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Abstract

We use three different methods to calculate the proportionality constants among high-energy scattering
amplitudes of different string states with polarizations on the scattering plane. These are the decoupling
of high-energy zero-norm states (HZNS), the Virasoro constraints and the saddle-point calculation. These
calculations are performed at arbitrary but fixed mass level for the NS sector of 10D open superstring. All
three methods give the consistent results, which generalize the previous works on the high-energy 26D
open bosonic string theory. In addition, we discover new leading order high-energy scattering amplitudes,
which are still proportional to the previous ones, with polarizatimnisogonal to the scattering plane. These
scattering amplitudes are of subleading order in energy for the case of 26D open bosonic string theory. The
existence of these new high-energy scattering amplitudes is due to the worldsheet fermion exchange in the
correlation functions and is, presumably, related to the high-energy massive spacetime fermionic scattering
amplitudes in the R-sector of the theory.

0 2006 Elsevier B.V. All rights reserved.

1. Introduction

It has long been believed that string theory consists of a huge hidden symmetry. This is
strongly suggested by the ultraviolet finiteness of quantum string theory, which contains no free
parameter and an infinite number of states. To probe the structure and the origin of the symmetry
has been one of the fundamental issue ever since the discovery of string theory.
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The first key idea to uncover the hidden stringy symmetry was to study the high-energy be-
havior of the theory, as suggested by Gross in 1888 This was based on the saddle-point
calculations of high-energy fixed-angle string scattering amplitudgs3h There are two main
conjectures of Gross’s pioneer work on this subject. The first one is the existence of an infinite
number of linear relations among the scattering amplitudes of different string states that are valid
order by order in perturbation theory at high energies. The second is that this symmetry is so
powerful as to determine the scattering amplitudes of all the infinite number of string states in
terms of, say, the tachyon scattering amplitudes (for the bosonic open string case). However,
the symmetry charges of his proposed stringy symmetries were not understood and the propor-
tionality constants among high-energy scattering amplitudes of different string states were not
calculated.

The second key idea to uncover the fundamental symmetry of string theory was the identifi-
cation of symmetry charges from an infinite number of stringy zero-norm states with arbitrarily
high spins in the old covariant first quantized (OCFQ) string specfdjmThe importance of
zero-norm states and their implication on stringy symmetries were first pointéd] @uthe con-
text of massiver-model approacb,6] of string theory. Some implications of the corresponding
stringy Ward identities on the scattering amplitudes were discuss@dah In addition to the
continuous symmetries, the discrete T-duality symmetry was shown to be related to the existence
of compactified closed string soliton zero-norm stg®dsThe enhanced gauge symmetry/of
coincident D-branes can also be shown to be related to the existence of compactified open string
zero-norm states at some discrete values of compactified t8dliOn the other hand, zero-norm
states were also shol] to carry the spacetime,, symmetry{12] charges of 2D string theory
[13]. This is in parallel with the work of14] where the ground ring structure of ghost number
zero operators was identified in the BRST quantization. All the above interesting results of 26D
and 2D string theories strongly suggest that a clearer understanding of zero-norm states holds
promise to uncover the fundamental symmetry of string theory. Incidentally, it was also shown
[15,16]that off-shell gauge transformations of Witten string field thga), after imposing the
no-ghost condition, are identical to the on-shell stringy gauge symmetries generated by two types
of zero-norm states in the massiwvemodel approach of string theof¥]. Other approaches of
stringy symmetries can be found[ib8—25]

Recently high-energy Ward identities derived from the decoupling of zero-norm states, which
combines the previous two key ideas of probing stringy symmetry, were used to explicitly prove
Gross’s two conjecturd®6,27] An infinite number of linear relations among high-energy scat-
tering amplitudes of different string states were derived. Moreover, these linear relations can be
used to fix the proportionality constants among high-energy scattering amplitudes of different
string states algebraically up to mass lev# = 6. Thus there is only one independent compo-
nent of high-energy scattering amplitude at each fixed mass level. It is important to discover that
the result of saddle-point calculation i3] was inconsistent with high-energy stringy Ward
identities of zero-norm state calculation [#6—28] A corrected saddle-point calculation was
given in[28], where the missing terms of the calculatior[1r-3] were identified to recover the
stringy Ward identities. Soon after, the calculations of the proportionality constants among high-
energy scattering amplitudes of different string states were generalized to arbitrary but fixed mass
level[29—-31] Based on the general formula for the independent component of high-energy scat-
tering amplitude at each fixed mass level calculated previou$B6if28], one can then derive the
general formula of high-energy scattering amplitude for four arbitrary string states, and express
them in terms of those of tachyons. This completes the general proofs of Gross’s two conjectures
on high-energy symmetry of string theory stated above.
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In this paper, we consider the high-energy scattering amplitudes for the NS sector of 10D open
superstring theory. Based on the calculations of 26D bosonic open R28r§1] all the three
independent calculations of bosonic string, namely the decoupling of high-energy zero-norm
states (HZNS), the Virasoro constraints and the saddle-point calculation, can be generalized to
scattering amplitudes of string states with polarizations on the scattering plane of superstring.
All three methods give the consistent results. In addition, we discover new leading order high-
energy scattering amplitudes, which are still proportional to the previous ones, with polarizations
orthogonal to the scattering plane. These scattering amplitudes are of subleading order in energy
for the case of 26D open bosonic string theory. The existence of these new high-energy scattering
amplitudes is due to the worldsheet fermion exchange in the correlation functions and is, presum-
ably, related to the high-energy massive fermionic scattering amplitudes in the R-sector of the
theory. We thus conjecture that the validity of Gross’s two conjectures on high-energy stringy
symmetry persists for superstring theory. This paper is organized as follows. In S&aiter a
brief review of previous calculations of the decoupling of HZNS for the bosonic string, we show
that the calculations can be generalized to the superstring. The ratios among the scattering am-
plitudes of different string stategith polarizations on the scattering plane can be determined by
using two types of HZNS in the NS sector. In Sect&nve use the “dual method”, the Virasoro
constraints, to calculate the ratios among the scattering amplitudes of different string states. The
results are consistent with those obtained in Se@idn Sectiord, a set of scattering amplitudes
are calculated by the saddle-point method to justify our results in Se@iand 3 In Section5,
we present some new high-energy scattering amplitudes of string states with polaripations
thogonal to the scattering plane. Finally a brief conclusion is given in Se@ion

