
Dependency-Based Search for Connect6

I-Chen Wu(&), Hao-Hua Kang, Hung-Hsuan Lin, Ping-Hung Lin,
Ting-Han Wei, and Chieh-Min Chang

Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan

{icwu,kangbb,stanleylin,bhlin,tinghan,

aup}@java.csie.nctu.edu.tw

Abstract. Allis proposed dependency-based search (DBS) to solve Go-Moku,
a kind of five-in-a-row game. DBS is critical for threat space search (TSS)
when there are many independent or nearly independent TSS areas. Similarly,
DBS is also important for the game Connect6, a kind of six-in-a-row game with
two pieces per move. Unfortunately, the rule that two pieces are played per
move in Connect6 makes DBS extremely difficult to apply to Connect6 pro-
grams. This paper is the first attempt to apply DBS to Connect6 programs. The
targeted program is NCTU6, which won Connect6 tournaments in the Com-
puter Olympiad twice and defeated many professional players in Man-Machine
Connect6 championships. The experimental results show that DBS yields a
speedup factor of 4.12 on average, and up to 50 for some hard positions.

Keywords: Connect6 � NCTU6 � Dependency-based search � Threat-space
search

1 Introduction

Dependency-based search (DB Search), proposed by Victor Allis et al. [1, 2], is a
search method which explores search under dependency constraints. It was success-
fully used to solve games such as Double-Letter Puzzle, Connect-four and Go-Moku
[3]. Go-Moku is a kind of five-in-a-row game without prohibited moves. A general-
ized family of k-in-a-row games [9, 10] were introduced by Wu et al., and Connect6 is
an interesting one in the family with the following rules [14]. Two players, named
Black and White, alternately place two pieces on empty squares1 of a 19 9 19 Go
board in each turn, except that Black, who plays first, places one piece initially. The
player who gets k consecutive pieces of his own first wins. The game is a tie when the
board is filled up without either player winning.

Threats are the key to winning these types of games. For example, in Go-Moku, a
four (a threat) forces the opponent to defend, or the opponent loses. Threat space
search (TSS) is an important winning strategy for these games, where a winning path
is found through threats. For example, in the Go-Moku community [2], victory-by-
continuous-fours (VCF) is a well-known strategy, whereby a winning sequence is

1 Practically, stones are placed on empty intersections of Renju or Go boards. In this paper, when we
say squares, we mean intersections.

H.J. van den Herik et al. (Eds.): CG 2013, LNCS 8427, pp. 1–13, 2014.
DOI: 10.1007/978-3-319-09165-5_1, � Springer International Publishing Switzerland 2014



achieved through continuously playing fours (threats). Since the opponent’s choice of
possible replies is limited, the search space based on threats is greatly reduced. Thus,
TSS can search much deeper than regular search methods.

While TSS shows its promise in finding the winning sequence, further improve-
ments are possible when there are independent or nearly independent TSS areas. An
example was given in [2] (cf. Diagram 3a of [2]). Hence, Allis et al. [11, 12] proposed
DBS to help minimize the state space of TSS. The method removes unnecessary
independent threats and focuses on dependency relations. However, some threats may
be independent at a given point in time but mutually dependent later on. Allis et al.
also proposed a method called ‘‘combination’’ to help solve this problem.

The above issue is also critical to Connect6 as well as other k-in-a-row games. For
Connect6, similarly, there may be independent or nearly independent TSS areas,
especially during the end game phase where there are usually many independent TSS
areas. Unfortunately, independent TSS areas are more likely to become mutually
dependent for Connect6 due to the property that two pieces are played for every move.

This paper is the first attempt to apply DBS to Connect6 programs. We give our
definitions and notation for DBS in Connect6 in Sect. 2, propose to construct a
dependency-based hypergraph to identify dependencies in Sect. 3, and propose some
methods for DBS in Sect. 4. Our experiments were run based on our Connect6 pro-
gram, named NCTU6, which won Connect6 tournaments [5, 10, 13, 15–17] several
times from 2006 to 2011, and defeated many top-level human Connect6 players [6] in
man-machine Connect6 championships from 2008 to 2011. Our experimental results
in Sect. 5 show that NCTU6 with these methods was speeded up about 4.12 times in
average when compared to the original NCTU6. Also, for some hard positions, the
speedup was up to 50 times. Section 6 makes concluding remarks. Due to paper size
limitation, the background for Connect6 is omitted. We directly follow the termi-
nologies in [9, 10], such as threats, single-threat, double-threat, victory by continuous
double-threat-or-more moves (VCDT), and victory by continuous single-threat-or-
more moves (VCST).

