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Abstract

This study develops an NN typhoon wave model to accurately and efficiently calculate wave heights at a point of interest. Multi-trend

simulating transfer functions were first introduced to exemplify the relationship between wave heights and each conceivable input factor by

regressive fitting. The proposed NN–MT model can accurately forecast wave peak with an error of less 1.2 m and with time delay within 3 h

and can be extended to cover the station besides the original station of interest.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

On average, 3.5 typhoons pass near or over Taiwan

annually. Strong typhoon winds blow over the sea and

produce large waves with enough energy to influence

marine structures and erode beaches. Consequently, some

researchers in Taiwan have produced models of wind and

waves to forecast typhoon wind and wave patterns. Both

empirical regression and numerical models can estimate the

wave heights and periods of typhoon waves. Parametric

wave expressions offer an easy and quick calculation of

typhoon wave heights and periods, e.g. Bretschneider [2].

The parametric expressions are usually confined to local

waters and cannot be extended to a large area. Large areas

prefer numerical models based on the conservation of

energy to calculate the wave heights and periods, including

Chen and Wang [5], SWAMP [22], WAM [25], Young [26],

SWAN (Booij et al. [1]) and WW_3 (Tolman [24]), Niwa

and Hibiya [20].

Correct wind speeds in spatial grids and time domains are

needed as energy input sources in the numerical models.

However, in practice too few measurements are available to

support the spatial minimum requirement in computation.
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Modern information on the dynamical processes of

generation, interaction and decay of ocean waves accumu-

lated over the last 40 years. The renowned Phillips–Miles

theory was reviewed and supplemented by authors

(Kismann [15]; Krasitskii [17]; Riley et al. [21]; Chalikov

and Makin [3]; Komen et al. [16]), although the Phillips–

Miles theory still predicts energy transfer rates that are

smaller than measured values. Much computational time is

desired to run the numerical models owing to repeated

iteration in many grids for a large area. Due to less wind data

measured, uncertain mechanisms of air–sea interaction and

computation time, numerical models cannot yield to

simultaneously have quick and accurate calculations for

typhoon wave heights for some interesting point, particu-

larly during typhoon periods.

The artificial neural network (NN) is a powerful new tool

because of its high functioning with fast computation and a

considerable memory to solve the problems concerning

extremely non-linear interactions and complex effective

variables. Accordingly, NN has newly been implemented

widely in different areas. For example, Hajime et al. [9]

employed NN to explore the stability of rubble-mound

breakwaters. Johnson and Lin [14] used a back-propagation

network, which is one type of NN, to determine the path of

the typhoon. Assessment of their findings with those

obtained using an ARIMA model displays that their NN

model has a better forecasting capability than the ARIMA

model. Tsai and Lee [23] developed an NN model to
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forecast the levels of diurnal and semi-diurnal tides. Lee and

Liu [18] utilized NN associated with satellite images, in

tropical cyclone pattern identification to determine the paths

of the cyclones. Hiraoka et al. [11] developed an NN model,

based a two-rule fuzzy theory, to calculate the location of

the typhoon. Deo and Naidu [6] used NN to establish a real-

time wind model. Deo et al. [7] developed an NN Wind–

Wave model.

If wave data from some observation stations and

corresponding typhoon data are available, then NN can be

used to set up interconnections between waves and winds,

by taking advantage of its ability to learn and adapt. Chang

et al. [4] proposed two NN typhoon wave models that are

made by linking the typhoon wind speeds at the interesting

point and a sequence of typhoon’s positions to the wave

heights observed. They are then tested to accurately

calculate wave heights and periods when the track of a

typhoon is alike to those in the learning stage. These two NN

models proposed by Chang et al. [4] have poor prediction to

the wave heights for special typhoon tracks that are far away

from those used in the learning stage, because insufficient

data are collected in the learning stage to cover possible

typhoon tracks.

Based on the understandings of the former NN model,

our results indicate that the position of an interesting point

in a typhoon is a significant factor that was not involved in

the former models. Additionally, several usually anticipated

transfer functions, e.g. Satlin, between wave heights and

each input parameter are not appropriate in the whole

domain. Therefore, this study revises the former NN models

by using regressive multi-trend transfer functions that can

moderately and confidently describe the trend of wave

heights and each input parameter. The purpose of this work

is to develop an NN typhoon wave model for accurately and

quickly calculating the wave heights at a point of interest.
2. Input parameters

Polar coordinates with the origin at the center of the

typhoon are used to demonstrate the relative position

between the point of interest and the center of the typhoon.

