
Analyzing Artifact Anomalies in a Temporal

Structural Workflow for SBS
Feng-Jian Wang1

Parameswaramma Mandalapu2
Dept. of Computer Science

National Chiao Tung University
Hsinchu, Taiwan

1fjwang@cs.nctu.edu.tw
2Parameswari.as400@gmail.com

Abstract— A service-based system (SBS) defined with

minimum and maximum execution time can be easily transferred
into a temporal structured workflow. The analysis technique on a
temporal structured workflow can thus be applied on SBS. In the
past, there were several researches working on artifact anomaly
detection in a workflow. Their results are useful and have been
published. However, their works does not consider temporal
factor and the anomalies detected may not exist in a real system.
In other word, they are less effective in a temporal structural
workflow (TS workflow). Neither for SBS. Besides, the time
complexity of these methods are NP, not efficient either. In this
paper, we re-define the anomalous behaviors and develop an
approach to discover artifact anomalies in a TS workflow. In the
approach, we design several algorithms to detect the anomalies
defined. By using our approach, workflow and SBS designers can
detect artifact anomalies more precisely inside their TS workflow
and thus might prevent run-time errors more effectively.

Keywords: workflow, temporal structured workflow, artifact
anomaly, anomalous data manipulation

I. INTRODUCTION

Consider a service-based system (SBS), a remote service

can be useful only if the work can be done within a predicted

time interval. Such a constraint of SBS’s services is like time

constraints in a real-time system, and a pair (minimum

execution time, maximum execution time) is useful for the

selection of services. On the other hand, a workflow where

each process is associated with a pair of (min, max) execution

time interval is named as a temporal (structured) workflow.

Therefore, an SBS can be simplified as a temporal workflow

system since the execution time intervals of services are an

important factor for the selection of each service. The analysis

based on a temporal workflow can be applied or studied further

to help improve the development of an SBS.

In the past, there were lots of research results presented for

workflow analysis. Typical examples of control analysis

include the detection and deletion of structural conflicts among

tasks, inconsistent dependencies [1], verification of deadlock,

live locks (infinite loops), and dead tasks in workflow

specifications [2-3] by mapping workflow specifications into

Petri-nets. In previous study, [4] defined the structured

workflow model which is free from deadlock and multiple

active instances of the same activity and claimed that most

arbitrary well-behaved workflows can be transformed into a

structured workflow for analysis. Besides, a temporal factor is

introduced to improve the related control analysis. [1], [5-9].

Many control analysis works on a temporal workflow are done

based on timed Petri Nets, translated from workflows. On the

other hand, a structured workflow may produce an

unanticipated run-time behavior because of abnormal data

manipulation, named artifact anomalies. Detecting artifact

anomalies in a workflow can help checking data misuse inside

the workflow. Various methodologies have been developed for

detecting artifact anomalies between activities in a structured

workflow [10-14].

The above approaches work based on a general assumption:

There is no explicit lower and upper bounds of time consuming

for each process to count the feasibility or correctness of

control in a workflow. However, the temporal data associated

with the processes inside an SBS do help on static analysis of

concurrency. For example, Li and Yang [15] analyzed the

resource and temporal constraints between distinct process

instances.

Fig.1. A simple temporal workflow example

Figure.1 indicates a parallel temporal workflow diagram

where each process pi, 1<=i<=4, is associated with an

estimated working duration (mini, maxi), i.e., the (minimum

execution time, maximum execution time) of pi. Let the value

of artifact ‘a’ is deleted (such an operation can also be called

undefined, and noted as “u” in the paper), in p1, defined (noted

as “d”) only in p2, read (“r”) in p4 and not operated in p3.

Along the path, s, p1, p2, to t, the operation sequence on a are

“ud” and such a behavior is normal in logic. On the other path:

s, p3, p4, to t, ‘a’ is read without definition, and the behavior is

abnormal logically. However, these two paths are concurrent,

and “r” for ‘a’ in the second path may or may not appear after

‘d’ completes in path one. Thus “ud” may not appear during

execution. For example, consider the estimated execution time,

if max1+max2<min3, the “r” operation for ‘a’ cannot occur

before “d” since p4 cannot work before p2 completes and there

2014 IEEE 38th Annual International Computers, Software and Applications Conference Workshops

978-1-4799-3578-9/14 $31.00 © 2014 IEEE

DOI 10.1109/COMPSACW.2014.81

480

is no artifact anomaly for ‘a’ in this workflow diagram.