2. Decoupling of HZNS

We will consider four-point correlation functions in this paper. We begin with a brief review
of the high-energy calculation of 26D bosonic open string theory. At a fixed massieel
2(n — 1), it was shown thaf29-31]in the high-energy limit, only states of the following form

n,2m,q) = (azl)n_zm_zq (afl)zm (ocfz)q|0, k), wheren —2m —2q,m,q >0, (1)

are relevant for four-point functions (we use the notatiof3af). The state in Eq(1) is arbitrarily
chosen to be the second vertex of the four-point function. The other three points can be any string
states. We have defined the normalized polarization vectors of the second string st§2édHe

1 ko
P — — (Ep kp,0)= — 2
e Mz( 2,k2,0) My (2)
1
L— _— (kp, E5,0 3
e Mz(z, 2,0), 3
el =(0,0,1), 4)

in the CM frame contained in the plane of scattering. In the OCFQ spectrum of open bosonic
string theory, the solutions of physical states conditions include positive-norm propagating states
and two types of zero-norm states. The latter[agg

Typel: L_1|x), whereLi|x)=La|x)=0, Lo|x)=0; (5)

3
Type II: <L_2+§L31)|x>, whereL1|%) = Lo|X) =0, (Lg+ 1)|%) =0. (6)
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While type | states have zero-norm at any spacetime dimension, type Il states have zero-norm
only at D= 26. The decoupling of the following type | HZNS

L_gln—212m—1,q)=M|n,2m,q)+ (2m —1)|n,2m — 2,q + 1) (7)
gives the first high-energy Ward identities
T02m.qg) _ | _ 2m—1 . 3yt 7 (n.0.g+m) (8)
M M M ’

where7 -2m.9) represents the four-point functions with the second particle atte\&milarly,
the decoupling of the following type Il HZNS

L_2|n—2,0,q)=%|n,0,q)+M|n,O,q+l) (9)
gives the second high-energy Ward identities
T004) _ <_i)47<n,0,0>_ (10)
2M
Combining Eqs(8) and (10)gives the master formul29-31]
1 2m+q 1 m+q
7 2ma) — (_M> (§> 2m — N7 "0, (11)

which shows that there is only one independent high-energy scattering amplitudes at each fixed
mass level.

We now consider the superstring case. We will first consider high-energy scattering ampli-
tudes of string states with polarizations on the scattering plane. Those with polariations orthog-
onal to the scattering plane will be discussed in Sechiolh can be argued that there are four
types of high-energy scattering amplitudes for states in the NS sector with even GSO parity

n,2m, q) ® b7 )= (aT,)" 2" (af )?" (k) (b7 1)10,K), (12)
2 2

m.2m +1,q) @ [b ) = (1) "7 k) (al o) (64)10.6), (13)

In.2m, ) @ [bLg) = ()" (al0) ™" ()" (b5 10,0, a4

—2n

In,2m, q) ® |bi%bf%bfg>5 (afy)" 72" (k)" (@ fz)q(bi%)(bf%)(l’fgﬂo’k>-

(15)

Note that the number cmffl operator in Eq(13)is odd. In the OCFQ spectrum of open super-
string, the solutions of physical states conditions include positive-norm propagating states and
two types of zero-norm states. In the NS sector, the lattef32ie

Typel: G_ylx), whereGylx)=Gglx) =0, Lolx)=0; (16)

Type Il (G_% + 2G_%L,1)|)E), whereG% |%) = G% |¥)=0, (Lo+1)|x)=0. (17)
While type | states have zero-norm at any spacetime dimension, type Il states have zero-norm
only at D= 10. We will show that, for each fixed mass level, all high-energy scattering ampli-

tudes corresponding to states in Ed)—(15)are proportional to each other, and the proportion-
ality constants can be determined from the decoupling of two types of zero-norm stat€46lEqs.