The polar coordinates (r, q1), shown in Fig. 1, refer the
Fig. 1. Sketch definition of input parameters.
radial distance and azimuth between the point of interest and

the center of the typhoon.

Generally most typhoons initially form within one warm,

humid air between 10 and 258 latitude in both hemispheres,

and then move westward and pole-ward at a speed of 5–

40 km/h. Strong wind inside a typhoon is clearly important

to wind wave development. Whether the energy of wind

waves rises or decreases mostly depends on the energy input

from the winds. Thus, the key of calculating the typhoon

waves is accurately to evaluate the local wind speeds

associated with a typhoon. The local wind speed can be

measured at an observation station. However, wind stations

are too few to yield adequate data because of costly

construction and instrument maintenance. Some parametric

typhoon models have already been presented to explicate

explicitly the local wind speed at any point inside a typhoon.

These include the Rankine-Vortex model, the SLOSH (Sea,

Lake and Overland Surge from Hurricane) wind model and

the Holland’s [12] model, which are applicable.

The typhoon wind field is extremely complex and

irregular that an accurate distribution of the wind in a

typhoon field is required to permit sufficiently accurate

information to be input to a wave model. Holland’s wind

model [12] is adopted here because it fairly describes a

typhoon’s winds. The wind speed at a distance r from the

center of the typhoon is

VðrÞZ
BDpc

r

Rmax

r

� �B

exp K
Rmax

r

� �B� �
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r2C2
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� �0:5

K
rC

2

(1)

where C is the Coriolis parameter. The maximum wind

speeds in a typhoon are obtained by specifying rZRmax in

Eq. (1). Harper and Holland [10] suggested a value of B of

B Z2K
pc K900

160
; 1:0!B!2:5 (2)

The local wind speed 10 m above mean sea level is

proportional to V(r) and can be written,

V10 ZKmVðrÞ (3)

where KmZ0.7, as also recommended by Harper and

Holland [10]. If a typhoon moves at speed Vf, then the

modified local wind speed, as given by Jelesnianski [13],

can be expressed as:

VðrÞZ
Rmaxr

R2
max Cr2

Vf (4)

When the pressure depression (Dpc) at the center of a

typhoon, and the distance between the point of maximum

wind speed and the typhoon’s center are given, the local

wind speed 10 m above sea level, V10, and Vmax can be

determined from Eqs. (1)–(4), at any position inside the

typhoon. According to the Holland typhoon wind model, the

parameters of Dp, Vmax, Vf, V10 and Rmax are related.



Fig. 2. The computed wind velocity field in a typhoon with DpZ930 mb and VfZ5.0 m/s by using the Holland model.
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Fig. 2 demonstrates the wind velocity distribution of a

moving typhoon with DpZ930 mb and VfZ5.0 m/s

computed by the Holland model. The iso-speed contours

in Fig. 2 are in an oval-like form signifying that the wind

velocity is not isotropic. The wind speed in the right half of

the semi-circle is larger than that in the left semi-circle at the

same radial distance. The wind speed distribution in the

right semi-circle differs from that in the left semi-circle.

Accordingly, the angle of an interesting point in a typhoon

becomes an essential indicator to describe the wave heights.

Let q2 be the angle of an interesting point in a typhoon

between the typhoon moving direction and the radial

direction from the typhoon’s eye to that point. The value

q2 counts counterclockwise. Thus, when the interesting

point is on the way of the typhoon moving direction, q2 is

zero. When the interesting point is on the left semi-circle of

a typhoon q2 is less than p. The interesting point is on the

right half of semi-circle of a typhoon showing p!q2!2p.

The moving track, speed and scale of a typhoon

dominantly and together influence the waves in or near

the typhoon. The wave at time t accumulatively consists of a

sequential superposition of waves that may propagate at a

different speed but simultaneously reach the interesting

point at time t. Thus, the wave height can be written in a sum

of energy source function in a sequential time as follows

HsðtÞ Z
Xn

mZ0

amf ðV10; r; q1; q2; t KmDtÞ (5)

where Dt is the sampling rate and am is the coefficient. Eq.