2 Definitions and Notation

This section gives definitions and notations related to TSS. For simplicity of dis-
cussion, let the attacker indicate the player who we want to prove to win, and the
defender the other. Let a move m ¼ s; s0ð Þ be defined as a move from a position s to
another position s0. The set of pieces of move m is denoted by P mð Þ; and the set of
threats generated by move m is denoted by T mð Þ. A sequence of moves w is

w ¼ hm1;m2; . . .;m2ti; where t 2 N:

In w, all m2iþ1 moves are attacker moves, while all m2i moves are defender moves.
If all attacker moves are double-threat-or-more, the sequence is called a continuous
double-threat-or-more sequence or a CDT. If the last attacker move m2t�1 is three-
threat-or-more, the attacker wins in this CDT sequence, which is called a lead-to-win
CDT. If all attacker moves are one-threat-or-more in a sequence, it is a CST. In this
paper, only CDT is discussed for simplicity.

2 I.-C. Wu et al.



For example, a sequence hma;mb;mc;md;me;mf ;mg;mhi is illustrated in Fig. 1(a)
below. P mað Þ contains the two black pieces marked with a. Additionally, T mað Þ
contains a double-threat, four black pieces highlighted with a blue rectangle in
Fig. 1(a). The move mc contains two single threats (STs) to form a double-threat (DT),
so T mcð Þ contains eight black pieces. The sequence is a CDT since all Black moves
are double-threats, and is a lead-to-win CDT since the last Black move mg has three
threats.

A lead-to-win CDT w does not imply its initial position, denoted by rðwÞ; is
winning, since a variety of defensive moves are possible for the defender. In order to
prove that a given initial position r is winning, we need to prove the following:
9m1; 8m2; 9m3. . .; 8m2t such that a sequence hm1;m2;m3; . . .;m2ti starting from r are
CDTs. In the paper [17, 18], it is clear to see that the complexity becomes dramatically
smaller if we conceptually allow the defender to play all defensive positions at once,
which we refer to as a conservative defense. For example, all the White moves in
Fig. 1(b) are conservative defenses. Thus, we define the sequence of moves with
conservative defenses in Definition 1.

Definition 1: A CDT w ¼ hm1;m2; . . .;m2ti is called a conservative CDT or CCDT,
if all defender moves m2i are conservative defenses. Since conservative defenses are
fixed and unique, we can combine both moves hm2i�1;m2ii into a macro-move Mi. Let
MA

i denote attacker move m2i�1; MD
i defender move m2i. Then, a CCDT can be

represented as a sequence of macro moves W as follows.

W ¼ hM1;M2; . . .;Mti where t 2 N: h

Since conservative defenses contain all possible defender moves, one important
property is: if a CCDT sequence W is lead-to-win, the initial position rðWÞ is a win for
the attacker, and W is also a VCDT. As illustrated in Fig. 1(b), W ¼ hMa;Mb;Mc;Mdi
is a VCDT, where Mx ¼ hmx;mx0 i for all x ¼ a; b; c; d:

Definition 2: In a CCDT W defined as above, a macro-move Mj is said to depend on

Mi; denoted by Mi � Mj, if PðMA
i Þ \T MA

j

� �
6¼ ;, where i\j: h

(a) (b) (c)

Fig. 1. (a) A lead-to-win CDT, (b) a CCDT with the same attacker moves as (a), and (c)
another CCDT.

Dependency-Based Search for Connect6 3



Let us illustrate a dependency relation using the CCDT in Fig. 1(b). We have
Ma � Mb due to the square at F6. Similarly, we have Mb � Mc;Ma � Md and
Mc � Md, but not Mb � Md; denoted by Mb§Md: Another illustration is in Fig. 1(c),
where Ma � Md and Mc � Md; but Ma§Mb and Ma§Mc; implying Mb and Mc are
independent of Ma. Thus, Md is a combination move from Ma and Mc.