Obviously, the anomaly detection might be more precise if the

estimated execution time is added.

In this paper, we first analyze existing approaches for

deficiency and anomaly detection on a workflow. Then, we

give a set of new definitions for artifact abnormal behaviors

based on our observation from SBSs. With the definitions, we

construct a serious of algorithms to detect the corresponding

anomalies in a workflow. Based on temporal data, we further

present the corresponding algorithms to detect the anomaly

more effectively, i.e., by deleting the anomalies which never

occur once the temporal data are added at each process. Finally,

we compare our approach with existing ones.

The rest are organized as followings. In section 2, a

conventional TS workflow is described, and the structural and

temporal relationships between processes are analyzed. In

section 3, the abnormal behavior due to continuous operations

for the same artifact is introduced. Section 4 presents a

methodology to detect these artifact anomalies in workflow. In

section 5, the methodology to detect the anomalies inside

temporal workflow is presented. Finally, the conclusion and

future work are described in section 6.

II. A TEMPORAL STRUCTURED WORKFLOW

2.1 Fundamental Techniques for Workflow
A workflow contains a set of tasks systematized to achieve

certain business goals by completing the tasks in a particular

order under automatic control [16]. Structural conflicts among

tasks such as deadlocks might cause run-time errors, and need

be eliminated, if necessary. There are many methods developed

to detect structured conflict(s), such as inconsistent

dependencies [1], the verification of deadlock, live-locks

(infinite loops), and dead tasks in workflow specifications [2-3]

in a workflow by mapping workflow specifications into Petri-

nets. [4] Defined the structured workflow model which is free

from deadlock and multiple active instances of the same

activity and claim that most arbitrary well-behaved workflows

can be transformed into a structured workflow for analysis.

Besides, a temporal factor is introduced to improve the related

analysis. [1], [5-9].

A structured workflow may produce an unanticipated run-

time behavior because of abnormal data manipulation, named

artifact anomalies. Detecting artifact anomalies in a workflow

can help checking data misuse inside the workflow. Various

methodologies have been developed for detecting artifact

anomalies between activities in a structured workflow [10-14].

[10] Present seven basic data validation problems to be

detected. [12] Defined preliminary improper artifact usages

anomalies, and introduced the analysis of such anomalies in

design phase of a well-structured workflow [11, 12]. [13]

Introduced a model to describe the artifact behavior in a

workflow to improve the efficiency of the work in [12]. [14]

Analyzed artifact anomalies in workflows by adopting message

passing data models.

2.2 Basic elements for a Structured Workflow

Based on (WfMC, 2010), a workflow diagram is a four tuples

W= (N, A, S, E), where N is a set of nodes, of which each

represents a process. A is a set of directed arcs, where each arc

connects two nodes to represent the control (flow) from the tail

process to the head. There are 4 types of control processes,

split, joint, begin and end processes. Besides, a process is a

complicated process (CP) if it can be decomposed into another

workflow diagram or an activity process (ACT) if it contains

one or a sequence of activities only. To simplify the discussion,

the complex process is skipped in the paper.

A split process is a process which instantiates its

successor(s) when its work completes. There are two types of

split processes defined in general: an And-Split (AS) process

instantiates all its immediate successor processes while an Xor-

Split (XS) process instantiates only one of them. There are two

types of Joint processes: an And-Joint (AJ) process is

instantiated when all of its immediate predecessor processes

complete, while an Xor-Joint (XJ) process is done whenever

one of them completes.

Figure.2 is a sample structured workflow; the path <v1, xs1,

v2, as1, v3> indicates that v1 is reachable to v3. v3 and v4 are

parallel because they reside on different “and” branches split

from as1. v2 and v8 are exclusive because they reside on

different branches of the decision structure quoted by xs1 and

xj1. The path <ls1, v6, v7,

le1, ls1> indicates a loop. In this paper, each control process of

structural relationships is associated with a Boolean function.

Fig.2. A Sample Structured Workflow with loop

[12, 13] claimed that in a structured workflow, the states of

the artifact operated in loops cannot increase after the iteration

is done twice.

