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ABSTRACT 
Faced with increasingly large multicore chip designs, architects 
need fast and accurate simulations for their exploration of design 
spaces within a limited simulation time budget. In multithreaded 
applications, threads cannot run simultaneously. Sampling is 
commonly used to reduce simulation time, but conventional 
sampling barely detects the instantaneous program variations of 
synchronization events and the inconsistency between phases of 
each core. This work proposes a dynamic adjustment and partial 
sampling technique (DAPs), consisting of aggressive sampling, 
lazy sampling, and regular sampling, to overcome thread 
interference in multithreaded applications. Moreover, DAPs 
partially selects sampling cores to reduce the overhead of 
sampling inconsistent phases. 

Categories and Subject Descriptors 
B.2.2 [Performance Analysis and Design Aids]: Simulation 

General Terms 
Design, Measurement, Performance 

Keywords 
Dynamic adjustment and partial sampling simulation, 
Multithreaded/Multicore simulation. 

1. INTRODUCTION 
Faced with increasing gate counts and on-chip cache sizes in 

contemporary processors, architectural simulation has become 
important for exploring the design space of future system 
architectures and novel research ideas. This has raised the new 
challenge of simulation time; for example, as the workload’s 
input size must grow to fill the cache, so too does the simulation 
time and it may take hours or even days to simulate a complete 
workload. 

A modern architectural simulator is generally composed of 
two models: a functional model (FM) and a timing model (TM). 
The FM emulates the behavior of a target system and is only 
concerned with functional correctness, whereas the TM models 
the operation latency of micro-architectures that depend on the 

micro-operation generated by the FM. Along with accurate 
measurement, simulation speed has become a critical problem 
because of the ever-increasing complexity of systems. In fact, in 
an initial cycle of design space explorations, developers do not 
need a high-accuracy TM because of the very long simulation 
time, and, in light of this, many researchers have proposed a 
variety of methodologies to mitigate the simulation speed 
problem. Sampling is a well-known effective technique that can 
speed up the simulation and accurately predict performance, the 
key idea of sampling being that the simulator only runs the TM 
on certain selected sections in the benchmark’s execution stream 
and uses the FM on the other sections, known as “fast-
forwarding”.  

For single-threaded sampling, the SMARTS methodology [6] 
applies the statistical sampling length to the simulation. It uses the 
fixed instructions count to determine the sample lengths, whereas 
in SimFlex [7] a fixed-cycle-based sampling with more stable 
results is proposed. Another well-known sampling methodology 
is SimPoint [8] [9]. As with SMARTS, SimPoint executes 
sampling based on Basic Block Vectors (BBV). SimPoint needs 
an off-line full profile of the workload and the pre-processing 
must be redone if the workload’s inputs change. 

These studies have all sped up the simulation by using static 
sampling. They assume that an application consists of many 
repeatable phases; however, they do not take the feedback from 
the TM into account and so the sampling simulation may distort 
the result. Dynamic sampling [2] overcomes this drawback by 
monitoring internal statistics in fast-forwarded time and then 
determining when to change from the functional to the timing 
model. Argollo et al. [1] have developed COTSon for single-
threaded applications based on dynamic sampling. 

Although the above works [1], [2], [6]-[9] are all able to speed 
up the simulation, for multithreaded applications they may lead to 
significant estimation errors because they do not take into account 
the interactions between threads in fast-forwarded time. In 
addition, researchers have found that IPC is not a good metric for 
multithreaded applications. To obtain accurate simulation results, 
ESESC [12] have presented a Time-Based Sampling framework 
that can simulate any application type. Carlson et al. [11] 
observed that threads affect each other’s behavior and that 
conventional sampling does not apply to these multithreaded 
workloads. Therefore, their methodology tracked the 
synchronization event during fast-forwarding, and used 
application phase behavior to guide reliable sampling parameter 
selection. 