3 Dependency-Based Hypergraph

For Go-Moku or Renju [8], the dependencies of moves can be represented by a
directed graph straightforwardly. However, for Connect6 (where each move includes
two pieces), if we directly draw the dependencies between macro-moves, the
dependency graph becomes very sophisticated. In order to simplify the dependency
graph, we split those double-threat moves with two single-threats into half-moves.
Now, we classify all double-threat moves into three categories as follows.

• T I
ST : the set of double-threat moves M with two independent single-threats. Each of

the two attacker pieces, p1 and p2 in PðMAÞ; generates one single-threat indepen-
dently. More specifically, let the macro-move be divided into two half-moves,
M1 ¼ M1A;M1D and M2 ¼ hM2A;M2Di; where M1A ¼ fp1g; M2A ¼ fp2g; and M1D

and M2D are the sets of conservative defenses to M1A and M2A respectively. An
example is shown in Fig. 2(a). Obviously, there is no dependency between M1 and
M2. Both M1 and M2 are primitive macro-moves or primitive moves, defined as the
moves with the least number of pieces which can generate threats.

• T D
ST : the set of double-threat moves M with two dependent single-threats. Let p1

and p2 denote the two attacker pieces in PðMAÞ. Without loss of generality, let M1

be a half-move containing p1 and generating one single-threat, and let M2 be
another containing p2 and generating another single-threat depending on M1. An
example is shown in Fig. 2(b). According to the definition of dependency, we have
M1 � M2. Both M1 and M2 are also primitive moves.

• T DT : the set of other double-threat moves, which are usually generated from live
twos. An example is shown in Fig. 2(c). In this case, the macro-move cannot be
divided into two half-moves since each piece alone would not form a threat. The
move M itself is a primitive move.

(a) (b) (c)

Fig. 2. Three categories of double-threat moves. (a) T I
ST (b) T D

ST (c) T DT .

4 I.-C. Wu et al.



For a VCDT sequence W ¼ hM1;M2; . . .;Mti, let all macro-moves be translated
into primitive moves as above. Then, the dependencies of these primitive moves can
be drawn into a directed acyclic hypergraph, called a dependency-based hypergraph
(DBH) in this paper. Formally, a DBH G is defined to be ðV;EÞ; where V is the set of
vertices and E is the set of hyperedges. Each vertex V in V represents a position. The
root, Vr, represents the initial position and has an indegree of 0. All other vertices have
an indegree of 1; that is, for every V other than Vr, there is a single corresponding
incoming hyperedge E.

Each hyperedge E ¼ ð V1;V2; . . .;Vkf g;VÞ in E represents a primitive move,
where V1;V2; . . .;Vkf g are the sources and V is the destination. Let Ei be the corre-
sponding hyperedge of Vi. Then, the condition Ei � E must hold. On the other hand,
for every primitive move E0 where E

0 � E, one of the hyperedges E1;E2; . . .;Ek must
represent E

0
. However, if E does not depend on any moves, then E ¼ ð Vrf g;VÞ. For

consistency, let EA denote the attacker move of E and ED the defender move.

The DBH G is constructed from macro moves one by one. For simplicity, we first
consider building G from moves in a given CCDT W ¼ hM1;M2; . . .;Mti by the
procedure BUILDPSI shown as above. In practice, during the search, moves are added to
G as they are traversed, so BUILDPSI is not actually used. Each move M is checked in
ADDMOVE and the corresponding hyperedge and vertex are generated. In the case that
M 2 T DT ;M is transferred into one hyperedge E and inserted into G via ADDE. In the
case that M 2 T I

ST U T D
ST , M is split into two half-moves and then respectively

Dependency-Based Search for Connect6 5



translated into two hyperedges E1 and E2, which are then inserted into G (let E1 � E2

if M 2 T D
ST ) using ADDE. In the rest of this paper, EðMÞ denotes the set of hyperedges

corresponding to M, namely fE1;E2g for both T I
ST and T D

ST , and fEg for T DT .
In the procedure ADDE for adding a hyperedge E, find all the hyperedges E

0
in G

that satisfy E
0 � E, then let the destination of E

0
be one of the sources of E. If no

dependent hyperedges are found, put Vr into the set of sources of E.
Furthermore, DBH can be constructed incrementally during threat-space search.