2.3 A Temporal Structured Workflow
A temporal workflow is modeled by describing the

maximal and minimum working durations for each activity or

process [17]. In this paper, a timed and structured workflow

named as Temporal Structured Workflow (TS workflow). To

facilitate discussion, we assume that if p is an activity process,

0 < d (p) � D (p); otherwise, d (p) = D (p) = 0. Figure.3

illustrates a sample TS workflow.

Fig.3. A Sample TS workflow

481

The structural and temporal relationships between

processes are the bases for the analysis in a TS workflow.

There are many approaches [10, 11] adopted to reduce the

structured loops in a TS workflow as decision structures.

However, the loop reduction may bring inaccuracy to the

analysis of temporal data, and is therefore not feasible for a TS

workflow. [18] Developed a methodology for loops to detect

whether the workflow possibly exceeds its deadline during run-

time. However, it is still an NP problem to detect all possible

anomalies based on above definition in a TS workflow, we

discuss the artifact anomalies from another point view in this

paper to simplify the detection.

III. ANOMALOUS BEHAVIORS OBSERVED IN A

TEMPORAL WORKFLOW

There are various artifact anomalies observed on workflow

described in Section 2. The categorizations do not consider the

concurrency factor, since there is no event to indicate whether

two processes in two distinct parallel paths can be executed in

a sequential order. Thus a fundamental concurrency

assumption for workflow is that the processes in two parallel

paths are concurrent. Conventionally, the artifact anomalous

behaviors are usually categorized based on execution order

only and few papers consider the temporal factor. Their

detection techniques are lack of the abnormal behaviors due to

the temporal factor.

Based on our observation, workflow anomalies in a

temporal workflow in section 2 can be categorized into as

following:

1. Concurrent anomalies:
If two activities for the same artifact are concurrent, the

two activities, (W, W) and (K, W) are abnormal obviously,

and (K, R) is a potential anomaly since R might be after K.

There are three sets CCA1, CCA2, and CCA3, used to

represent each type of the anomalies defined above, where

each element in these sets contains three tuples, the first

one is an artifact and the rest two represent two concurrent

nodes which contain activity W for the artifact. For

example, artifact x has an activity W in nodes m and n, if

and only if the element (x, m, n) is in CCA1. Algorithms

in Sections 4.1 and 5.1 are applied to detect the concurrent

anomalies and put them into CCA1, CCA2, and CCA3

correspondingly.
2. Continuous Anomalies:

Two continuous activities are abnormal, if they are (K, K),

(K, R), (K, W), and (W, W). There are four sets CNA1,

CNA2, CNA3 and CNA4, used to represent each of the

anomalies defined above. Similarly, each element in these

sets contains three tuples correspondingly. For example,

artifact x have two continuous activities (K, K) run in two

distinct nodes, m and n, if and only if (x, m, n) is in CNA1.

Algorithm in Sections 4.2 and 5.2 are used to detect the

continuous anomalies and put them into CNA1, CNA2,

CNA3 and CNA4 correspondingly.

Before considering the algorithms to calculate the

concurrent set from a workflow W, we define the following

items to help the description of the algorithms:

1. An execution path EP, is a linked list where the LET of

the former is less than the LET of the later in the EP. A

CEP is an EP who’s starting and ending nodes are the

starting and ending nodes of the workflow

correspondingly. A set containing all CEPs in W is called

W’s CEP_set.

2. A concurrency pair set PS, PS= {(x, y) | x, y are two

processes in W, x≠y, x and y are concurrent}, is used to

simplify input/output. A full PS, FPS, contains all the

concurrency pair set, FPS= {(x,y)|���x,y) in W and (x,

y)∈PS}.

3. The concurrency process set of a process x, CPS(x) = { y |

�y in W, x≠y, x and y are concurrent}

4. A branch from a split node include all the EP’s which

have the same starting node, a distinct immediate

successors of the split node to the immediate predecessor(s)

the corresponding joint node of split node. Two branches

with the same split node are named as cs_branches.

IV. DETECTING ANOMALIES IN A WORKFLOW

4.1 Detection of Concurrent Anomalies
For workflow W, Algorithm 4-1 can be applied to return a

PS on W. The algorithm is recursive and done based on depth

first approach. In the algorithm, when it reaches an AND

approach, it collects the pair(s) for the nodes in one branch

with the nodes in the rest right cs_branches. When p is an XOR

or sequence node, the algorithm is done by calling each of p’s

successors left to right, i.e., calling

Construct_Potential_Concurrent_Pairs_Set(W, p’s successor,

PS).