(5) reveals that the wave height of an interesting point at
time t is an output resulting from accumulative action of an

n-hour sequence of wind parameters, V10, r, q1 and q2 where

V10, r, and q1 are three dominant factors of a typhoon

affecting typhoon waves shown by Chang et al. [4]. The

angle q2 is a corrector factor indicating the wave distribution

in a typhoon. If amount of well distributed input data are

absent, the extra input data in the NN model will make

worse prediction accuracy. Avoiding disadvantages of less

information or a bias distribution of input data we first relate

the wave heights and each input data to provide a good

relationship in the model and to promote the model

prediction capacity. For a detailed description of q2, equal

quarter around a circle is divided to have its distribution

function in Section 3.
3. Construction of NN–MT model

3.1. Normalization of input data

The value of input data should be normalized in a range

of 0–1 to match the requirement of transfer functions used in

an NN model. The wave data are observed by the waverider

that is located at a depth of 25 m. Historically the maximum

wave height observed is 8.4 m. Wave height of 12 m, that is

around 50% more than the maximum wave height observed,

is allowed as the basic quantity to normalize all wave

heights observed.

Such the maximum wave height observed at the Hua-

Lien harbor was generated by an wind speed of V10Z
25 m/s. A strong typhoon in typhoon scales is identified to
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Fig. 3. Data plots of the wave heights observed vs. the distance between the

typhoon and the observation station.
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Fig. 4. Data plots and the functional relationships between the normalized

wave heights and wind speeds.
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have a maximum wind speed range of 32.7–50.9 m/s.

Taking an average of upper and lower speed bounds of a

strong typhoon yields 41.8 m/s. Substituting the mean value

to Eq. (3) leads to V10z29.3 m/s. Thus 30 m/s is acceptable

as a basic quantity for the wind speed.

The wave height observed relating to the distance

between the typhoon and observation station is illustrated

in Fig. 3. Generally, a typhoon with strong wind speeds

extends to 200–500 km. From Fig. 3, when the observation

point is distant from a typhoon by 1500 km the wave heights

differ somewhat. Accordingly, the wind speed of a typhoon

affecting waves is understood to be limited in a circle with a

semi-diameter of 1500 km. The distance between an interest

observation and typhoon eye used in this model is then

normalized by 1500 km. Here, 2p is used to be an angular

basic quantity to make both q1 and q2 in a range of 0–1.

These four normalized parameters are denoted by
�V10; �r; �q1; and �q2, respectively.
3.2. Multi-trend transfer functions

The transfer function in an NN model is to relate the

inputs to the outputs. A valid transfer function that can

certify the model for most cases. Four multi-trend transfer

functions for each input parameter are introduced by using

statistical regression. Therefore, the proposed NN model is

referred to here as a neural network typhoon wave model

with multi-trend transfer functions, abbreviated by NN–MT.

If the average regression is taken to fit the relationships

between each input and the output, the weight matrix

obtained in NN maybe have some weights enlarged and

some weights disregarded so that some input parameters fail

to reflect the possibly fair relationships between these inputs

and the output. The transfer functions proposed are

conventionally adopted in NN and approximately fit the

relationship between each input parameter and the output.
These transfer functions thus address trend fitting. Here,

four transfer functions for four input parameters are

introduced as follows.
3.2.1. Transfer function for �V10

Fig. 4 reveals that wave growth positively and

exponentially depends on wind speeds and in the initial

growth, the wave heights more rapidly increase than those in

high wind speeds. The trend performance between the

waves and wind speeds can be expressed by the transfer

function for wind speed, f �V10
, as follows

f �V10
Z

2

ð1 CeðK2!�V10ÞÞ
K1 (6)

in which the form is one of the typical transfer functions,

called hyperbolic tangent sigmoid transfer function, in

Matlab software and is appropriate for describing how wave

height and wind speed are related. The dashed line in Fig. 5

shows the Satlin transfer function, which is also an available

transfer function in the Matlab software, used in the NN2 of

Chang et al. [4]. When �V10 Z0, Eq. (6) gives f �V10
Z0. When

�V10 Z1; f �V10
Z0:762 is obtained by Eq. (6). Thus, f �V10

varies in a range of 0–0.762. For a small �V10, the Satlin

transfer function and Eq. (6) provides an equivalent

prediction to the wave heights. However, Eq. (6) more

accurately predicts the wave heights than the Satlin transfer

function does for a large �V10. Eq. (6) displays a similar trend

to the wave heights observed shown in Fig. 4.
3.2.2. Transfer function for �r
The typhoon wind model states that the wind speed

increases with the distance from the center until the

maximum wind speed and then exponentially decreases

with distance from the maximum wind speed to the outer

part of the typhoon. Fig. 5 illustrates the relationship

between the wave height and the distance of the interest

point from the typhoon eye. Fig. 5 describes that the wave

height decreases as the distance from typhoon eye increases.