C.-T. Chan et al. / Nuclear Physics B 738 (2006) 93-123 97

and (17)in the high-energy limit. For simplicity, based on the result of @d.), one needs only
calculate the proportionality constants among the scattering amplitudes of the following four
lower mass level states

2.0.0) @ [p" )= (o’ 1)Z(bf%)m k), (18)
121,00 @ bl )= (wly) (e2e) (bE4)10.K), (19)
1,0, o>®}bf%)z(aT1)( 3)10.K), (20)
0.0, 0>®Ibf%bf%bng(bf%)(bf%)(bfg)lo,k% (21)

Other proportionality constants for higher mass level can be obtained througii Epsnd (18)—
(21). To calculate the ratio among the high-energy scattering amplitudes corresponding to states
in Egs.(19) and (20)we use the decoupling of the type | HZNS at mass |@¥8l= 2

G_3(o29)10. ) =[M(aly) (b7 1) + (b7 5)]I0. ). (22)
Eq.(22) gives the ratio for states at mass lewef = 4
(@L1)(b25)10.): (ely) (@la) (b1 1)10, k) = M = —1. (23)

We have used an abbreviated notation for the scattering amplitudes on the .h.s(28)Efhe
HZNS in Eq.(22)is the high-energy limit of the vector zero-norm state at mass leifek 2

G_ylx) = [k(uOnya b" 1 +6 -b_%]|0,k), (24)
2
where

1
|x)=|:0-a_l—l—Ek-b_%Q-b_%]IO,k), k-6 =0. (25)

In fact, in the high-energy limit) = ¢*, so|x) — (a*,)|0, k) and Eq.(24) reduces to Eq22).
To calculate the ratio among the high-energy scattering amplitudes corresponding to states in
Eqgs.(18) and (20)we use the decoupling of the type Il HZNS at mass |e@vél= 4

G_g(al1)0,k) = [M(aly) (0" 5) + (afl)z(bf%)]m, k). (26)
Eq.(26) gives the ratio
(") (6" 5)10.K): (@ 1)*(B" )10, k) =1:—M. (27)

Finally, to calculate the ratio among the high-energy scattering amplitudes corresponding to
states in Eq(18) and (21)we use the decoupling of the type Il HZNS at mass l@¢él= 4

G_3(bT4) (b2 1)10. k) = [M (b1 4) (b1 1) (b 5) + (@Z2) (b7 1)]10. ). (28)
Eq.(28) gives the ratio
(b7 1) (b2 1) (b2 5)10. k) (@f5) (b1 1) 10, k) = 1: =M. (29)

On the other hand, E¢10) gives
() (b7 )10, k) : (a7 1)?(b7 1)10,k) = 1:—2M. (30)
2 2
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We conclude that
(b ) (0" 3) (0" )10 k) (@ 1) (b7 y)10.0) = 1: 2042 (31)

Egs.(23), (27) and (31pive the proportionality constants among high-energy scattering ampli-
tudes corresponding to states in E(8)—(21) Finally, by using Eq(11), one can then easily
calculate the proportionality constants among high-energy scattering amplitudes corresponding
to states in Eq412)—(15)

3. Virasoro constraints
In this section, we will use the method of Virasoro constrains to derive the ratios between the

physical states in the NS sector. In the superstring theory, the physicalgstatehe NS sector
should satisfy the following conditions:

(o——>w> (32)

Lil|¢) = 1,23,. (33)
1 35
r =V, = 5 A’ A 4
Grlp)=0, r= 5575 (34)
where theL,, andG, are super Virasoro operators in the NS sector,
1 1
Ly, ZEXn::am—n 'Oén:+£_12r:(2”—m)3wm—r “Yrs, (35)
G, = Zan “Yr—n- (36)
n
These super Virasoro operators satisfy the following superconformal algebra,
1 3
[Lin, Lpnl=(m —n)Lyn+ éD(m - m)5m+nv
1
[Lin, G 1= (Em - V)Gm+rv
1 , 1
{Gr, Gg} = 2Lr+x + ED r-— Z (Sr+s. (37)

Using the above superconformal algebra, the Virasoro condifi@@sand (34)reduce to the
following simple form,
G12/¢) =0, (38)
G3p2l¢) =0. (39)

In the following, we will use the reduced Virasoro conditiai38) and (39)to determine the
ratios between the physical states in the NS sector in the high-energy limit.

To warm up, let us consider the mass levelMst = 2 first. The most general state in the NS
sector at this mass level can be written as

"
‘”ﬁg +®“51‘/’i% +‘/ff%1ﬁi%lﬂf% [OINES (40)
o
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where we use the Young tableaux to represent the coefficients of different tensors. The properties
of symmetry and anti-symmetry can be easily and clearly described in this representation.