Fig.4. Algorithm 4-1

After applying Algorithm 4-1, it is returned the FPS in W.

According to artifact set A, the set of artifacts applied in W,

Algorithm 4-2 accepts W and the concurrency pair set FPS in

W, and A and replies CCA1, CCA2, and CCA3 by detecting

the property in each pair of PS.

Fig.5. Algorithm 4-2

482

Fig.6. Algorithm 4-3

Fig.7. Algorithm 4-4

4.2 Continuous Anomaly Detection in a Workflow
Algorithm 4-3, composed of three parameters described

below, is applied on workflow W to find W’s CEP_set based

on a depth first concept. In the very beginning, zp is set as an

empty path and Pset is an empty set of path. The algorithm is

recursive: when all nodes are reached, it completes and

CEP_set is returned. During the algorithm, if a CEP is found,

i.e., the ending node is reached, the CEP is sent into Pset and

control goes back to the nearest split node which has a

successor not reached yet and the forward searching

continuous from the successor. To clear the past record, the

successors of the node found in W at this step are unmarked

before starting forward search. In the search, if the next node is

an activity (simple) node or joint node, a corresponding node is

add to the end of zp and the search continues.

After applying Algorithm 4-3, all the static CEPs are put

together as a set Pset and returned as CEP_set. Along with

CEP_set and artifact set ‘A’ in workflow W, Algorithm 4-4

returns the anomalies along all the CEPs.

V. DETECTING ANOMALIES IN A TEMPORAL

WORKFLOW
CNA and CCA are too rough to be useful in SBS’s because

many anomalies detected based on this model do not exist

since the temporal data associated with each process might kill

the corresponding continuous behaviors. Therefore, detecting

both anomalies in a temporal workflow is worth of being

studied further.

5.1 Detection of Concurrency Anomalies in a Temporal
Workflow

As defined in Section 2, each process has its execution time

interval (Min, Max) in a temporal workflow. Thus, the earliest

starting time (EST) and latest ending time (LET) for each

process can be computed too [19]. Based on this time pair, if

two processes whose execution time cannot be overlapped,

there is no CCA anomaly between them. Therefore, a process

pair (x, y) detected to be concurrently in Algorithm 4-1 might

not be executed concurrent if one of the following conditions

holds:

(x.LET < y.EST) or (x.EST > y.LET)

Fig.8. Algorithm 5-1

On the other hand, if none of these conditions hold, it

indicates that x and y might be executed concurrently in a

temporal workflow. TFPS is a temporary FPS, where each

element in FPS follows the above rule. Algorithm 5-1 is

defined to extract the pairs of processes whose execution time

must be overlapped, counted based on EST and LET from FPS

derived from Algorithm 4-1.

Lemma 5-1:
In a temporal workflow, a concurrent pair detected with

Algorithm 4-1 can be detected in with Algorithm 5-1 too.

Proof:
Line 1 in Algorithm 5-1 indicates TFPS is the same as

FPS for the same temporal workflow. Lines 2-4 in

Algorithm 5-1 indicates whenever the condition in Line 3

succeeds, the corresponding element p, a pair of processes

which cannot run concurrent based on the calculation of

execution time, is deleted from TFPS. Therefore, TFPS is

a subset of FPS, and the lemma is OK.

Lemma 5-2:
In a temporal workflow, an element detected with

Algorithm 4-1, might be detected in Algorithm 5-1.

483

Proof:
Lemma 5-1 indicates TFPS is a subset of FPS; therefore

Lemma 5-2 works too.

Based on Lemmas 5-1 and 5-2, for a temporal workflow,

the work done with Algorithm 5-1 is more precise than that

with Algorithm 4-1. Algorithm 4-2 can be applied to detect the

concurrency anomalies in a temporal workflow, since the

concurrency anomaly (ies) exists as long as the artifacts

activities are the same and their execution time overlap exists.

The anomaly detection is thus more precise here, since the

work is done on the set of activities whose concurrency might

occur.

