þHμαHν
α ¼ 0 ð8:32Þ

with

L1 ¼
ϵ0

2
R −

1

2
κ2SμSμ −

1

4
H2 − Λ0

e ð8:33Þ

and Λ0
e ¼ Λeϵϕ

2 ¼ λϕ4
0LM=4.

First of all, we can show that

1

2
κ2SμSμ þ

1

4
H2 ¼ 0 ð8:34Þ

for Si given by Eq. (8.29). Hence the metric equation (8.32)
becomes

ϵ0Gμν þ κ2SμSν þHμαHν
α − Λ0

egμν ¼ 0: ð8:35Þ

Indeed, the (0,0) component of Eq. (8.35) gives

3ϵ0H2 þ κ2giið0Þkiki exp½−6κt� ¼ Λ0
e: ð8:36Þ

Therefore the only consistent solution to Eq. (8.36) is
the solution with k1 ¼ k2 ¼ k3 ¼ 0. This contradicts the
assumption. Hence case (i) cannot be true because of the
nontrivial constraint hidden in the field equations.

C. Solution for the case (ii) S1S2 ≠ 0 and S3 ¼ 0

For the case (ii) S1S2 ≠ 0 and S3 ¼ 0, the Sμ equation
becomes

S̈i þ ð3_α − 2_αiÞ _Si þ κ2Si ¼ 0 ð8:37Þ

for i ¼ 1; 2. In addition, Eq. (8.26) gives

_S1 _S2 ¼ κ2S1S2: ð8:38Þ

Therefore, we can eliminate the second derivative terms
and obtain
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aþ b ¼ − _α3; ð8:39Þ

ab ¼ κ2 ð8:40Þ

with a ≡ _S1=S1 and b ≡ _S2=S2. a and b can thus be solved
to give

a; b ¼ A� ≡
1

2
ð− _α3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α23 − 4κ2

q
Þ: ð8:41Þ

Note that both solutions indicate that Sμ → 0 for all
expanding solutions. This agrees with the prediction of
the no-hair conjecture [44,45].

D. Solution for the case (iii) S1 ≠ 0 and S2 ¼ S3 ¼ 0

We will now focus on case (iii) with S1 ≠ 0 and
S2 ¼ S3 ¼ 0. As a result, the S1 equation gives

S̈1 þ ð3_α − 2_α1Þ _S1 þ κ2S1 ¼ 0: ð8:42Þ

In addition, we can show that

LS ≡ −
1

2
κ2SμSμ −

1

4
H2 ¼ 1

2
g11 _S21 −

1

2
g11κ2S21 ð8:43Þ

with LS the Sμ-related parts of the Lagrangian. Therefore,
the metric equations become

ϵ0G0
0 −

1

2
g11 _S21 −

1

2
g11κ2S21 ¼ Λ0

e; ð8:44Þ

ϵ0G1
1 −

1

2
g11 _S21 þ

1

2
g11κ2S21 ¼ Λ0

e; ð8:45Þ

ϵ0G2
2 þ

1

2
g11 _S21 −

1

2
g11κ2S21 ¼ Λ0

e; ð8:46Þ

ϵ0G3
3 þ

1

2
g11 _S21 −

1

2
g11κ2S21 ¼ Λ0

e: ð8:47Þ

The last two equations indicate that H2 and H3 obey the
same equation. Hence these equations can be used to obtain
the solution

H3 −H2 ¼ h2 exp½−3α� ð8:48Þ

with h2 some integration constant. This indicates that the
difference betweenH2 andH3 vanishes when t → ∞ for all
expanding solutions.
In addition, adding the second and third or fourth

equation gives

3 _H þ _H3 þ 3HH3 þH2
1 þH2

2 þH2
3 ¼ 2Λe; ð8:49Þ

3 _H þ _H2 þ 3HH2 þH2
1 þH2

2 þH2
3 ¼ 2Λe: ð8:50Þ

Moreover, the first and second equation can be shown to be

H1H2 þH2H3 þH3H1 ¼ Λe þ
1

2ϵ0
g11ð _S21 þ κ2S21Þ;ð8:51Þ

_H2 þ _H3 þH2
2 þH2

3 þH2H3 ¼ Λe þ
1

2ϵ0
g11ð _S21 − κ2S21Þ:

ð8:52Þ

For simplicity, we will stick to the solution with H2 ¼ H3.
In this case, the field equations become

3 _H þ _H2 þ 3HH2 þH2
1 þ 2H2

2 ¼ 2Λe; ð8:53Þ

2H1H2 þH2
2 ¼ Λe þ

1

2ϵ0
g11ð _S21 þ κ2S21Þ; ð8:54Þ

2 _H2 þ 3H2
2 ¼ Λe þ

1

2ϵ0
g11ð _S21 − κ2S21Þ: ð8:55Þ

In addition, we can also obtain the following equation
from the combination of the Einstein tensor components
2G1

1 −G2
2 −G3

3

3ð∂t þ 3_αÞ _σþ ¼ 1

ϵ0
g11ð _S21 − κ2S21Þ: ð8:56Þ

Moreover, we can show that

∂tðexp½αþ 4σþ�S1 _S1Þ ¼ exp½αþ 4σþ�ð _S21 − κ2S21Þ ð8:57Þ

from Eq. (8.42). Therefore we can write

_σþ ¼ 1

3ϵ0
exp½−2αþ 4σþ�S1 _S1 þ kþ exp½−3α� ð8:58Þ

with some constant of integration kþ.
By computing the combination of the 3Gt

t þGi
i com-

ponent equations, we can obtain the following equation:

6α̈þ 18_α2 ¼ 6Λe þ
1

ϵ0
g11ð _S21 þ 2κ2S21Þ: ð8:59Þ

Note that the right-hand side of Eq. (8.59) is always
positive for a model with a large cosmological constant
Λe ≫ 1. Therefore, all expanding solutions are strong
expanding solutions with V̈ > 0 if there is a large cosmo-
logical constant. Note that V ≡ exp½3α�. Moreover, we can
also express S1 and _S1 as functions of the metric fields

_S21 ¼ ϵ0g11½2A0 þ 2Σ0�; ð8:60Þ

κ2S21 ¼ ϵ0g11½2A0 − Σ0�: ð8:61Þ

Here A0 ≡ α̈þ 3_α2 − Λe and Σ0 ≡ σ̈þ þ 3_ασþ. As a result,
we can also write _σþ as
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_σþ¼ 1

3κ
½2A0þ2Σ0�1=2½2A0−Σ0�1=2þkþexp½−3α�: ð8:62Þ

All other combinations of field equations can be derived
from Eqs. (8.60)–(8.62).

1. The evolution of σþ when _αe ≡ αþ 4σþ ≫ 1

We wish to know whether _σþ will grow large or not as
time evolves. To be more specific, we are interested in the
asymptotic behavior of g11S1 _S1, following Eq. (8.58), when
t → ∞. In fact, we will show that this factor does go to zero
when t → ∞ for all expanding solutions. Hence Eq. (8.58)
implies that the anisotropy tends to vanish when t → ∞ for
all expanding solutions. This agrees with the prediction of
the no-hair conjecture [44,45].
Let us focus first on the strong anisotropically expanding

solutions with _αi ≫ 1 and _α ≫ j _σ�j. In other words, we are
interested in the case where _αe ≡ αþ 4σþ ≫ 1. Note that
the S1 field equation can also be written as

∂tð _S21 þ κ2S21Þ ¼ −2ð _αþ 4_σþÞ _S21; ð8:63Þ

∂tðexp½αþ 4σþ� _S1Þ ¼ −κ2S1 exp½αþ 4σþ�: ð8:64Þ

Hence Eq. (8.63) implies that the combination _S21 þ κ2S21 is
always decreasing. As a result, the values of jS1j and j _S1j
both tend to converge to small values provided that _αe > 0
when t → ∞. Therefore, for strong expanding solutions,
the anisotropy will tend to vanish when t → ∞.