We then apply the reduced Virasoro conditi¢B8) and (39)to the statg40). It is easy to
obtain

v

G1/2|2>=aﬁl{+k”®}+wﬁ%wﬁ% ®—®+3k" . (41a)
Gapol2) =k +|u|® [v], (41b)

which leads to the following equations

[ +#u]ev]=o0. (42a)
®—®+3k"=0, (42b)
k“ +ul® n““ —0. (42¢)

To solve the above equation, we first take the high-energy limit by lettirg (L, T) and
kﬂ — M(EL)M, nMV — (ET)M(ET)V. (43)

The above equations reduce to

+M®=o, (44)
uol]-[v]elu]=o0. (45)
M+®:O. (46)

At this mass level, the terms with odd numbef7a$ will be sub-leading in the high-energy limit
and be ignored, the resulting equations contain only terms with even numbé&ras following,

+M®=O, (47)
M+®=O. (48)

The ratio of the coefficients then can be obtained as

err| M?(=2)
eLL 1 (49)
gL |—M (=—+/2)
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In the following, we will consider the general mass levelt = (21 — 1). At this mass level,
the most general state can be written as

= @ i full T @ A T v o,

mj,my j= 1 r= 12
(50)
where
V1
T .
gl =] 1) (51)
Vi,
and we have defined the abbreviation
Joi i j )
I g J Wi v r v
oy = al and yhT =yl gl (52)

withm ; (m,) is the number of the operataﬁj (y2,)for j € Zandr € Z+1/2. The summation
runs over all possible:; (im,) with the constrain
n—1/2 1
Z]m/+2rm,—n—§ with m j, m, > 0, (53)
j=1 r=1/2
so that the total mass square @ 2- 1).
Next, we will apply the reduced Virasoro conditiof38) and (39}o the stat€50),

G1/2|n)=Z|:kvi/ Ujl-/Z‘ v’}l/lfz‘ ®‘Ml‘ ‘Mm, vi %1, T
m; r1/2
+Zzw P P B A
/ i=1
A ®\m\ i,
r¢1/21+l/2
+Z! X i i o o B L
®\ull Tt @ [ |
r#1/2
mj—1/2 T
T D e e T O T = e RO P R e
1>2 i=1

k N
- - T
1/2 1/2 J J r r
@[ i) @l k] & [,

j#l r#1/2,1-1/2
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1 1212k 1 i S

Vo V'"l/2 M]_"',umj 1 vimv:nr
I'[/—1/2 1_[ i™im ,!a—j 1_[ m,! ’ (54a)
j=1 J r#1/2

-
(m1/2 — 1!

and

T
r

Vi,

S
T 32 - -
3/2 3 2
Gs/z|n>:z[vmg/2 e ®\ui\-~-\%
mj r;é3/2
3/2 3/2
e[

Vm3)o

r
vl e

12 r

v
+ 77” vml/z

\ M@H /2\
k

2
+ZZZ‘”1‘

121i=1

1+3/2 372 T
ml+3/2

I
"Mml‘ Mz

32] [ ,372 T
o[ @l
J#l

s T
r r
& [+,
+

r£3/2,143/2

T
3/2 3/2
b |32

[ Jae v

3/2‘ ]

Gl

i=2

®‘M1‘
+ 2

122,1#3 i=1

T
r
mr

/’Lm] 1)1 Y

r#3/2

mj—3/2

1 32 1-3/2 ‘T

| Vmy_z)o

- 3/2‘ ]

7.

[ @ o]

k K
- - T
3/2 3/2
o] [fe] Rlud]-Jwh] & }
Jj#l r#3/2,1-3/2

1 vg/2~--vr?/32/2 k 1 /t{--ﬂ# u 1 vy,
Vo Tl gmpels T o™ (640
j=1J 7* r#£3/2° 7
where we have used the identities of the Young tableaux,

1] [p]= %[14—0(21) +o@n + -+ l[1]e[2] - [p]

_ %é"“”@” (55)
1 o] = 2= ven +oean =+ 07 oy ]2 o]

= é(—l)i+1a(i...1)®r. (56)

‘-
(m3/2 — 1!
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We then obtain the constraint equations

k
Y2173 72 |7 - ; T
0=k" l”l/ ‘ ‘Vm/l/z‘ ®‘Mi‘|ﬂin, Vi,
j=1 r#1/2
my
T
! ~l 412 I+1/2
+ZZZ‘M1“I’L1 ‘I’Lml‘®‘ﬂl “ ml+1/2‘
1>1 i=1
k K T
12 12 - ;
o[ it @l Jun] &
J#l r#1/2,1+1/2
. T
172] 1 1 i+i 12 12 12
Tl e o L] )
k s ,
J J
QIul]- ik @ ] I
J# r#1/2
mi-1/2
T
i+ 1 12 —172 Al 12 112
2.2 Y T ) e e B e
1>2 i=1
k s ;
12 12 j ;
o[ i @l Juh] & 7
J#l r#1/2,1-1/2
k K
_[32 32 |1, 032 j j T
0=[]- o35 ] 5" @[t [rsh, | @ [vi]-[vi,
j=1 r#3/2
i 1 1 12 172 |7 32 1,32 r
tn ""‘“ml‘@"”“’l """'"1/2 ®‘ V2 ‘ Vg
k - - S T
Rluil--[ur,| ®
j#1 r#1/2,3/2
m
I ~l 1+3/2 +3/2|"
+ZZZ‘M1‘”"M ‘uml‘(@‘ul ‘ ‘ V132
1>1i=1
sk
3/2 3/2 J J
8 o 1 8 A ® il ]
J#l 2,14+3/2
m3/2
T
32 1 3/2] .32 32
! ‘M%‘ ‘M%S‘@)( 1)l+‘ / ‘ o Ui/ “ m/a/z‘
i=2
k s ,
J J
®‘M1|”"M’"J’ @ [v5] | vm,
j#3 r#£3/2
mj—-3/2
T
I i+1[ 1-3/2 Az 32 1—3/2
+ Z Z ‘ ‘Mmz‘@)( D ‘ ‘ ‘ mi—32