5.2 Detection of Continuous Anomalies in a Temporal
Workflow

CEP constructed in Algorithm 4-3 might not work in a

temporal workflow. For example, before an AND joint process,

if the EST of the last process in one branch is larger than the

LET of the last process in another branch, there exists no CEP

containing the latter process and the joint process as two

continuous processes. Therefore, such a CEP in a temporal

workflow does not exist and the anomaly detection is not

necessary for the CEP. First delete these CEPs based on the

following two steps:

1. Compute the EST and LET for each process first;

2. For each and joint process, backtrack all its concurrent

branch as follows:

If the LET of the last process in one branch is less

than the EST of the last process of another branch, the CEP

containing two continuous processes: the last process in the

former branch and the joint process are deleted.

The rest CEPs are called TCEPs. Here, Algorithm 5-2 is

designed to calculate the EST, LET, and AJE of each process

in a workflow and booted before executing above deletion

work in Algorithm 5-3 systematically. Especially, AJET is the

time that represent the largest EST among the last processes of

the branches entering to AND joint process, thus its

computations are done only at an AND joint nodes. The set

returned from Algorithm 5-3 is named as TCEP_Set.

Fig.9. Algorithm 5-2

Fig.10. Algorithm 5-3

Lemma 5-3:
The potential execution time intervals of two

continuous processes in each element of TCEP_Set,

i.e., constructed by Algorithm 5-3 are overlapped.

Proof:
Each element in TCEP_Set, i.e., each TCEP, is a CEP.

Since CEPs are derived from a workflow diagram, by

default, two continuous nodes in a CEP represent two

distinct nodes connected by an arc in a workflow

diagram. After the possible execution time is counted,

for an AND joint node, the LET of one of its

immediate predecessors might be less than the EST of

another immediate predecessor. If such a case occurs,

the former immediate predecessor cannot work right

before the joint process. Therefore, such a CEP cannot

run correspondingly. Algorithm 5-4 deletes this kind

of CEPs. The rest CEPs, TCEP, does not allow the

joint node to have the case, i.e., since the execution

time interval between an AND joint node and each of

its predecessors is overlapped based on the viewpoint

of EST and LET.

Consider Algorithm 4-4, if the first two inputs are changed

as a temporal workflow and its TCEP_Set, the results returned

are also the sequence anomalies for the element in the TCEP.

Obviously, for a workflow W and its temporal workflow TW,

TCEP_Set is a subset of CEP_Set, and Algorithm 4-4 applied

to TCEP_Set will return less anomalies according to lemma 5-

3.

Let ATCEP be a TCEP where each node of ATCEP is

additionally associated with a set (named as Tconcur_set) of

processes being concurrent with the process represented by the

node according to temporal data: EST and LET. In other word,

each element of the set associated with a node in ATCEP and

the process represented by the node is an element can be

derived by Algorithm 5-1. Algorithm 5-4 is applied to compute

ATCEP_Set, the set for ATCEP’s where each of its elements

corresponds to a distinct TCEP. Algorithm 5-5 is applied to

detect the continuous anomaly in each element of ATCEP_Set.

Fig.11. Algorithm 5-4

484

Fig.12. Algorithm 5-5

VI. COMPARISONS AND FUTURE WORK

A Service Based System (SBS) is composed of services

connected with structured logic (AND, XOR, SEQ, and

LOOP). Because each service is selected based on their

abstract, the performance is one necessary factor and both

minimum and maximum execution times are two major data. A

workflow is usually treated as a fundamental technique

adopted to construct an SBS. Thus, an SBS can be modeled as

a temporal structured (TS) workflow intuitively. Conventional

detection techniques were developed to detect two continuous

activities of an artifact during run time. Our paper presents a

set of new definitions for anomalous behavior to simplify the

corresponding detection.

By comparing conventional techniques and ours, there are

at least three contributions introduced here:

1. Conventional definitions do not discuss and detect the

anomalies occurring in two concurrent processes. These

anomalies might occur repeatedly in different execution

paths and make the detection and thus discussion more

complicated. In this paper, we define these anomalies

distinctly and thus the detection can be done easier.

2. Our definition set of continuous artifact anomalies is a

subset of conventional ones. Thus, the detection in our

approach is much easier. The interpretation of anomalies

detected by our algorithms is simpler, since the effect of

concurrency has been deleted.

3. In the past, the temporal data were applied to analyze the

control inside timed Petri nets for distributed systems.

There is no effective study on artifact anomaly detection

based on a TS workflow, applied to model an SBS

intuitively.

However, the algorithms in the paper are not well

concerned with complexity or effectiveness. The useful

interpretations of anomalies detected are not studied either.