2. Contour method

We are, however, unable to solve the S1 equation
analytically. Nevertheless, we can show by a contour
analysis that j _S1S1j tends to converge to a stationary point
in the phase space of (p ¼ _S1, q ¼ κS1). Indeed, the
contour evolution of p and q described by Eq. (8.57) is
very helpful to understand the convergent behavior of p
and q when t → ∞.
Note that Eq. (8.42) can be written as

S̈1 ¼ −½ _αe _S1 þ κ2S1�: ð8:65Þ

In addition to the phase diagram shown in Fig. 1(a), we
can also draw a curve L (Q ≡ _αepþ κq ¼ 0) on the phase
diagram. To be more specific, the coordinate of the point on
L is ðq; pÞ ¼ ð− _αe=κ; pÞ. Assuming that the contour C
starts at point A ¼ ð1; 1Þ in quadrant I, q will increase as
long as p > 0. Let a ¼ ð3; 1Þ, not shown in Fig. 1, be the
corresponding starting point of A on curve L.
The dotted curve L in Fig. 1(a) is described by the

equation _αepþ κq ¼ 0. The solid red curves are the
contour evolution of the numerical solutions to
Eq. (8.65). The dotted line starts from quadrant I, then
enters quadrant II and IV, and finally oscillates with a close-
to-constant slope between quadrants II and IV. The con-
stants and initial conditions are chosen as κ ¼ 1, Λe ¼ 3,
pð0Þ ¼ qð0Þ ¼ 1, αð0Þ ¼ 0; _αð0Þ ¼ 1, σþð0Þ ¼ 0, and
_σþð0Þ ¼ −1. In Fig. 1(b) the thick red line is the same
as the red line contour shown in Fig. 1(a). Blue and thin
green lines are the contours with _σþð0Þ ¼ 0 and _σþð0Þ ¼ 1,
respectively. The rest of the chosen constants and initial

FIG. 1 (color online). (a) The dotted curve L is described by the equation _αepþ κq ¼ 0. The solid curves are the contour evolution of
the numerical solutions to Eq. (8.65) with the constants and initial conditions chosen as κ ¼ 1, Λe ¼ 3, pð0Þ ¼ qð0Þ ¼ 1,
αð0Þ ¼ 0; _αð0Þ ¼ 1, σþð0Þ ¼ 0, and _σþð0Þ ¼ −1. (b) Thick red line is the same as the red line contour shown in (a). Blue and
thin green lines are the contours with _σþð0Þ ¼ 0 and _σþð0Þ ¼ 1, respectively. The rest of the chosen constants and initial conditions are
the same as the constants and initial conditions of the red line shown in (a).
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conditions are the same as the constants and initial
conditions of the red line shown in Fig. 1(a).
For convenience, we will say “A is left to the curve L” if

A is on the left to the straight line Oa connecting the origin
and the point a. Otherwise, we will say “the point A is right
to the curve L.” If A is left to the curve L, Q < 0 and vice
versa. Note that _p ¼ −Q > 0; therefore _p > 0, if the
contour point A is left to the curve L. Hence p will
increase as long as the contour point is still left to the curve
L. Similarly, p will start to decrease when the contour point
is right to the curve L.
Consider that the contour is on the upper half-plane with

p > 0 for the moment. As a result, points on L will act as
attractor points that will attract the contour C on its left. On
the other hand, the points on the curve L act as repeller
points that will repel all the contour points on its right. The
attracting and repelling action of the curve Lwill, however,
interchange if the contour is on the lower half-plane with
p < 0. The total effect as shown in Fig. 1(a) is that L and C
tend to spiral with each other toward the origin.
Note that the q-direction motion is determined by the

sign on p. If the contour point is in quadrant I and II where
p > 0, the motion is heading toward the right direction.
Similarly, if the contour point is in quadrant III and IV
where p < 0, the motion is leftward.
If the contour starts at point A in the first quadrant as

shown in Fig. 1(a), p will start to increase since A is left to
the curve L. Once the contour touches briefly with the
curve L, p will start to decrease until the contour touches
again with the curve L in quadrant IV. p starts to increase
again thereafter until the contour eventually touches the
curve L for the third time in the second quadrant. As a
result, the contour tends to spiral to the origin and drives
S1 → 0 when t → ∞. Note that all the touch points of C
and L are the points satisfying Q ¼ 0. In other words, the
tangent lines at these points are flat lines with vanish-
ing slope.
In addition, Fig. 1(a) shows that _αe is negative in

quadrant I and III, and positive in quadrant II and IV.
Note that Eq. (8.59) shows that

α̈e ¼ Λe − 3_α _αe þ
1

6ϵ0
exp½−3αþ σþ�ð5p2 − 2q2Þ: ð8:66Þ

Therefore, α̈e > 0 if Λe ≫ 1 as compared to the other terms
on the right-hand side of Eq. (8.66). Therefore, _αe tends to
remain positive unless _αe is initially large enough such that
the second negative term dominates.
In particular, _αe tends to increase rapidly if the initial

values of _αeðoÞ are negative. This implies that the curve L
will tends to bend toward quadrant II as long as α̈e remains
positive. Since we are interested in the model with a large
cosmological constant, curve L will eventually tend to
remain confined in the neighborhood of the origin con-
touring between quadrants II and IV.