122,13 i=1

(57a)
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3/2 3/2
@[3 vz ®\u1\ Juuh,

T
,
Q |-,

r;£3/2 1-3/2

103

(57b)

Taking the high-energy limit in the above equations by letting v;) — (L, T'), and

N (eT)l/fl (eT)MZ’

kMt — M(eL)M’,

and using the following lemma.

Lemma.

1M2
pHas

e AR \ \ Jolr]- Jrfe] Je]o[d]is"]s[ £ -

ma— 12

miy2

(58)

0, (59)

except for (i) mj>3=m,>3/2 =0, lp =m2, I3/ =m3p» =1and (i) 1 + 12 = 2k.

We solve the equations #ppendix A the ratios between the physical states in the NS sector
in the high-energy limit are given as

‘T’...‘T‘L‘...‘L‘®‘L‘...

e
n—2mo—2k 2k mp

1\"/ 1 \*@k -1
~(z) () Sy
7] 7] Je]elL]-|r|e[e]e
—_——— —— ——
n—2moy—2k  2k+1 mp

1\ (2k + D!
o))
T‘...‘T ‘L‘...‘L@)L‘...
a1 e —

~(-20) (2u)

(2k — D!

(=M)F1

PEEE

2h

Nf—"

9

2h

\/—‘

Jofrled

T‘...‘T

——

L|-|L]®

Ll

n—2mp—2k+1 2k

~(-20) (-20)

———
mp—1

2k — D!
(—M)Hk

r|-|r
S— ——
n

®[0]®|0/®[L]

®[0]®|0/®[L]

®[0]®|0/®[L]

Tele[rlz] e[z
||o|r]L]

(60)

(61)

(62)

(63)

which are exactly consistent with the results obtained by using the decoupling of HZNS in Sec-
tion 2 and the saddle-point calculation in the following section.
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4. Saddle-point approximation

In this section, we shall calculate the high-energy limits of various scattering amplitudes based
on saddle-point approximation. Since the decoupling of zero-norm states holds true for arbitrary
physical processes, in order to check the ratios among scattering amplitudes at the same mass
level, it is helpful to choose low-lying states to simplify calculations. For instance, in the case of
4-point amplitudes, we fix the first vertex to be& = 0 photon with polarization vecte (in
the —1 ghost picture, ang is the bosonized ghost operator),

Vi= e“wuefd)eiklxl, € k1= k% =0 (64)
and the third and fourth vertices to b€ = —1 tachyon (in the 0 ghost picture),

Vaa=kf pueteeXss kg, =1 (65)

We shall vary the second vertex at the same level and compare the scattering amplitudes to obtain
the proportional constants.

41. M?2=2

The second vertex operators at mass |@¢él= 2, are given by (in the-1 ghost picture),

(@Zy) (T )10.k) = pToxTe 0™, (66)
2

(alq) (b"1)10.k) = yhaxte P, (67)
2

(" 3)10,k) = dyle?ehX. (68)

-3
2

Here we have used the polarization basis to specify the particle spinsy é.g eg VLS

To illustrate the procedure, we take the first state, (66), as an example to calculate the
scattering amplitude among one massive teq&tf = 2) with one photor(V1) and two tachyons
(V3, Va). As in the case of open bosonic string theory, we list the contributionsrothannel
only. The 4-point function is given by

1
/ dx» ((1//{16—¢1eik1X1) (,(ﬁZTZanze—(bzei/QXz) (ks)hwéeingg) (k40 wgeik4X4)>’ (69)
0

where we have suppressed g2, R) gauge-fixed worldsheet coordinates=0,x3=1,x4 =
oo. Notice that in both the first and second vertices, it is possible to allow fermion opeyators
to have polarization in transverse directifinout of the scattering plane. As we shall see in next
section that this leads to a new feature of supersymmetric stringy amplitudes in the high-energy
limit. At this moment, we only choose the polarization vector to be inRhé, T directions for
a comparison with results obtained by the previous two methods.
A direct application of Wick contraction among fermiogis ghostsp, and boson¥X leads to
the following result
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1
/dx[(S 4 (e eT2) (eTl.k3)(eT2.k4)+(eTZ‘];-?;)(eTl'k4)i|
- X
0

x _[e_"@»]xu,z)(l_x)(z,s), (70)
xL 1—x

where we have used the short-hand notat{@n4) = k3 - k4. Based on the kinematic variables
and the master formula for saddle-point approximation,

/ dx u(x)e K

= I/loe_K'fo I?;(‘T//
0
u! f(3) f(4) 5[f(3) 1
By~ 37 slero(z)} @
X{ +[2uofé’ 20032 Bug? T 2mspe)x T O\x (1)

whereuo, fo. ug. fy, etc., stand for the values of functions and their derivatives evaluated at the
saddle pointf’(xg) = 0. In order to apply this master formula to calculate stringy amplitudes,
we need the following substitutioria’ = 1/2)