This trend can be fitted by symmetric Gaussian functions in
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four pieces. The symmetric Gaussian function that is also a

typical transfer function in Matlab software is examined to

give f �r

f �r Z Maxðf �r1
; 0:5f�r2

; 0:3f�r3
; 0:2f �r4

Þ (7a)

where

f �ri
Z eKð�rKcÞ2=2s2

; i Z 1; 2; 3; 4 (7b)

Two parameters (c, s) in the Gaussian function are (0,

0.05) for fr1
; (0.15, 0.1) for fr2

; (0.2, 0.3) for fr3
; and (0.4, 0.5)

for fr4
. The radial basis transfer function used in the NN2 of

Chang et al. [4] and Eq. (7) are drawn in the Fig. 5 by a

dashed line and a solid line, respectively. The suggested

transfer function for �r is much closer to the observed data

than the radial basis transfer function.
1.0
3.2.3. Transfer function for �q1

Expressing the relationship between a typhoon position

and an observation point in polar coordinates rather than

Cartesian coordinates is convenient. Wave propagation is

independent of q1 so that a linear transfer function is valid

for �q1 and can be written as

f �q1
Z �q1; 0% �q1%1 (8)
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Fig. 7. The transfer function for the first quarter f �q21
when frZ1.
3.2.4. Transfer function for �q2

According to Fig. 2 the wind velocity distribution in a

typhoon stated in Section 2, wind speed distribution in a

typhoon is separated into four quarters shown in Fig. 6. The

transfer function for �q2 is also selected in the form of

Gaussian function with different mean and variance for each

quarter. Gaussian function can efficiently separate four

quarters and represent the change of wind directions in each

quarter. When the observation point is located at the

conjunction of two neighboring parts, the effect of �q2 at

one part on waves differs from that of the other part.

Therefore, the transfer function for �q2 must differentiate the

effect of one part from that of the other. Fig. 2 indicates that
the angle �q2 also varies with the distance between the

observation and the typhoon center. Thus, transfer function

for �q2 is defined as

f �q2
Z MaxðeKðð �q2Kc1Þ

2=2s2
1Þ; eKðð �q2Kc2Þ

2=2s2
2ÞÞf �r;

c1 Oc2 f �q2
Z f �r; c1Oc2

(9)

where the coefficients (c1, s1, c2, s2) are given in each quarter

as follows: (0.66, 0.05, 0.84, 0.05) for the region f �q21
; (0.41,

0.05, 0.59, 0.05) for the region f �q22
; (0.16, 0.05, 0.34, 0.05) for

the region f �q23
; (0.91, 0.05, 1.0, 0.05) or (0.0, 0.05, 0.09, 0.05)

for the region f �q24
. The final coefficient group depends on

which one gives larger f �q24
than does the other one.

The trend transfer function for �q2 in the first quarter

illustrated in Fig. 7 is taken an example. The shapes of four

transfer functions are all in the form of Gaussian distribution

with a different mean value that indicates the mean angle of
�q2 in each quarter. For example, the first quarter is located

on the right semi-circle that has a mean direction pointing to

the right. Accordingly q2 is 2708 for this mean direction

implying that �q2 Z0:75 shown in Fig. 7.
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When the number of input data is small or the data are

abnormally distributed, an NN model is hard to accurately

simulate wave heights. From wind theory or empirical

understanding, wind speed in the right semi-circle exceeds

that in the left semi-circle and both semi-circles have

different distributions. Reasonable expressions of wind

distribution from theory or empirical understanding can be

given to improve the simulating capacity of an NN model

due to less data or abnormal distribution of �q2. This study

investigates how �q2 affects wave heights and proposes two

models. One model is named by NN3 to use an accessible

Satlin transfer function Matlab software and the other

model, NN–MT, employs the Gaussian function distributed

in four quarters of a circle.
3.3. Algorithm of NN–MT typhoon wave model

The present NN–MT model mainly consists of two

stages, shown in Fig. 8. The first stage attempts to enhance

the functional relationships between the normalized input

data and the normalized wave heights by using the

corresponding trend transfer functions. The operation

procedure initially calculates the values of four input

parameters, V10, r, q1, and q2, at the interesting point.