In addition, at some large time t ≫ t0, the strong
expansion will tend to keep _α2 → Λe=3 a good approxi-
mation. Therefore, _σþ → 0 when t → ∞. As a result,
_αe → _α when t → ∞. This feature is shown clearly in
Fig. 1(a) near the end of the contour evolution when
t → ∞. This is also the reason why L tends to settle in
quadrants II and IV with a close-to-constant slope
when t → ∞.

3. Alternative approach

There is another way to look at the evolution of the S1
equation. Writing S1 ¼ ks exp½s� with ks ¼ �1, we can
show that the S1 equation can be written as

_C
C
¼ _s − κ2

1

_s
ð8:67Þ

with C ≡ S1 _S1 exp½αþ 4σþ�. This equation implies that
C → 0 if _s → 0þ when t → ∞ as shown in Fig. 1(a) with
the curve L contouring with close-to-constant slope.
In addition, the S1 equation can also be written as

̈sþ _s2 þ κ2 þ _α _sþ 4

3ϵ0
exp½−3α�ðC þ 3kþÞ_s ¼ 0; ð8:68Þ

with the solution of σþ solved in Eq. (8.58) included. Note
again that Eq. (8.68) is independent of the � sign of ks
associated with the definition S1 ¼ ks exp. This then
implies, assuming _s ≠ 0,

̈s
_s
þ 2κ ≤

̈s
_s
þ _sþ κ2

1

_s
þ _αþ 4

3ϵ0
exp½−3α�C → 0 ð8:69Þ

when t → ∞ for all expanding solutions as long as _s > 0
(and hence C ≥ 0). Therefore, we find that

̈s
_s
≤ −2κ ð8:70Þ

if _s > 0 when t → ∞. This result is derived from the fact
that _sþ κ2=_s ≥ 2κ for all positive _s. Hence we reach the
conclusion that _s → 0þ and C → 0þ when t → ∞ for all
expanding solutions if _s > 0. Therefore, Eq. (8.62) implies
that _σþ → 0 when t → ∞.
On the other hand, _s < 0 implies that S1 _S1 < 0. This

implies immediately that jS1j is monotonically decreasing.
Once this happens, _S1 will also tend to zero when t → ∞.
As a result, _s → 0− when t → ∞ if _s < 0. Therefore,
Eq. (8.62) also implies that _σþ → 0 when t → ∞. The
conclusion is that whether _s is positive or not when t → ∞,
they will both tend to oscillate along the _s ¼ 0 line and tend
to force _σþ → 0 when t → ∞. As a result, the contribution
of the Weyl vector boson appears to be negligible in the
cosmological evolution of the BI expanding Universe.
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4. Isotropic limit

It was just shown that the presence of the Sμ field tends to
drive the evolution of the Universe toward an isotropic
limit. It can be shown, however, that there is no isotropic
solution unless S1 ¼ 0.
Indeed, Eq. (8.56) implies that _S1 ¼ �κS1. Together

with Eq. (8.65), the solution is

_α ¼∓ 2κ: ð8:71Þ

This solution does not agree with Eq. (8.61) unless S1 ¼ 0.
Therefore the isotropic limit of the field equation does not
exist unless S1 is turned off identically.

E. Solution for the case (iv) S1 ¼ S2 ¼ S3 ¼ 0

In this section, we will review the result for an effective
theory with Sμ ¼ 0 in BI metric space. Consequently, the
effective theory obeys the effective Einstein equation (2.12)
of the following form:

1

2
Rgμν − Rμν ¼ Λegμν: ð8:72Þ

Here the effective cosmological constant is given by
Λe ¼ −m2

gLM=2 ¼ λ
4ϵ ϕ

2
0LM. This equation can also be

written as

Rμν ¼ Λegμν: ð8:73Þ

The analytic solutions can be solved by a standard method
[62]. We will present a brief version of this procedure for
heuristic reasons.
As a result, the metric field equations can be shown to be