K =2E?, (72)

fx) =Inx) —tIn(l—x), (73)
23,0

T = —(1’ 2) — S|n2 E, (74)

whereé is the scattering angle in center of momentum frame and the saddle point for the inte-
gration of moduli isxg = 1 . In the first scattering amplitude corresponding to &6), we can
identify theu (x) function as

(3,4 (et - eT2) T T (€"2 - k3)(eT - kg) | 1[e2 - k3
=|— — -k 2.k -
up(x) [ . (e ks)(e'? - ka) + . -
Equipped with this, we obtain the high-energy limit of the first amplitude,

]. (75)

2 T 1,2-1 2,31 T
2E (1 — ‘C)(e . kg)xo (1 - xo) m

— AUTEY 1 — 0% (1 - x0) @9 (76)

Next, we replace the second vertex operator in(g&g) by Eq.(67), and the 4-point function is
given by

1
/ dxiz[(eT.ks)(z,@ ¢ k)@, 3)} [(1 2 (2’3)]x(1*2>(1—x>(2*3). 77
M X
0

1—x X 1—x

Here we can identify the(x) function for saddle-point master formula, E@1)

(e -k3)(1,2)

unx)=—— -

[(2 4)+( )}f() (78)
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One can check thai; (xo) = u’;, (x0) =0, and

2(1,2)(2,3) (el - k3)

sz(l— x)z f//(x0)~ (79)

'y (xo) =
Thus, the amplitude associated with the massive statgpE}j.is given by

T

2 _ _
——Ezr(eT~k3)xél’2) 11— xp)?92 E2(1— 1)

M2
4
= VT E (L= 1 P (L - x0)® (80)

In the third case, after replacing the second vertex operator @@y by Eqg.(68), we get the
Wick contraction

1
17 (7 k) (2,3)71 12 2.3
/dxg[—ﬁ};x (1— )23 81)

The high-energy limit of this amplitude, after applying the master formula of saddle-point ap-
proximation, is

2 o 7 1.2-1 (2,3)-2 T
ME 'L'(e -kg)x (1—x) m
4
= —MﬁEz(l — )% (1 - x0) 2. (82)

In conclusion, from these results, Eq36), (80), (82) we find the ratios between the 4-
point amplitudes associated witx” ;)67 ,)[0, k), (L)) (" )|0,k), and (b~ ;)|0,k) to be
-2 -2 -2

1:+5 : — 47, in perfect agreement with Eq3), (27)and Eq.(49).

42. M?2=4

Our previous examples only involve one fermion operafor, -, , b* , . Since in the 4-point

functions with the fixed statelg, — photon,V3 4 — tachyons,zthe r%axin?]um fermion number of
the second vertex is three, it is of interest to see the pattern of stringy amplitudes associated with
the next massive vertices at? = 4.

At this mass level, the relevant states and the vertex operators are (il theost picture)

(67 ) (b" 1) (b 5)10,k) = yTylayle et (83)
2 -2 —2
(X)) (aly) (bf%)|o, ky=yToxToxTe ?eikX, (84)
To calculate 4-point functions, we can fix the first vert&x) to be a photon state in thel ghost
picture, Eq.(64), and the third and the fourth vertices to be tachyon state in the 0 ghost picture,
Eq. (65).

Since the applications of saddle-point approximation is essentially identical to previous cases,
we simply list the results of our calculations
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(bi%)(bf;)(bfg)w» k)
1
= /dxg le _¢leiklxl)(Iﬂszlﬁszalﬂsze_¢zeik2X2)(ksmﬂé”eik3x3)(k401pgeik4x4)>
0

_4fE3 31— 1312 (1 x0) @9, (85)

(azl)(‘le)(b_;)mvk)
1
=>/dx2 le —(Pleilel)(szXLzXLz —zbzelkzXz)(ks 1// etk3X3)(k4aw0 lk4X4))
0

= 8T E3r 2 (1— 1) 2x{M? (1 — x0) @Y. (86)

Combining these results, we conclude that the ratio betweelthe 4 vertices is given by
1
(bT3) (L 1) ()10, k) (@) (aly) (b24)10,0) = -5 :2=1:8 (87)

4.3. GO odd verticesat M2 =5

In addition to the stringy amplitudes associated with GSO even vertices we have calculated
in the previous subsections, we can also apply the same method to those associated with the
GSO odd vertices. While it is a common practice to project out the GSO odd states in order
to maintain spacetime supersymmetry, it turns out that we do find linear relation among these
amplitudes. This seems to suggest a hidden structure of superstring theory in the high-energy
limit.