Second, to normalize these four different input data types by

using their corresponding basic quantities stated in Section

3.1 and then to add them into trend transfer functions, Eqs.

(8)–(11), yields seven kinds of normalized data,

f �V10
; f �r; f �q1

; f �q21
; f �q22

; f �q23
; and f �q24

. The second stage aims to

identify the time delay effect of winds on wave heights. This

stage uses two hidden layers to obtain the optimal weight

matrix and bias matrix by minimizing the error square of the

outputs computed and the normalized wave heights

measured.

Back-propagation neural network (BPNN) is selected to

implement the typhoon wave model owing to its highly

effective simulation for both linear and non-linear problems.

The elaborate introduction to the related theories and

computational algorithms of BPNN can refer to Eberhar and

Dobbins [8] and various textbooks. Lippman [19] addressed
Neural networ
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(2) Multi trend
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.

.

.

.

Fig. 8. The construction of t
that a 2-hidden-layer NN is sufficient to simulate a problem

that includes a highly non-linear interaction or

discontinuity.

Typically, an applicable BPNN model is validated in a

learning stage and a verification stage. When the errors of

each interaction in both the learning stage and the

verification stage are simultaneously decreasing, the

model continues to learn. Conversely, whenever the error

magnifies, the model stops learning. When the simulation

error reaches an assigned minimum, the optimal weight and

bias matrices have been set. To simulate typhoon waves

accurately, the model must pass the verification stage. If an

NN has one hidden layer the output can be expressed by a

function of the inputs as follows

OP!1 Z f1ðWS!RIR!1 CbS!1Þ (10)

where OP!1 denotes the output matrix of P vectors; f(W, I,

b) represents the transfer function; IR!1 is the input matrix

of R vectors and WS!R and bS!1 are the weight matrix and

the bias matrix, respectively, of an NN with S neurons. Eq.

(10) reveals that each input, multiplied by a weight and then

altered by an added bias, can be connected to an output

through a transfer function.

The output in the proposed NN model with two hidden

layers is the significant wave height and can be written

Hs Z f2ðWS2!S1 !f1ðWS1!ðR!nÞ½IR!1�n!1 CbS1!1ÞCbS2!1Þ

(11)

where IZ ½f �V10
; f �r; f �q1

; f �q21
; f �q22

; f �q23
; f �q24

�T , n is the time

lag.

Generally, the waves propagating away from a typhoon

have a wave period of 10–14 s. A wave in deep water with a

period of 12 s propagating in a speed of 18.72 m/s takes

22.25 h to go a distance of 1500 km. Thus, a 24-h time lag is

considered in the present model. To aid the computation

time, each input is simultaneously selected from time series

for every 4 h instead of every hour, i.e. at the time t, tK4,

tK8, ., tK24. Thus, the total number of inputs is 49. The

neurons in the first hidden layer are 80, and 40 neurons in
k model

Time delay
neural network

Hs(t)

he present NN model.



Fig. 9. Locations of the Hua-Lien and Su-Ao harbors.
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the second hidden layer. The proposed NN–MT model is

thus designated by (49-80-40-1).
4. Model calibration and verification
4.1. Model calibration

Typhoon wave data beyond the Hua-Lien harbor, on the

eastern coast of Taiwan, are used to establish the present NN

models, which are extended to the Su-Ao harbor that

neighbors the Hua-Lien harbor at a distance of about 70 km.

Both harbors are on the eastern coast of Taiwan, as depicted

in Fig. 9.
Fig. 10. Paths of nine typhoons con
The Center for Harbor and Marine Technology, Institute

of Transportation, Ministry of Transportation and Com-

munications, Taiwan, collected the wave data, using an SP-

2200 wave and tide gauge, developed by Woods Hole

Instrument Systems, positioned 0.5 m above the sea bed at a

depth of approximately 25 m. The sampling rate was set to

2.56 Hz, and the sampling period was 20 min in each hour.

Each data set includes 3072 pieces of data.

The typhoon’s position and scale data were obtained

from the Central Weather Bureau of Taiwan (CWB, whose

website is http://www.cwb.gov.tw/), the Joint Typhoon

Warning Center (JTWC, whose website is http://manati.

wwb.noaa.gov/) and UNISYS WEATHER (whose website

is http://weather.unisys.com/). The name of the typhoon

given by JTWC and Greenwich Mean Time (GMT) were

used. The typhoon data were sampled every 6 h. Third-order

Lagrangian interpolation to transform 6 h of typhoon data

into 1-h of data was applied to match the 1-h wave data.