Assume we have searched up to Mt in a CCDT W ¼ hM1;M2; . . .;Mti. The hyper-
edges (in EðMtÞ) added via ADDE are marked as active in line 9 of ADDE. When the
search on Mt is finished and the search recurses to Mt�1, we simply mark as inactive
the hyperedges that were marked as active for Mt. The active hyperedges form a
subgraph of G, denoted by GðWÞ, which consists of all the hyperedges corresponding
to primitive moves of M1;M2; . . .;Mt. Note that the inactive hyperedges are still in G.
For illustration, the DBH that is constructed for the CCDT in Fig. 1(b) is shown in
Fig. 3(a), and another DBH resulting from Fig. 1(c) is in Fig. 3(b).

Definition 3: E0 is said to be reachable from E if there exists some path from E to E0,
denoted as E � E0: Similarly, V 0 is said to be reachable from V if there exists some
path from V to V 0, denoted as V � V 0: h

All vertices (hyperedges) reachable from a node V (hyperedge E) indicate the
threat space induced from V Eð Þ. For example, Ed shown in Fig. 3(b) is reachable
from Ea; Eb and E2

c . The above described DBH has an important feature in that the
number of vertices in a DBH is in general much smaller than the number of the
corresponding TSS search nodes.

4 Methods of DB Search

In NCTU6, a threat-space search routine, named ISVCDT, is used to check whether
the current position is a win for the attacker by VCDT within a limited depth. The
routine is described as follows.

(a) (b)

Fig. 3. (a) A DBH constructed for the CCDT in Fig. 1(b), (b) another for the CCDT in
Fig. 1(c).

6 I.-C. Wu et al.



In lines 3 to 8 of ISVCDT, all candidate macro-moves are investigated in WILL-

SEARCH W; Mð Þ to decide whether the macro-moves M are to be searched. Previously,
in NCTU6, the routine WILLSEARCH W; Mð Þ is in general true, except for some clearly
bad moves or up to a limited number of moves. In this paper, the routine is modified to
filter more macro-moves using dependency-based search techniques. Four methods for
filtering are proposed in the following four subsections respectively.

4.1 Method F1

Method F1 only allows dependent moves to be searched. Given a CCDT W ¼
hM1;M2; . . .;Mi�1i and the next candidate Mi; WILLSEARCH W; Mið Þ returns true (i.e.,
Mi is to be searched) if and only if the following condition holds. For all Mj, j� i,
there exists some hyperedge Ej 2 E Mj

� �
such that Ej � Ei, for every Ei 2 E Mið Þ.

In F1, we only traverse the moves which depend on their precedent moves and are
reachable from all ancestors in order to reduce the number of nodes to search. Con-
sider the DBH in Fig. 4(a), where a variety of sequences can be searched from the
same eight primitive moves E1

a;E
2
a;E

1
b;E

2
b;E

1
c ;E

2
c ;E

1
d;E

2
d Examples include

hM12
aa ;M

12
bb ;M

12
cc ;M

12
ddi, hM12

ab ;M
12
cc ;M

12
da ;M

12
bdi, hM12

ac ;M
12
da ;M

12
bb ;M

12
cd i, etc., where Mmn

xy

indicates a macro-move from Em
x and En

y and Mx is M12
xx . Using F1, the search will

Fig. 4. (a) A DBH with 4 moves Ma;Mb;Mc;Md; and (b) a DBH with a combination macro-
move Eg.

Dependency-Based Search for Connect6 7



traverse from Ma to Mb, but since E1
c is not reachable from E1

a, the search cannot
continue past Mb.

Also, this method cannot be applied to cases where a combination move is
required, such as the example in Fig. 4(b). Another example can be observed in
Fig. 3(b), where WILLSEARCH(hMbi; Mc) returns true, but WILLSEARCH(hMb;Mci; Ma)
returns false, as does WILLSEARCH(hMai, Mb), since Maand Mb are mutually inde-
pendent. Thus, the winning sequences hMa;Mb;Mc;Mdi and hMb;Mc;Ma;Mdi cannot
be found. Intuitively, F1 focuses purely on reducing the search size, but the reduction
comes at the cost of being unable to find sequences requiring combinations.

4.2 Method F2

Method F2 allows, in addition to those in F1, macro-moves that can form a combi-
nation move later. Before discussing F2, we define two types of zones below.