To see this, we examine the vertices of odd GSO parity, at the massiével5. Based on
the power-counting rule as in the bosonic string case, we can identify the relevant vertices and
the associated vertex operators as follows

o 1 3)10, k) = lﬁT Y oX e” el s 88
( Tl)(bi_)(bf_)l k> 9 La Temde'* ( )
o 1 310, élﬂl‘ YroX e kX 8

( Ll)(bf_)(bf_)l k) 0 La Lemde'® ( 9)

To calculate 4-point functions, we can fix the first vertds) to be a tachyon state in thel
ghost picture,

Vi = e P1eifXa, (90)

and the third and the fourth vertices to be tachyon state in the 0 ghost picture,(@$EQ.
Since the applications of saddle-point approximation is essentially identical to previous cases,
we simply list the results of our calculations
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(«fy) (bi%)(bfg) |0, k)

1
:>/dx2 ¢1elk1X1)(l//T231ﬂL28XT2 —d)zelkng)(k wketk:;Xg)(k I/,U’ 1k4X4)>
0

‘% 33 (1—1)2x P (L — x) 2, (91)

(“51)(bf;)(bf§)|ov k)
1
=>fdx2 ¢1elk1X1)(wL28w2LzaXL2 —¢2 ‘kzxz)(k3ﬂﬂ§€ik3x3)(k%wgeik“x“))
0

4
f RAGLI SRS YO r)%xél’z)(l—xo)(2’3). (92)

Itis worth notmg that in the second calculations, we need to included@tly) andu’ (xg) terms

of the first order corrections in saddle-point approximation, (i), to get the correct answer.
Combining these results, we conclude that the ratio betweetthe 5 vertices is given by

(@f2) (b7 ) (b 5)10. k) (ely) (b ) (b 5)10, ) =2M%:1=10:1 (93)

Notice that here we also find an interesting connection between GSOM¥en4 amplitudes
and those of GSO odd parity &2 = 5. The high-energy limits of the four amplitudes, E(@5),
(86), (91), (92) are proportional to each other. and their ratios«dbe 8v/5:(—8): — 3.

5. Polarizations orthogonal to the scattering plane

In this section we consider high-energy scattering amplitudes of string states with polariza-
tionsesi, i =3,4,...,25, orthogonal to the scattering plane. We will present some examples
with saddle-point calculations and compare them with those calculated in Séct@will find
that they are all proportional to the previous ones considered before. These scattering amplitudes
are of subleading order in energy for the case of 26D open bosonic string theory. The existence
of these new high-energy scattering amplitudes is due to the worldsheet fermion exchange in the
correlation functions as we will see in the following examples. Our first example is to consider

Eqg.(69)and replaceﬁ andlp by 1// and wZTZl respectively
1 .
/ dx2 ((wflefdueiklxl) (w 2 aXTZ 7¢2€Zk2X2) (kg w elk3X3) (k40 wa lk4X4)> (94)
0

The calculation of Eq(94) is similar to that of Eq(69) except that, for this new case, one ends
up with only the first term in Eq(70), and the second and the third terms vanish. Remarkably,
the final answer is

_oE2(1— (12101, 23-1 Tt
( 77)( ) ( X0) E2(1_ ‘L’)3

= —4/TEX(1— )P (1 - x0)??, (95)
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which is proportional to E((.76). Our second example is again to repla}r{é andsz2 in EQ.(85)

by x/flT ! and wZTZ, respectively. One gets exactly the same answer agb}).The two examples
above seem to suggest that high-energy scattering of string states with polarizatians the
same as that of polarizatien up to a sign. Let us consider the third example to justify this point.
It is straightforward to show the following

1
[ dxel(wbultugte ety (uhufrugtoxfe e (o pgelta
0

x (kao UG €14))
=N[4E*1-1) - 4E*1-1)® - 4E*(1-1)]=0. (96)

On the other hand, if we assume the symmetry for all transverse polarization VECTSr the
scattering amplitudes, one can easily derive the same conclusion without detailed calculations.
Since replacing™’ polarization vectors of both vertices in E§6) by T will naturally leads to a

null result due to anticommuting property of fermions.

It is clear from the above calculations that the existence of these new high-energy scattering
amplitudes of string states with polarizatianys orthogonal to the scattering plane is due to the
worldsheet fermion exchange in the correlation functions. These fermion exchanges do not exist
in the pure bosonic string correlation functions and is, presumably, related to the high-energy
massive spacetime fermionic scattering amplitudes in the R-sector of the theory. Physically, the
high-energy scattering amplitudes of spacetime fermion will enjoy the symmetry of rotations
among different polarizations in the spin space and our results here seem to justify this observa-
tion. If this conjecture turns out to be true, then the list of vertices we considered i(lBys(21)
for high-energy stringy amplitudes should be extended and includes the casé$ wittplaced

2

by biil. Obviously, these new high-energy amplitudes create complications and textures for a

full understanding of stringy symmetry. Nevertheless, the claim that there is only one indepen-
dent high-energy scattering amplitude at each fixed mass level of the string spectrum persists in
the case of superstring theory, at least, for the NS sector of the theory.