Fig. 10 plots the paths of these nine typhoons.

In the learning stage, all data collected from nine

typhoons are in a sequence. The total number of data is

2500. The authors add an extra 24-h data in the beginning

and at the end of each typhoon to have the model to clearly

identify each typhoon separated. The added wave heights

are the measured mean significant wave heights caused by

monsoons. The distance between an interest point and a

typhoon is set far from 1500 km at which the wave speed is

very low and has little effect on the wave heights.

An effective NN model must pass both model calibration

and model verification. The model calibration is a validation

of model simulation capacity for the learning data.
sidered in the learning stage.

http://www.cwb.gov.tw/
http://manati.wwb.noaa.gov/
http://manati.wwb.noaa.gov/
http://weather.unisys.com/
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The verification examines the model obtained also holding a

high capacity of simulating the data that are not used in the

leaning data.

The root mean square (RMS) is commonly used to

illustrate the simulation performance of each model. The

root mean square is defined as

RMS Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

iZ1

½HsmðtiÞKHspðtiÞ�
2

s
(12)

where Hsm(ti) and Hsp(ti) represent the observed and

calculated wave height at time ti, respectively, and m is

the total number of data. Small RMS reveals that a model is

very valid for simulating wave heights. The maximum wave

height and the times at which it occurs are important in

practical engineering. Two alternative indices of simulation

performance are defined: they are the difference between the

peak observed wave height and the corresponding calcu-

lated value, DHsp, and time lag between the corresponding

times, Dtp:

DHsp Z Hsp;p KHsp;m (13)

Dtp Z tp;p K tp;m (14)

where Hsp,m and Hsp,p are the observed and calculated peak

wave heights, respectively; tp,m and tp,p are the times at

which these peaks occur. These two indices are further used

to evaluate the simulation capability of the NN–MT model.

Table 1 presents RMS, the resulting difference between

the peaks and the corresponding time delay in the learning

stage and the observed peak wave height. The relative RMS

and DHsp are defined to be ratios of RMS and DHsp–Hsp,m,

and are also list in Table 1. Table 1 indicates that the present

NN–MT model has RMS of simulated wave heights within a

range of 0.32–0.89 m and the corresponding relative RMS

with a range of 0.08–0.27. The predicted wave peaks have

various derivation from the observed ones by 0.1–1.0 m,

and the corresponding relative difference of peak wave

heights is within a range of 0.05–0.19. A large difference

occurs when the observed peak is higher, e.g. Otto (1998)

and Bilis (2000). These two typhoons are the first two

largest RMS among the examined typhoons.

Time delay of the predicted peaks from the observed

ones varies from 0 to 5 h. When the peak is large, the model
Table 1

RMS, DHsp, Dtp and Hsp,m of the wave heights computed by the NN–MT model

Typhoon RMS (m) RMS/Hsp,m DHsp (m)

Levi (1997) 0.52 0.27 0.37

Opal (1997) 0.25 0.13 0.02

Peter(1997) 0.32 0.10 K0.36

Otto (1998) 0.89 0.11 K1.00

Sam (1999) 0.44 0.11 0.37

Jelawat(2000) 0.51 0.26 K0.10

Bilis (2000) 0.65 0.08 K0.52

Bopha (2000) 0.45 0.16 0.22

Yagi (2000) 0.63 0.22 0.24
can accurately give the occurrence time of the peak than

when the peak is low. The observed wave heights

commonly fluctuate in time due to the time variation of

typhoon wind speeds. When typhoon path moves far away

from the Hua-Lien harbor the wave heights are generally

small. Thus, fixing the occurrence time of the peaks when

wave heights have a high peak and sharp variation is easier

than when wave heights have a low peak and flat variation.

Larger time delay predicted occurs for a far typhoon path,

e.g. Levi (1997). Tropical storm Bopha (2000) formed at the

far east of Taiwan was first advanced in a westerly direction

and had a dramatic southward turn. Bopha continued

moving south along Taiwan’s east coast and as the storm

disappeared into the Bashi Channel, south of Taiwan.

Bopha’s unusual north-to-south path has not been seen in

Taiwan for more than four decades. The unusual path

caused the model to have poor simulation on the occurrence

time of wave peak.
4.2. Model verification

Here, three typhoons are selected, Fred (1994), Kent

(1995), and Haiyan (2001), for simulating wave heights at

the Hua-Lien harbor, and apply Maggie (1999) typhoon to

the Su-Au harbor, whose paths are presented in Fig. 11.