Definition 4: Each hyperedge E is associated with an attacking zone, denoted by
ZAðEÞ, which is a union set of locations of attacker pieces PðE0AÞ for all hyperedges E

0

reachable from E (i.e., E � E
0
). For each macro-move M; Z � Mð Þ denote the to-be-

combined zone, which is a set of locations of the board which are on the lines
containing one of the pieces in PðMAÞ: h

For example, in Fig. 5(a), the marked squares form the attacking zone ZAðEbÞ.
Note that the locations of single-threats like G9, F10 and E11 are not in the zone since
the threat does not depend on Eb. In Fig. 5(b), the to-be-combined zone Z�ðMaÞ is the
collection of squares that are covered by red lines2. The intersection of both
Z� Mað Þ \ZA Ebð Þ contains the locations E2 and F3. This implies that some of sub-
sequent macro-moves from Mb may combine with Ma at E2 or F3.

(a) (b)

Fig. 5. An example of how combination detection is implemented. (a) ZAðEbÞ (b) Z�ðMaÞ
(Color figure online).

2 In actual implementation for the zone Z� Mað Þ, all lines centered on PðMA
a Þ are not longer than 6 in

all directions. Moreover, the lines are shortened when encountering opponent pieces. The zone is
denoted by Z�, since these lines form a star-like shape from the attacking pieces.

8 I.-C. Wu et al.



In Method F2, WILLSEARCH(W; Mi) returns true if Method F1 returns true. Addi-
tionally, WILLSEARCH(W, Mi) returns true if the following condition holds: there exists
some Ei 2 E Mið Þ such that Z� Mi�1ð Þ \ ZA Eið Þ 6¼ ;. Thus, Method F2 allows TSS to
switch to another move Mi whose descendants may be combined with the current
move Mi�1. For example, in Fig. 5(a), since the intersection Z� Mað Þ \ ZA Ebð Þ is not
empty, the program is allowed to play Mb.

One issue is the sequence in which moves are played. Consider the example
illustrated in Fig. 4(b). For the move Eg, which is a combination of Ec and Ef , Method
F2 plays Ed after Ea;Eb;Ec, but does not play Ed immediately after Ea;Eb. This
ensures that the playing sequence is narrowed-down to a unique sequence, eliminating
the various different sequences that can also lead to Eg.

4.3 Method F3

Method F3 allows, in addition to the previous methods, moves that can block
inversions. Inversions are defensive moves that result in the defender generating
threat(s). To avoid inversions, the attacker needs to play moves that block defender
threats while still generating a double-threat move of its own. Threat-blocking can be
classified into post-blocking and pre-blocking. For post-blocking, the attacker blocks
defender threats in the next immediate move, while for pre-blocking the attacker
blocks the threats in advance.

In Method F3, WILLSEARCH(W; Mi) returns true if F2 (including F1) returns true.
Additionally, it returns true in the following ways. For post-blocking, i.e., Mi�1 is an
inversion, it is straightforward for WILLSEARCH(W, Mi) to return true if Mi can block
opponent threats while generating a double-threat for the attacker.

Before examining pre-blocking, we define the defending-inversion zone, denoted
by ZIðEÞ. Each hyperedge E is associated with a set of locations ZIðEÞ that potentially
blocks defender threats TðE0DÞ for all hyperedges E

0
reachable from E (i.e., E� E

0
).

Assume that P Mi�1ð Þ \ ZI Eið Þ 6¼ ;, where Ei 2 E Mið Þ. Then, Mi�1 may pre-block
Ei’s descendants that end up becoming defender threats. In Method F3, WILL-

SEARCH(W, Mi) also returns true in this case for potential pre-blocking.

(a)
(b)

Fig. 6. (a) An example of post-block. (b) An example of pre-block.

Dependency-Based Search for Connect6 9



The method is illustrated by two examples in Fig. 6, where the inversions are
underlined. In Fig. 6(a), Mb will be searched since it blocks the inversion generated by
MD

a . In Fig. 6(b), Mb blocks the inversion generated by MD
c in advance and we can

then search Mc after Mb. If we searching Mc first, post-blocking is not possible since
the attacker has to play two moves, MA

a and MA
b , to block the inversion. Therefore, the

order in which moves are searched is critical for pre-blocking.
In actual implementation, we do not support a complete set for ZI Eð Þ. The larger

ZI Eð Þ is, the higher the chance to switch search order and the larger the branching
factor. In our implementation, we only consider continuous inversions for ZI Eð Þ.