A0 ¼ Σ0 ¼ 0 by setting S1 ¼ 0 in Eqs. (8.60)–(8.61).
Hence the equations of motion are

α̈þ 3_α2 ¼ Λe; ð8:74Þ

ð∂t þ 3_αÞ _σþ ¼ 0; ð8:75Þ

and Eq. (8.75) can be solved to give

_σþ ¼ kþ exp½−3α� ð8:76Þ

with kþ some integration constant. In addition, Eq. (8.74)
can be solved by defining the volume factor
V ¼ a1a2a3 ¼ exp½3α�. Indeed, we can write Eq. (8.74) as

V̈ ¼ 3ΛeV: ð8:77Þ

This is an equation linear in V. Therefore, it can be solved
to give

V ¼ a exp½
ffiffiffiffiffiffiffiffi
3Λe

p
t� þ b exp½−

ffiffiffiffiffiffiffiffi
3Λe

p
t� ð8:78Þ

as a linear combination of the exponential solutions
exp½� ffiffiffiffiffiffiffiffi

3Λe

p
t�. Here a and b are constant coefficients to

be determined by the boundary conditions. Therefore
exp½3α� becomes

V ¼ exp½3α�

¼ exp½3α0�
�
cosh

ffiffiffiffiffiffiffiffi
3Λe

p
tþ _α0ffiffiffiffiffiffiffiffiffiffi

Λe=3
p sinh

ffiffiffiffiffiffiffiffi
3Λe

p
t

�
ð8:79Þ

with α0 ¼ αðt ¼ 0Þ and _α0 ¼ _αðt ¼ 0Þ as appropriate
initial values.
Moreover, we can also show that _α2 can be added with

−Λe=3 as

_α2 −
Λe

3
¼

�
_α20 −

Λe

3

�
exp½6α0� exp½−6α�: ð8:80Þ

As a result, the Friedmann equation implies

G0
0 ¼ 3ð _α2 − _σ2þ − _σ2−Þ ¼ Λe: ð8:81Þ

We can further show that the solution

_σ− ¼ �
�
_α20 −

Λe

3
− k2þ exp½−6α0�

�
1=2

×

�
cosh

ffiffiffiffiffiffiffiffi
3Λe

p
tþ 3_α0ffiffiffiffiffiffiffiffi

3Λe

p sinh
ffiffiffiffiffiffiffiffi
3Λe

p
t

�
−1

ð8:82Þ

exists only when

_α20 ≥
Λe

3
þ k2þ exp½−6α0�: ð8:83Þ

In summary, we have found a set of analytic solutions of the
following form:

_σþ ¼ kþ exp½−3α�; ð8:84Þ

_σ− ¼ k− exp½−3α�; ð8:85Þ

_α2 −
Λe

3
¼ k2α exp½−6α� ð8:86Þ

with

k− ¼ �
�
_α20 −

Λe

3
− k2þ exp½−6α0�

�
1=2

exp½3α0�; ð8:87Þ

k2α ¼
�
_α20 −

Λe

3

�
exp½6α0�: ð8:88Þ

Therefore the constraint (8.83) becomes
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_α20 ¼
Λe

3
þ ðk2þ þ k2−Þ exp½−6α0� ð8:89Þ

with k2α ¼ k2þ þ k2−. In addition, Eq. (8.84) can be integrated directly to give the result

σþ ¼ σ1 þ
�
kþ exp½−3α0�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α20 − Λe=3

p �("
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
exp½ ffiffiffiffiffiffiffiffi

3Λe

p
t� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
#

þ ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
exp½ ffiffiffiffiffiffiffiffi

3Λe

p
t� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
#)

ð8:90Þ

with σ1 ¼ σþð0Þ. Similarly, σ− can be written as

σ− ¼ σ2 þ
�
k− exp½−3α0�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α20 − Λe=3

p �("
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
exp½ ffiffiffiffiffiffiffiffi

3Λe

p
t� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
#

þ ln

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 þ ðΛe=3Þ1=2

p
exp½ ffiffiffiffiffiffiffiffi

3Λe

p
t� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_α0 − ðΛe=3Þ1=2

p
#)

ð8:91Þ

with σ2 ¼ σ−ð0Þ. Note that both σ� approach constants
when t → ∞. Therefore anisotropy will decrease as the
Universe expands. In particular, we can also show
explicitly that the expanding solutions are stable under
perturbations of the following form: ðδα; δσþ; δσ−Þ ¼
ðk1; k2; k3Þ exp½νt� [62]. Note also that the isotropic sol-
ution can be obtained by setting k� ¼ 0.