Nevertheless, the works to date have ignored thread variations 
in a multithreaded application and variations in performance 
resulting from inter-core communication and shared resource 
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competition. They usually use a fixed sampling length (cycles) in 
the timing model for different programs. Additionally, some 
multithreaded applications have many synchronization primitives 
that lead to a divergence between rates of progress of the threads, 
and using fixed sampling lengths in the application can distort the 
runtime simulation result. As such, not taking the interference of 
threads into account can lead to high simulation errors. 

Previous works for multithreaded applications or multicore 
architectures generally employ simultaneous sampling for all 
cores. This means that there is a global control to switch between 
the fast-forwarding and the timing period. However, the 
synchronization event of each core may not actually occur at the 
same time. To overcome these issues, we propose a Dynamic 
Adjustment and Partial sampling (DAPs) mechanism that 
dynamically adjusts not only the sampling length but also 
sampling frequency according to runtime multithreaded 
application behavior. According to the sampling length and 
frequency, we classify sampling into three categories: regular, 
aggressive, and lazy sampling. Regular sampling is periodic 
sampling and aggressive sampling has a higher sampling 
frequency, while lazy sampling has both a lower sampling length 
and a lower sampling frequency. 
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Figure 1. Multithreaded Application periodicity. 
Figure 1 demonstrates the progress of a multithreaded 

application with respect to cycle time. Figure 1(a) indicates the 
phase of the program that faces a rapid change in the IPC because 
synchronization events occur in the phase. DAPs will detect the 
phase and change to aggressive sampling for more accurate result. 
There are various phases in a program during the execution. As 
Figure 1(b) shows, DAPs detects a new phase, and then chooses 
regular sampling for detailed simulation. In Figure 1(c), it shows 
an opportunity for speeding up the simulation. By a footprints 
table of DAPs’ locality-phase detection, it can determine whether 
a phase has been executed in the past. DAPs will use lazy 
sampling for the phase if it has been executed before. Although 
lazy sampling introduces result that is more inaccurate, it 
decreases the simulation time by fewer sampling lengths and 
frequencies. Moreover, by the past IPC of the repeated phase, 
DAPs can decrease the error rate caused by lazy sampling. Figure 
1 shows the overlap of two threads. Synchronization events of 
these threads do not happen simultaneously. In previous works, if 
a core changes to detailed simulation, the others also do detailed 
simulation. DAPs will spend much time on simultaneously 
detailed simulation. Therefore, we propose a partial selection 
mechanism on DAPs in order to mitigate the drawback. In other 
words, DAPs allows one core to execute simulation with 
aggressive sampling and the others to execute fast-forwarded 
simulation at the same time. 

Furthermore, there is a focus on synchronization events. If 
one thread experiences a synchronization event, then the program 
phase is deemed unstable and the DAPs will change from regular 

to aggressive sampling for higher accuracy. Although aggressive 
sampling can result in high accuracy when synchronization events 
occur, it can also slow down the simulation speed. In order to 
eliminate this problem, we introduce partial sampling, which 
gives control of sampling of each core to its own sampling 
switcher instead of them all being globally controlled. 

This paper is the first to present a dynamic adjustment and 
partial sampling methodology that dynamically chooses an 
appropriate sampling length and frequency for multithreaded 
programs in a runtime simulation. The challenge in doing so is to 
detect similar phases by locality-phase detections and 
synchronization events. 

The remainder of this paper is organized as follows: first, we 
review related works; next, we present the DAPs framework and 
sampling mechanism; Section 4 presents the experimental setup, 
benchmarks, and sampling parameters; Section 5 shows the 
results of the DAPs framework; and Section 6 concludes. 

2. BACKGROUND and RELATED WORK 
In this section, we briefly describe the target simulator on 

which we based the implementation of our sampling 
methodologies. We also give a brief introduction to relevant 
previous research on sampling techniques. 