Three NN models are used to compare the prediction

capability of wave heights.

One is the previous NN2 models of Chang et al. [4]. The

second model, NN3, is set up to add q2 input parameter to

NN2 model. However, the transfer functions in NN3 model

are all expected in the Matlab and differ from multi-trend

transfer functions used in the proposed NN–MT model. The

transfer functions for each input parameter in these three

models and their model constructions are arranged in

Table 2.

Table 3 compares RMS, DHsp and Dtp obtained using

three modes in the verification stage. The value in the

bracket of each column in Table 3 indicates the relative

value that is defined as the ratio of RMS, DHsp and Dtp–

DHsp,m. The mean of relative RMS of four typhoon waves

obtained by each model is 0.116, 0.150 and 0.119,

respectively. The corresponding standard deviation is

0.032, 0.028 and 0.039, respectively. Comparing RMS
in the learning stage

DHsp/Hsp,m DHsp (h) Hsp,m (m)

0.19 5 1.92

0.01 0 1.97

0.11 0 3.19

0.12 0 8.03

0.10 2 3.89

0.05 K2 1.97

0.06 K3 8.39

0.08 5 2.78

0.08 4 2.89



Fig. 11. Paths of four typhoons used in the verification stage.
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and the mean of relative RMS clearly reveals that the NN2

and NN–MT models yield smaller RMS than does the NN3

model. The mean of relative DHsp of four typhoon waves

obtained by each model is 0.132, 0.136, and 0.120,

respectively. The corresponding standard deviation is

0.086, 0.080, and 0.041, respectively. Smaller mean of
Table 2

The transfer functions for each input parameter in NN2, NN3 and NN–MT mode

Model Transfer function for each input parameter

�V10 �r �q1

NN2 Satlin Radial basis Satlin

NN3 Satlin Radial basis Satlin

NN–MT f �V10
f �r f �q1

Note: Radial-basisZeKrK2

; Satlin(n)Z0, if n%0, n; if 0%n%1, 1; if 1%n, 1.

Table 3

Comparisons of RMS, DHsp and Dtp obtained using NN2 and NN3 models with

Model Fred K

RMS (m) NN2 1.01 (0.150)

NN3 1.24 (0.184)

NN–MT 1.18 (0.175)

DHsp (m) NN2 K1.47 (0.218) K

NN3 K1.00 (0.148) K
NN–MT 0.45 (0.067) K

Dtp (h) NN2 3 K

NN3 2

NN–MT 1 K

Hsp,m (m) 6.75

a Denotes the simulation for the Su-Ao harbor.
relative DHsp and standard deviation obtained by the NN–

MT model than those obtained by the NN2 and NN3 models

shows that the NN–MT model more accurately calculates

the wave peaks than the NN2 and NN3 model do. The NN2

model and the proposed NN–MT model more accurately

predict the occurrence time of peak wave height by an error
ls and their model constructions

Model construction

�q2

Null 39-80-40-2

Satlin 36-80-40-1

f �q21
f �q22

f �q23
f �q24

49-80-40-1

those obtained using the present NN–MT model in the verification stage

ent Haiyan Maggiea

0.76 (0.121) 0.29 (0.065) 0.78 (0.131)

0.88 (0.140) 0.49 (0.109) 0.99 (0.166)

0.60 (0.095) 0.33 (0.073) 0.80 (0.134)

0.47 (0.075) K0.96 (0.214) 0.13 (0.022)

1.09 (0.173) K0.98 (0.218) 0.03 (0.005)

1.14 (0.181) K0.55 (0.122) K0.65 (0.109)

2 1 K1

0 K7 K1

1 3 2

6.29 4.49 5.96
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Fig. 13. Wave heights observed at Su-Ao harbor and computed by three NN

models for typhoon Maggie (1999).
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of less than 3 h than the NN3 model does. The proposed

multi-trend transfer functions are more fitting to the

measured data than the traditional transfer functions so

that the proposed NN–MT model can be validly applicable

for common cases. The NN2 and NN3 models are good at

calculating the typhoon waves when the typhoon’s path is

similar to one of those used in the learning stage. However,

the NN2 and NN3 models become worse to calculate the

typhoon waves when the typhoon’s path is far from any one

of those used in the learning stage.