6. Conclusion

In this paper we have explicitly calculated all high-energy scattering amplitudes of string
states with polarizations on the scattering plane of open superstring theory. In particular, the pro-
portionality constants among high-energy scattering amplitudes of different string states at each
fixed but arbitrary mass level are determined by using three different methods. These constants
are shown to originate from zero-norm states in the spectrum as in the case of open bosonic
string theory. In addition, we discover new high-energy scattering amplitudes, which are still
proportional to the previous ones, with polarizatienthogonal to the scattering plane. We con-
jecture the existence of a symmetry among high-energy scattering amplitudes with polarizations
eri ander. These scattering amplitudes are subleading order in energy for the case of open
bosonic string theory. The existence of these new high-energy scattering amplitudes is due to
the worldsheet fermion exchange in the correlation functions and is argued to be related to the
high-energy massive spacetime fermionic scattering amplitudes in the R-sector of the theory.
Finally, our study also suggests that the nature of GSO projection in superstring theory might
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be simplified in the high-energy limit. Hopefully, this is in connection with the conjecture that
supersymmetry is realized in broken phase without GSO projection in the open string[88jory

It would be of crucial importance to calculate high-energy massive fermion scattering ampli-
tudes in the R-sector to complete the proof of Gross’s two conjectures on high-energy symmetry
of superstring theory. The construction of genenabsive spacetime fermion vertex, involving
picture changing, will be the first step toward understanding of the high-energy behavior of su-
perstring theory.
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Appendix A. Solvethe Virasoro conditionsin the high-energy limit

Let repeat the Virasoro conditions on the general state at the mas34ével(2n — 1),

Gijalny =

S
Y215 12 T
[km WA, ®\u1\ T | ® [l [
mj r#1/2
my T
I 1+1/2 I+1/2
D3 P18 ] 8 P 3 P s B e
>1i=1
1/2 2
®‘”2/ ‘ “’m/lxz ®‘“1‘ ‘“m/ ®
/2,1+1/2
my/2 T
12 i+1 1/2 ~1/2 1/2
A X I O ol R 7
T
®\M1\ L, | & [,
r#1/2
mi—1/2 p
i +1 l 1/2 1-1/2 Al—1/2 1-1/2
+2 ) ' ‘ ‘ ‘“mz “’1 / ‘ |5 ‘ '"174/2‘
122 i=1
k K T
1/2 1/2 j j
o[ 7S @ Tuk] & }
j#l r#1/2,1-1/2
k j i K
1 v 2evil? 1 1 i 1 e
X — o’ N Al
(ml/z—l)!w_l/z Hjm/'m,! - [ mp! " (A1)

j=1 : r#1/2
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and
3/2 k T
3/2 32 j j
G = 3 7T v Q] 1k @ ] T
mj j=1 r
v 1 1 12 72 |7 32 32 |7
e bl Db L1 T o[-,

k i i K T
Qi) Juh,] &
j#L r#1/2,3/2

mj
T
I 1+3/2 1+3/2
+ZZZ‘M1‘ ‘I‘Lml‘®lﬂl l‘ ml+3/2‘
1>1i=1
T 5 T
3/2 3/2 J J
@37 [l R[ud-lwn] @
j#l r#£3/2,143/2
ms3/2 T
i+1] 3/2 ~3/2 3/2
+Z3 ‘/,Ll‘ ‘/L,::’Is@(—l)’ ‘vz/ ""vi/ ‘ m/a/z‘
5 T
®|ui|~--\%,» & Vil v,
j#3 r#3/2
mp-3/2 T
1 3/2 / —3/2] Az 32 [,-32
'ul Mm, Vnz—3/2
122,1#3 i=1
k K T
3/2 3/2 j j
o[ 12 Rl Th] & }
j#l r#3/2,1-3/2
k K
1 vy/% v,i/f/z 1 Ml /Lm 1 vy
« Sl . Lo (A.2)
_ 117382 H ™Mim ;! o l_[ y T
(mz/2 — 1! im; r£3/2
We then obtain the constrain equations
W12 12 : j J T
0=k2 ’”1 ‘ “’ml/z ®‘“1""‘Mmj Vil vm,
=1 r#1/2
mj T
I 1+1/2 I+1/2
s DI 17 RS R P - e A e
1>1i=1
T 5 T
1/2 1/2 J J
@y [il] Qledl-[un] @
j#l r#£1/2,141/2
mi/2 T
12 i+1 12 ~1/2 12
s [ S 1 X s [ B e e
i=2
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T j -
et |, v,
J#l r#1/2
mi_12 r
1 12 12 Az 2] 12
‘Ml‘ ‘Mm1‘®‘ ‘ Vimi_1/2
122 i=1
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1/2 1/2 J J
®‘V2 ‘ ‘le/z ®‘“1 'U“m/ ® vy (A.33)
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Taking the high-energy limit in the above equations by letting v;) — (L, T), and
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The indices{u{} are symmetric and can be chosen to hgvef {L} and {T'}, while {v]} are
antisymmetric and we keep them as what they are at this moment. Thus
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There are some undetermined parameters which carob&, in the above equations. However,
it is easy to see that both choice lead to the same equations. Therefore, we will set all of them to
be T in the following. Thus, the constrain equations become
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Next, we will deal with those antisymmetric indicés’}. In this case,
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there are much fewer
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Using the lemm#59), Egs.(A.9) and (A.10)reduce to
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From the first equation we have:
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Using Eqs(A.12) and (A.15)we get
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(A.15)

(A.16)
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then using Eq9A.14), (A.16) and (A.19)we obtain
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Eq.(A.16)leads to
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