2.1 Transformer 
Transformer [3] is a loosely coupled functional-driven full-

system simulation for multicore designs. The FM of Transformer 
is QEMU [4] , which is a generic and open-source full-system 
machine emulator and virtual machine. It uses a Dynamic Binary 
Translation (DBT) for translating the target instructions into the 
host instructions. Moreover, QEMU supports many different 
ISAs without modification by means of a Tiny Code Generator 
(TCG). It translates target machine code into common 
intermediate code (IR) and uses TCG operation to convert the 
Intermediate Representation (IR) into host code. Transformer 
uses QEMU’s DBT to obtain execution information such as 
instructions and data access information and then passes these to 
the TM via shared buffers. The TM can then carry out detailed 
pipeline and cache simulation in accordance with the received 
execution information. 

The above-mentioned TM in Transformer is GEMS [5]. 
Differing from Transformer, the original GEMS is a timing-first 
simulation that needs to wait for the TM to trigger the FM, Simics. 
Transformer uses QEMU to replace Simics and changes the 
architecture to functional-driven simulation. Guaranteeing cycle 
accuracy, Transformer adds a divergence detection mechanism to 
handle branch “mis-prediction”, interrupt or exception handling, 
shared data access order, and shared page access order. According 
to the correct path of QEMU, Transformer can detect program 
divergence. In order to ensure shared data access order, the 
Memory Access Table (MAT) records the shared data access 
order in the FM, and the TM checks whether the order is correct. 

2.2 Sampling Methodologies 
The goal of a sampled simulation is to simulate a number of 

sampling units instead of the full program stream. For a 
multithreaded application, the simulation must take into account 
the interference between and variation within each thread. For this 
reason, previous works used Time-Based Sampling (TBS) rather 
than Instruction-Based Sampling (IBS). 

ESESC [12] is one sampling methodology that uses time-
based sampling. Because there is no timing information in the FM, 
ESESC uses IPC prediction to decide when to change the FM to 
the TM. ESESC evaluates three different prediction methods. The 
first one is the Naive method. It assumes that IPC equals one in 



the FM. The second is the Last method. The Last method uses the 
last estimated IPC in the detailed stage to predict the next IPC. 
The third is the Weighted Moving Average, which uses a weighted 
average of the last three to five samples to predict the next IPC. 

Carlson et al. [11] proposed a multithreaded-application 
sampling methodology based on Sniper [10]. They showed that 
not only per-thread IPC but also inter-thread interactions can 
efficiently increase the simulation accuracy. For this reason, the 
methodology also simulates synchronization events in the fast-
forwarded period. Moreover, they found optimized periodicity in 
multithreaded programs. It is impossible for various applications 
to have the same length of periodicity, and even in the same 
application the length of periodicity changes. Thus, they used the 
concept of BBV to determine the best periodicity of the program 
and derive the optimal sampling parameters. The disadvantage of 
this methodology is that it needs an off-line profile before running 
an application, and it is also unsuitable for programs with non-
periodic behavior. 

3. THE DAPs FRAMEWORK 
This section presents a framework for the Dynamic 

Adjustment and Partial sampling (DAPs) simulation. DAPs 
applies dynamically adjusting sampling methodologies according 
to the detected properties of the phases to enhance simulation-
based performance estimations. We design three sampling 
mechanisms to reduce the overhead of the timing simulation by 
skipping the limited intervals. 

3.1 Overview 
Figure 2 shows the simulation framework based on 

Transformer [3] and the design challenges in 2(c). DAPs can 
dynamically change the sampling length and sampling frequency 
in runtime according to the features of synchronization events in 
multithreaded applications and instruction cache locality. In 
DAPs, there are two main additional components to decide, 
control, and perform sampling methodologies. One is an event 
detector acquiring specified features such as synchronization 
instructions, repeated phases, and sampling core selection to 
trigger suitable sampling methodologies, and the other is a 
sampling controller, which is used to select the sampling policies 
and pass the instruction flow to the timing model. 