The transfer function for �q2 in four quarters model

prevents the proposed NN–MT model from the abnormal �q2

data input and effectively describes how �q2 affects waves.

Two following figures compare in detail the wave height

simulation in time series for each typhoon using three NN

models.

After typhoon Fred (1995) was formed and then traveled

for 300 h, it passed through the north of the island and had a

regular path as shown in Fig. 11. Fig. 12 plots the wave

heights computed by three models. The time counts from the

formation of the typhoon. When typhoon Fred arrived in

Taiwan, Hua-Lien harbor was under the left half of the

typhoon. The wave heights computed by both models for the

period in which wind waves grew exceeded the observed

heights by around 1 m. However, when typhoon Fred

reached Taiwan, the peak computed wave height was much

lower than the observed peak height by 2.66 m for model

NN3 and 1.0 m for NN2 model; however, NN–MT model

gave a high prediction only by 0.45 m. NN3 simulated a

wave peak time of 2 h after the actual peak was observed,

and NN2 simulated a peak 3 h too late. NN–MT model

simulated 1 h time delay after the actual peak. When

typhoon Fred passed Taiwan, observed wave heights

decayed very fast due to very high mountains in central

Taiwan and the computed wave heights decayed slowly

because of higher wind speeds input in the model than the

real values. The land effects on the wind whenever a

typhoon passes through Taiwan are complicated and will be

studied in the future to modify the model.
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Fig. 12. Wave heights observed at Hua-Lien harbor and computed by three

NN models for typhoon Fred (1994).
Only one wave record of typhoon Maggie (1999) at the

Su-Ao harbor was available for extending the proposed

models to the Su-Au harbor. As indicated in Fig. 11,

typhoon Maggie originally formed over the waters to the

southeast of Taiwan and moved west by northwest, passing

through the Bashi Channel, finally reaching southeast

China. Fig. 13 shows the computed and observed wave

heights during typhoon Maggie. While Maggie was far from

the Su-Ao harbor, the computed wind speeds exceeded the

real wind speeds because the Su-Ao harbor was then located

in the right semi-circle of typhoon Maggie. The computed

wave heights are approximately 1 m lower than the

observed heights. The NN2 model simulates the wave

heights much better than the NN3 an NN–MT models do

when typhoon Maggie roughly reached Taiwan. NN2

yielded a reasonably accurate peak with a 1-h delay.

Through the examination on the wave heights predicted for

the typhoon Maggie (1999) at the Su-Ao harbor, the

proposed NN–MT model is proven to be applicable for

calculating the typhoon waves at an interest point along the

Taiwan eastern coast.

Both cases of only one typhoon occurring at a time and

tropical depressions are excluded in the typhoon data used

for the learning stage in the proposed model. Thus, the

proposed models cannot be applied to predicting waves

caused by monsoons. From the discussion above the present

results indicate that the present model is limit to the

conditions that the typhoons are affected by high mountains

or the roughness of the land and they move from the east

towards the west.
5. Conclusions

Chang et al. [4] proposed two applicable NN models to

support rapid computation to determine the relationship

between typhoon winds and waves. When the number of

input data is small or the data are abnormally distributed, an

NN model is hard to set up for accurate simulating wave
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heights. An appropriate transfer function that can certify the

model for most cases and prevent from the disadvantage of

over-learning problems is required for a good NN model.

The present work first considered multi-trend simulating

transfer functions in NN model to more stably and

accurately calculate wave heights than the former two

models. The proposed NN–MT model can be applicable for

the path of an examined typhoon that may be not similar to

some paths of the typhoons chosen in the learning stage.

Four essential factors influencing typhoon waves are

discussed and expressed by suitable trend functions. They

are the local wind speed at 10 m high, distance between the

interesting point and typhoon’s center, the azimuth angle

and the position angle in a moving typhoon. The last factor

is to express the difference that wind speed in the right semi-

circle is larger than that in the left semi-circle. Four equal

quarters in a circle are separated to have the proposed

transfer Gussian functions that can provide the model

sensible description of wind speed distribution when wind

speed data are less. The present NN–MT model can

precisely simulate the peak of typhoon waves by an error

of less than 1.2 m in height and by a shift of 3 h in

occurrence time.

The NN models are extended to calculate wave heights at

the Su-Ao harbor that is next to the Hua-Lien harbor. The

proposed model also accurately predicts wave heights.

However, the NN models fail to simulate the decay of waves

due to land with high mountains. The land effect should be

more closely examined in the future.
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