4.4 Method F4

Using the above three methods, we still encounter a problem: the number of moves
derived from the three methods (even for Method F1) is still large in the case of
macro-moves in T I

ST . Method F4 is proposed to filter more redundant moves in T I
ST .

Consider an example where many independent half-moves (single-threats), say
E1;E2; . . .;En, are available but only E1 depends on the last move Mi�1. Based on F1,
all macro-moves including E1 and any other Ej are all legal candidate moves. In the
case that all the other Ej are single-threats without any further development, the search
still runs once for each of these Ej. However, it is clear for human players to search E1

with some Ei only once.
In order to solve this problem, Method F4, basically following F3, is proposed to

reduce the search space. Assume that F3 returns true and the candidate move Mi is in
T I

ST . For simplicity, let E Mið Þ ¼ fE1;E2g, and E1 depend on the last move Mi�1

without loss of generality. Method F4 checks the following cases. First, in the case
that the half-move for E2 is actually not created in the DBH yet, WILLSEARCH(W, Mi)
returns true. Second, in the case that E2 is in the DBH already, investigate the
intersection of ZA E1ð Þ and ZA E2ð Þ. If the intersection is not empty, then WILL-

SEARCH(W, Mi) returns true, since it is likely to combine both half-moves later.
WILLSEARCH(W, Mi) returns false otherwise.

5 Experiments

For our experimental analysis, we collected 72 testing positions from Taiwan Con-
nect6 Association [9] and Littlegolem [7]. The 72 positions all have VCDTs. Our
experiments were done on a computer equipped with CPU Xeon E31225 3.1 GHz,
4 GB DDR3-1333 memory, and Windows 7 x64 version.

The four methods, F1, F2, F3 and F4 described in Sect. 4 are incorporated into the
original NCTU6 for testing, denoted by PF1, PF2, PF3 and PF4 respectively. In this
subsection, we want to compare the performances of these four programs with the
original NCTU6. All five programs were set to a search depth of 10 macro-moves with
the branching factor set to 50 without time limits.

From Sect. 4, clearly, NCTU6 is required to search more moves than the four
programs PF1 to PF4, PF3 is more than PF2, and PF2 is more than PF1. Hence, the

10 I.-C. Wu et al.



following are expected: NCTU6 is slower than PF1 to PF4, but more accurate; PF3 is
slower than PF2, but more accurate; and PF2 is slower than PF1, but more accurate.

Table 1 shows the experimental results fit the above expectation. Program PF4
solved all 72 positions while performing better than NCTU6, PF2 and PF3. The
average speedup of PF4 over the original NCTU6 was 4.12, and the speedup for some
hard positions reached up to 50.3. Figure 7 (below) shows the computation times of
all the 72 positions for NCTU6 and PF4. The position IDs are sorted in the order of the
computation times for NCTU6.

Table 1. The comparison among the five programs.

Programs Move count Time (S) Solve positions

NCTU6 12,694,339 1,050 72
PF1 55,691 11 55
PF2 5,648,130 571 70
PF3 7,273,329 799 72
PF4 2,852,988 255 72

Fig. 7. The computation time on each position by original NCTU6 and NCTU6 with DBS.

Fig. 8. The percentage of DBH over TSS tree size for all benchmark.

Dependency-Based Search for Connect6 11



Table 1 also shows that the average computation time for each searched move is
82.7 ms in NCTU6, while it is 89.4 ms for PF4. This implies that the incurred
overhead is about 8.1 % of the computation time.

Now, we want to investigate the memory size of DBH with respect to the TSS tree
size. We use the number of hyperedges to indicate the memory size for DBH, and the
number of searched moves to indicate the TSS tree size. Figure 8 shows the per-
centage of DBH size over TSS tree size for all testing positions. We can see that the
ones with large TSS tree sizes usually have lower percentage of memory requirement
for DBH.

6 Conclusion

For Connect6 and other k-in-a-row games, DBS is critical for TSS when there are
many independent or nearly independent TSS areas, a situation that is especially
common during end game. Unfortunately, the rule that two pieces are played per move
in Connect6 makes DBS extremely difficult to apply to Connect6 programs.

This paper is the first attempt to apply DBS to Connect6 programs. We propose
four DBS methods, F1 to F4, to reduce the search space of TSS in NCTU6 while still
successfully finding solutions. The experimental results show that method F4 yields a
speedup factor of 4.12 on average, and up to 50 for certain hard positions.