In order to execute a suitable sampling methodology during 
the various program phases, we propose three components to 
determine the sampling methodology used. The first component 
is a synchronization monitor, which captures FM runtime 
information. If one thread executes a LOCK event in the FM, the 
synchronization monitor will be triggered and will notify the 
centralized sampling controller to change its sampling 
methodology. The second component is locality-phase detection. 
This considers the relationship between program phase and cache 
locality. We add an instruction cache to the FM, and, as a result, 
locality-phase detection can receive information about cache 
locality. Locality-phase detection can distinguish whether a phase 
has been executed by virtue of the information received from the 
instruction cache. The last component is a partial selection. 
Because we propose multiple sampling methodologies to fit the 
program phases, this may induce overheads in the TM if we need 
to sample all cores simultaneously. Partial selection can solve this 
problem. 

As Figure 2 shows, we have provided a centralized sampling 
controller to manage the sampling parameters and control the 
timing simulation, executing in either detailed mode or fast-
forward mode. In our multiple sampling methodologies 
mechanism, the sampling controller manages three sampling 

parameters: sampling length (SL), sampling frequency (SF), and 
sampling core (SC). SL determines how long the period of the 
detailed mode is. As mentioned, every program has its own phase 
and even a single program can have many phases. As such, using 
the same phase length for different programs is unsuitable, 
especially for multithreaded applications. In addition, 
performance metrics captured during the detailed period can 
represent a whole phase that contains fast-forwarding, warm-up, 
and detailed period itself. This is important for deciding the length 
of a detailed period in runtime. The second parameter is SF. SF 
determines how often the detailed period occurs. SF with high 
frequency means that the detailed period occurs often; it therefore 
needs to shorten the fast-forwarding period to shrink the sampling 
length. On the contrary, a low SF has a low frequency of 
occurrence of detailed periods. In general, a higher frequency of 
detailed periods will achieve higher accuracy, but the overhead is 
also increased. The centralized sampling controller must 
determine the best balance for accuracy and performance by 
dynamically adjusting SF. The last parameter is SC. This 
indicates which core needs to perform the sampling. Because 
every core has its own phase behavior, the centralized sampling 
controller needs to control each shared buffer per core. We adopt 
different sampling methodologies for each core. If all the 
simulated cores in the TM need to enter the detailed period 
simultaneously when one of them does, it will lead to an increase 
in simulation time. Hence, SC is an important consideration. The 
TM can perform partial cores during the detailed period while the 
other cores execute in the fast-forward period. 
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Figure 2. Simulation framework. 

Figure 2(a) shows that core 0 runs during the detailed period. 
In a step-by-step fashion, it simulates all the instructions in the 
TM. In the fast-forward period, a pseudo instruction is 
implemented to identify how many instructions can be skipped by 
the fast-forwarding period, as shown in Figure 2(b). 

3.2 Aggressive Sampling Methodology 
DAPs applies a new sampling mechanism for multithreaded 

applications, thus it needs to capture a phenomenon that has high 
correlation with runtime program behavior for multithreaded 
applications. Synchronization primitives protect the correction of 
shared data. Synchronization primitives can be divided into three 
types: locks, barriers, and conditions. When a synchronization 
event occurs in a thread, its behavior may be affected. For 
example, if thread 0 meets a lock event and it does not obtain the 
lock key because the lock key has been acquired by another, then 
the thread may be assigned to busy-waiting or sleep by the OS 
scheduler. At this point, the IPC of thread 0 will be very low or 
even zero. Hence, when the thread meets the synchronization 
primitive, the original phase behavior will be changed. DAPs 
aims to capture this phenomenon during the detailed period. This 
phenomenon can cause unstable and extremely low performance 
metrics. 



3.2.1 Synchronization Monitor 
In order to capture the synchronization phenomenon, we 

propose a synchronization monitor in DAPs and the 
synchronization monitor obtains the phenomenon from a tracer 
added to the FM. 

As shown in Figure 3, we add a tracer to the frontend of the 
TCG, which converts the guest instruction to IR. If the tracer 
determines that this guest code has a synchronization primitive, it 
will add a helper function for obtaining trace information. In 
many ISAs—X86 ISA, for example—LOCK is an instruction 
prefix. It applies to some atomic instructions that it executes read-
modify-write on memory, such as INC and XCHG. LOCK 
ensures that the core has exclusive ownership of the shared data 
for the duration of the operation, and provides certain additional 
ordering guarantees. Consequently, when the tracer detects that 
the LOCK instructions are being carried out, the tracer will notify 
the synchronization monitor and the monitor can then trigger the 
sampling controller to change the sampling methodology to 
aggressive sampling. 