Furthermore, the loop logic, which has been studied to be

transferred into a pattern of XOR branch, might be studied to

improve the detection for continuous anomalies. These

problems are being studied and planed in our future work.

REFERENCES

[1] N. R. Adam, V. Atluri, and W.-K. Huang, 1998, Modeling and Analysis

of Worfklows Using Petri Nets, Journal of Intelligent Information

Systems, Vol. 10, Issue 2, pp. 131-158.

[2] W. M. P. van der Aalst and A. H. M. ter Hofstede, 2000, Verification of

Workflow Task Structures: A Petri-net Approach, Information System,

Vol. 25, Issue 1, pp. 43-69.

[3] W. M. P. van der Aalst, K.M. van Hee and R.A. van der Toorn, 1999,

Adaptive Workflow: An Approach Based on Inheritance, the
Proceedings of the Workshop on Intelligent Workflow and Process

Management, The New Frontier for AI in Business, pp. 36-45.

[4] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler, 2000, On
Structured Workflow Modelling, Lecture Notes in Computer Science,

Vol. 1789, pp. 431-445.

[5] J. Eder, E. Panagos, H. Pozewaunig, and M. Rabinovich, 1999, Time

Management in Workflow Systems, the Proceedings of International

Conference on Business Information Systems, pp. 266-280.

[6] J. Eder, E. Panagos, and M. Rabinovich, 1999, Time Constraints in

Workflow Systems, Lecture Notes in Computer Science, Vol. 1626, pp.

286-300

[7] O. Marjanovic, 2000, Dynamic Verification of Temporal Constraints in

Production Workflows, the Proceedings of the 11th Australian Database
Conference, pp. 74-81.

[8] J. Li, Y. Fan, and M. Zhou, 2004, Performance Modeling and Analysis
of Workflow, IEEE Transaction on Systems, Man, and Cybernetics -

Part A: Systems and Humans, Vol. 34, Issue 2, pp.229-242.

[9] Chen, and Y. Yang, 2008, Temporal Dependency based Checkpoint
Selection for Dynamic Verification of Fixed-time Constraints in Grid

Workflow Systems, the Proceedings of the 30th International Conference

on Software Engineering, pp. 141-150.

[10] S. Sadiq, M. E. Orlowska, W. Sadiq, and C. Foulger, 2004, Data flow

and validation in workflow modeling, the Proceedings of the
15th Conference on Australasian Database, Vol. 27, pp. 207-214.

[11] F.J. Wang, C.L. Hsu and H.-J. Hsu, 2006, Analyzing Inaccurate Artifact

Usages in a Workflow Schema, the Proceedings of the 30th Annual
International Computer Software and Application Conference, Vol. 2,

pp. 109-114.

[12] C.L. Hsu, H.J. Hsu and F.J. Wang, 2007, Analysing Inaccurate

Artifact Usages in Workflow Specifications, IET Software, Vol. 1, Issue

4, pp. 188-205.

[13] C.-H. Wang and F.J. Wang, 2009, Detecting Artifact Anomalies in

Business Process Specification with a Formal Model, Journal of Systems

and Software, Vol. 82, Issue 10, pp. 1064-1212.

[14] H.J. Hsu, and F.J. Wang, 2009, Using Artifact Flow Diagrams to Model

Artifact Usage Anomalies, the Proceedings of 33rd Annual IEEE

International Computer Software and Applications Conference, Vol. 2,
pp.275-280.

[15] H. Li, and Y. Yang, 2005, Dynamic Checking of Temporal Constraints

for Concurrent Workflows, Electronic Commerce Research and
Applications Vol. 4, pp. 124-142.

[16] Workflow Management Coalition (WfMC), 1999, WFMC-TC-1011

Ver3 Terminology and Glossary English, Workflow Management
Coalition.

[17] H. Zhuge, T.Y. Cheung, and H.K. Pung, 2001, A Timed Workflow
Process Model, Journal of Systems and Software, Vol. 55, Issue 2, pp.

231-243.

[18] I.F. Leong and Y.W. Si, 2009, Temporal Exception Prediction for Loops
in Resource Constrained Concurrent Workflows, the Proceedings of 6th

IEEE International Conference on e-Business Engineering, pp. 310-315.

[19] J. F. Allen, 1983, Maintaining knowledge about temporal intervals,

Communication of the ACM, Vol. 26, Issue 11, pp.832–843.

485