There are still open issues that need to be addressed. Consider an example where
there are currently at least two independent TSS areas. Within each area, single threats
may exist deep within the search tree. One major issue is that it is difficult to associate
two of these independent single-threats as a double-threat move. Another issue is, as
pointed out in Subsect. 4.4, it is hard to find more pre-blocking inversions without loss
of performance. Also, a future direction for study is to apply DBS to other games such
as Go to solve life-and-death problems.

Acknowledgements. The authors would like to thank the National Science Council of the
Republic of China (Taiwan) for financial support of this research under contract numbers NSC
97-2221-E-009-126-MY3, NSC 99-2221-E-009-102-MY3 and NSC 99-2221-E-009-104-MY3.

References

1. Allis, L.V.: Searching for solutions in games and artificial intelligence. Ph.D. Thesis,
University of Limburg, Maastricht, The Netherlands (1994)

2. Allis, L.V., van den Herik, H.J., Huntjens, M.P.H.: Go-Moku solved by new search
techniques. Comput. Intell. 12, 7–23 (1996)

3. van den Herik, H.J., Uiterwijk, J.W.H.M., Rijswijck, J.V.: Games solved: now and in the
future. Artif. Intell. 134, 277–311 (2002)

4. ICGA (International Computer Games Association). http://ticc.uvt.nl/icga/
5. Lin, H.-H., Sun, D.-J., Wu, I.-C., Yen, S.-J.: The 2010 TAAI computer-game tournaments.

ICGA J. 34(1), 51–55 (2011)

12 I.-C. Wu et al.

http://ticc.uvt.nl/icga/


6. Lin, P.-H., Wu, I.-C.: NCTU6 wins in the Man-Machine Connect6 championship 2009.
ICGA J. (SCI) 32(4), 230–233 (2009)

7. Little Golem website. http://www.littlegolem.net/
8. Renju International Federation: The International Rules of Renju. http://www.renju.net/

study/rifrules.php
9. Taiwan Connect6 Association: Connect6 Homepage. http://www.connect6.org/

10. TCGA Association: TCGA Computer Game Tournaments. http://tcga.ndhu.edu.tw/
TCGA2011/

11. Allis, Private Communication (2012)
12. Thomsen, T.: Lambda-search in game trees - with application to Go. ICGA J. 23(4),

203–217 (2000)
13. Wu, I.-C., Huang, D.-Y., Chang, H.-C.: Connect6. ICGA J. 28(4), 234–242 (2006)
14. Wu, I.-C., Huang, D.-Y.: A new family of k-in-a-row games. In: The 11th Advances in

Computer Games Conference (ACG’11), pp. 180–194, Taipei, Taiwan, (2005)
15. Wu, I.-C., Lin, P.-H.: NCTU6-Lite wins Connect6 tournament. ICGA J. 31(4), 240–243

(2008)
16. Wu, I.-C., Lin, P.-H.: Relevance-Zone-Oriented proof search for Connect6. IEEE Trans.

Comput. Intell. AI Games (SCI) 2(3), pp. 191–207 (2010)
17. Wu, I.-C., Yen, S.-J.: NCTU6 wins Connect6 tournament. ICGA J. 29(3), 157–158 (2006)
18. Yen, S.-J., Yang, J.-K.: 2-Stage Monte Carlo tree search for Connect6. IEEE Trans.

Comput. Intell. AI Games (SCI) 3(2), pp. 100–118, ISSN: 1943–068X, (2011). doi:10.
1109/TCIAIG.2011.2134097

Dependency-Based Search for Connect6 13

http://www.littlegolem.net/
http://www.renju.net/study/rifrules.php
http://www.renju.net/study/rifrules.php
http://www.connect6.org/
http://tcga.ndhu.edu.tw/TCGA2011/
http://tcga.ndhu.edu.tw/TCGA2011/
http://dx.doi.org/10.1109/TCIAIG.2011.2134097
http://dx.doi.org/10.1109/TCIAIG.2011.2134097

	Dependency-Based Search for Connect6
	Abstract
	1 Introduction
	2 Definitions and Notation
	3 Dependency-Based Hypergraph
	4 Methods of DB Search
	4.1 Method F1
	4.2 Method F2
	4.3 Method F3
	4.4 Method F4

	5 Experiments
	6 Conclusion
	Acknowledgements
	References