Guest Code

IR Code

Host Code

TBTBTB

Dose guest op code 
need to be traced?

Ye
s

Translate guest code 
to IR code by 

TCG operations

No

Tracer

Sync.
Monitor

Sync. event

gen_intermediate_code()

tcg_gen_code()

Add helper 
function 

for getting 
trace info

 
Figure 3. The mechanism of the synchronization monitor. 

3.3 Lazy Sampling Methodology 
DAPs increases detailed period times because of the addition 

of aggressive sampling. Even though it avoids incorrect 
performance estimation, it leads to additional simulation time 
overhead. Lau et al. [14] takes advantage of a program with 
similar behavior at different execution times to enhance the 
simulation speed; however, DAPs does not use the idea of the 
basic block. Finding a detailed and precise phase is unnecessary 
for DAPs and it simply needs a coarse-grained phase detection to 
classify and make changes to lazy sampling. In the architecture 
design, caches work based on the locality of program behavior. 
For that reason, we have added instruction caches to the FM and 
proposed runtime locality-phase detection in DAPs, as shown in 
Figure 2. 
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Figure 4. The mechanism of locality-phase detection. 
Locality-phase detection uses the features of caches and the 

locality of program behavior to detect phase. Every core has 
different rates of progress in multithreaded applications. DAPs 
adds instruction caches to each core for detecting instruction 
cache miss streams. As shown in Figure 4, the cache miss address 
will pass through a hash function and receive an index to map to 
an accumulator table. The accumulator table records the number 
of the instruction when each cache miss occurs until a certain 
interval elapses. Each cache miss stream can generate a vector 
with miss instruction counts from the accumulator table. After the 
interval elapses, the locality-phase detection compares the current 
vector with the vectors that have been executed in a past footprints 
table. If there is the same vector in the past footprints table, this 

means that the miss stream has been executed; however, using the 
strict criterion, a fully matched stream is hard to identify. Because 
there is variability in the FM, even the number of instructions in 
the same basic block may be different when it is repeated. To 
solve this problem, the locality-phase detection uses the concept 
of Manhattan distance. If the two vectors are similar, then the 
Manhattan distance of these two vectors will be small. On the 
contrary, if the two vectors are diverse, then the Manhattan 
distance will be large. DAPs defines a threshold to decide what 
size Manhattan distance suffices to regard two vectors as the same. 
Not only the threshold but also the interval size can affect this 
decision. The value of the threshold interval will be discussed in 
Chapter 4. 

Fang et al. [13] proposed a Multi-Level Phase Analysis 
(MLPA) that can identify a coarse-grained interval just by the 
fine-grained intervals at the beginning of its execution. 
Nevertheless, DAPs does not define the unambiguous coarse-
grained interval length. If the vectors have uninterrupted identical 
vectors in the past footprints table, then locality-phase detection 
can define these continuous vectors to be a phase. The locality-
phase detection will then notify the centralized sampling 
controller because the same phase has been executed. 
3.4 Partial Selection Mechanism 

Previous works [10], [12] have carried out detailed periods to 
obtain simultaneous performance metrics for all cores. DAPs 
triggers aggressive sampling when one of the cores performs a 
synchronization event. However, it leads to an increase in the 
number of detailed periods, because the synchronization events of 
each core may not occur at the same time. The partial selection 
mechanism lets each core has its own sampling switcher to reduce 
the overhead. Figure 5 shows that previous works perform more 
detailed phases than CPU0 or CPU1 in DAPs because of 
simultaneously detailed simulation. 
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Figure 5. Example of partial selection. 