IX. CONCLUSIONS

The solution of this model in the Schwarzschild metric
space has been shown explicitly in Ref. [63]. Similar result
shows that the Sμ field also tends to vanish in the presence
of a black hole solution. Evidence shown in this paper
indicates that the massive gauge field does not seem to
provide much physical impact in BI metric space.
In summary, we have studied the cosmological impli-

cations of a Weyl-invariant generalization of the dRGT
theory. In particular, we showed that the massive terms
serve as an effective cosmological constant for all fiducial
metric spaces and physical metric spaces. We also show
that the Weyl vector meson decouples effectively from the
Weyl-invariant model in the BI metric space when t → ∞.
This is done by showing that Sμ → 0 in the unitary gauge
ϕ ¼ ϕ0. Specific solutions are solved as examples for this
model in the BI metric space. The fiducial metric is treated
as an auxiliary field contributing only through the trace
components of K ¼ δ −M with M2 ¼ g−1f. In addition,
we also present some general conservation properties of the
bimetric theory. A specific example is also given by
assuming that K, g, and f commute with each other and
can be diagonalized by the same similarity transformation
matrix S.
Hopefully, the result shown in this paper may shed light

on the research on the generalization and applications of the

massive gravity theories. In addition, the results shown in
this paper also indicate that the structure and properties
associated with the dRGT theory deserve more attention.
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APPENDIX: THE RECURRENCE RELATION

OF THE MASSIVE LAGRANGIAN

We will briefly review the algebra in the determinant of
M ¼ δ −K in this section. The determinant of an n × n
matrix Mab is defined as

jMj ≡ detM ¼ 1

n!
ea1;a2;���;aneb1;b2;���;bnMa1b1Ma2b2 � � �Manbn

ðA1Þ

with the help of the flat totally skew-symmetric Levi-Civita
tensor ea1;a2;���;an. In addition, the inverse matrixM−1 can be
shown to be

Mab ¼
~Mba

jMj ðA2Þ

with ~Mba the cofactor of Mab defined by
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~Mab¼
sðabÞ
ðn−1Þ!e

a;a2;���;aneb;b2;���;bnhMabiMa2b2Ma3b3 ���Manbn :

ðA3Þ
Here sðabÞ stands for the sign derived from the permuta-
tion of a and b with respect to the indices ai and bi
from their original ordered position. To be more specific,
the sign occurs when the ordered series is permuted
from ða2; a3; � � � ; a; � � � ; an; b2; b3; � � � ; b; � � � ; bnÞ to
ða; a2; a3; � � � ; an; b; b2; b3; � � � ; bnÞ. In addition, hMabi
denotes the omission of the matrix element Mab from
the original definition of the cofactor ~Mab in Eq. (A3). As a
result, we can prove that MabMbc ¼ δac with the inverse
matrix given above.
In the paper, we will set n ¼ 4 for the four-dimensional

space. As a result,

jMj ¼
X4
i¼0

ð−1ÞiLi ðA4Þ

with L0 ¼ 1, L1 ¼ ½K� and with Li defined by
Eqs. (2.9)–(2.11) for i ¼ 2; 3; 4. Therefore, the massive
Lagrangian is equivalent to the polynomial components of

2jMj. Moreover, the variation of jMj with respect to Ka
b,

can be shown to be

δjMj
δKa

b
Ka

c ¼ jMjδbc − ~Mc
b ¼ jMjδbc −

δjMj
δKc

b
: ðA5Þ

Note that we have resumed the upper and lower indices in
order to reflect the tensor properties of these indices. This
equation can be further expanded as a set of recurrence
relations in order of Kn. The result is

δLn

δKb
a
¼ Ln−1δ

a
b −

δLn−1

δKc
a
Kc

b: ðA6Þ

Note that this recurrence relation can also be verified
directly from the f equation. In particular, the n ¼ 5
recurrence relation gives

L4δ
a
b −

δL4

δKc
a
Kc

b ¼ 0 ðA7Þ

because the expansion of jMj in Eq. (A4) terminates when
n ≥ 5. To be more specific, L5 ¼ 0.
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