3.5 Sampling Methodology Controller 
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Figure 6. Control flow of sampling methodologies 
Depending on the situation, the sampling controller adjusts 

the sampling parameters according to the appropriate sampling 
methodology. It uses the last one-fifth of the shortest fast-
forwarding length as a window of signal detection. We mark the 
locality-phase detection for high priority, the synchronization 
event for medium priority, and the other for low. It detects the 
first event in the window and bases on the priority to switch the 
methodology. Figure 6 shows a finite-state machine of the 



controller. At the beginning, DAPs performs under the regular 
sampling methodology with default values for SL, SF, and SC. 
When the synchronization monitor passes a synchronization 
event to the controller, regular sampling will change to aggressive 
sampling with high SF to handle the performance variations. 
After a number of repetitions of aggressive sampling, it returns to 
regular sampling if there are no other events. The other statement 
is lazy sampling. After the sampling controller receives the 
appropriate signal from the locality-phase detection, the simulator 
switches to lazy sampling with short SL and low SF. As for SC, 
the controller will use partial selection to decide which cores need 
to perform sampling. Figure 6 shows the detailed state transitions. 

4. EXPERIMENTS SETUP 
In the proposed DAPs experiment, we implement the 

sampling methodologies in Transformer simulator and run the 
experiments on Intel○R  Xeon○R  Processor E5-2620 with two 
threads, one is for the FM and another is for the TM. The 
additional components are in the FM. Because the FM is much 
faster than TM, the overhead of them will be hidden. Furthermore, 
we add 3 different execution modes: “FF” only emulates the 
functional behaviors; “Warm-up” performs detailed timing 
simulation for warm-up timing models, but statistics are 
discarded; “Detailed” performs detailed timing simulation to 
collect statistics. The unit for the sampling modes is cycles (TBS). 

Table 1. The experimental environment 
Parameter Value 

Num. of cores 1/4/8 
Dispatch width 4 micro-operations 
Reorder buffer 128 entries 

LSQ 64 
Branch predictor YAGS predictor [15] 
Cache line size 64 B 

Functional units 4 Int-ADD/MUL/ 2 Int-DIV/ 2 LD/ST/ 2 
Branch/ 4 FP-ADD/ 2 FP-MUL/DIV/SQRT 

I$ (in FM) 1KB/2 ways 
D$ 64KB/2 ways/2 cycles 

Unified L2 4MB / 8 ways / shared / 20 cycles 
Coherence MOESI 

Mem. 200 cycles 
Benchmarks PARSEC, SPLASH-2 
Table 1 shows the target system parameters configured in the 

TM and the multithreaded benchmarks in our evaluation. This 
work evaluate with parallel benchmarks, SPLASH-2 and 
PARSEC. This experiment constructs 1-8 cores with private 
separate L1 caches and a unified shared L2 cache system as 
MOESI directory cache-coherency protocol. 

In Transformer, the FM is responsible to boot an OS and 
trigger the TM. We discard the initial parts of the benchmark. 
After the FM runs into a Region of Interest (ROI), the 
parallelization part, in the benchmark, the FM triggers the TM to 
start simulating. At the same time, the sampling mechanism also 
starts until the finish of ROI and the TM finishes execution, too. 

4.1 Selecting Sampling Parameters 
In order to characterize DAPs, we first analyze the impact of 

different parameters for our work. We divide them into two parts, 
one is the locality-phase detection and another is three parameters 
in the centralized sampling controller. 

4.1.1 Locality-phase Detection 
We set the instruction caches in the FM with a small size 

(1KB) to occur more cache misses for finding more locality-
phases. There are two parameters, interval size and threshold, in 
the locality-phase detection. Without timing information, the 

locality-phase detection uses the number of instructions as a 
detection interval. DAPs simulates with regular and lazy 
methodologies to fix the parameters. Figure 7 illustrates that we 
can choose 10K instructions as one interval and threshold 100 for 
the loose locality-phase detection. 

Sampling techniques use the metrics in detailed mode to 
estimate performances. We set the warm-up period length which 
is two times the length of the detailed period to decide the detailed 
length. Depending on the IPC coefficient of variation, DAPs can 
decide the optimum detailed length as shown in Figure 9. The 
coefficient of variation is a normalized measure of dispersion of 
a probability distribution or frequency distribution. It can be 
chosen by low coefficient of variation. So DAPs sets the length 
of detailed period is 10K cycles and warm-up period is 20K cycles. 
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Figure 7. Analysis of error rate with locality-phase detection 

4.1.2 FF, Warm-up and Detailed Length 
The execution lengths of the three execution modes determine 

what the sampling frequency of our sampling methodologies. 
DAPs uses warm-up mode to supply the TM with data of branch 
predictors, pipeline, and caches, etc. Figure 8 shows the 
comparison about two kinds of warm-up lengths. It shows that the 
divergence of these two kinds of warm-up lengths for 4 cores and 
8 cores is bigger when the detailed length becomes longer. 
Accordingly, DAPs uses the two times of the detailed length as 
the warm-up length. 
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Figure 8. Comparison with warm-up interval length 
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Figure 9. IPC coefficient of variation over detailed length 
Sampling frequency allows us to control the level of sampling 

methodologies. Dynamically adjusting the fast-forwarding length 
achieves the diverse sampling frequencies. Figure 10 shows that 
the IPC error rates are tending to be stable and enduring when the 
sampling frequency is higher than 1/200. Swaptions becomes 
worse at high frequencies, but it contains few synchronization 
primitives. Therefore, we adopt the sampling frequencies, from 
1/200 to 1/25, for our sampling methodologies. 



In conclusion, all of the sampling parameters are shown in 
Table 2. In order to reduce the sampling overhead, we use the half 
detailed length for the lazy sampling because it simulates an 
executed program phase. The repeated program phase simulates 
with the regular sampling for the first time; therefore, we correct 
the sampling IPC with last sampled IPC. 
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Figure 10. Error rate over sampling frequency. 

Table 2. Sampling parameters. 

Length(Cycles) Aggressive 
sampling 

Regular 
sampling 

Lazy  
sampling 

Fast-forwarding 220K 470K 985K 
Warm-up 20K 20K 10K 

Detailed (SL) 10K 10K 5K 

5. RESULTS 
All of our results are compared against full-timing run and the 

TBS only with regular sampling (ESESC without memory warm-
up). There are accuracy and speedup results for comparison. 

Figure 11 shows the error rate of IPC (normalized by full-
timing run) for comparing different configurations (1, 4, and 8 
cores). We observe the average error rates of each are 1.8%, 2.3% 
and 5% respectively. DAPs provides the synchronization monitor 
to find the synchronization primitive. In fluidanimate and 
streamcluster, the results show that DAPs reduces 7% error rates 
compared to TBS because these benchmarks contain many 
synchronization instructions in runtime. Blacksholes running on 
8 cores has a performance drop in full-timing run. It causes that 
both DAPs and TBS show the high error rates. 

 
Figure 11. IPC error rate per benchmark. 

Comparing the speedup of simulation time, we distribute the 
simulation time into three sampling methodologies, regular, 
aggressive, and lazy, as shown in Figure 12. DAPs spends 
simulation times to control the various sampling parameters due 
to the multiple sampling methodologies. We mark the lazy 

sampling for high priority to recover the simulation speed for the 
aggressive sampling. In fluidanimate, streamcluster, swaptions, 
DAPs has a gain of simulation speed via lazy sampling. The 
simulation speed of DAPs is 1.5x~1.6x faster than TBS. 

6. CONCLUSION 
In this study, we proposed DAPs, a dynamic adjustment and 

partial sampling simulation framework, to rapidly simulate 
multithreaded applications and multicore architectures with 
minimal error rate raise. DAPs is more than 16x and 1.5x speedup 
compared to Transformer and TBS. DAPs presents aggressive 
sampling, which is used to ensure the timing accuracy, to detect 
the instantaneous variations that is caused by the synchronization 
events. Besides, using a locality-phase detection to identify the 
phase behavior, controller can apply the lazy sampling. Finally, 
DAPs uses partial selection to let each core has its own sampling 
switcher to reduce the overhead. 
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Figure 12. Speedup result per benchmark. 
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