Available online at www.sciencedirect.com

d JOURNAL OF
SCIENCE DIRECT?®
@ SOUND AND

VIBRATION

Journal of Sound and Vibration 289 (2006) 294—333

www.elsevier.com/locate/jsvi

A modified transfer matrix method for the coupling lateral and
torsional vibrations of symmetric rotor-bearing systems

Sheng-Chung Hsieh?, Juhn-Horng Chen®, An-Chen Lee™*

#Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 30049, Taiwan, ROC
bDepartmenl of Mechanical Engineering, Chung Hua University, Taiwan, ROC

Received 27 January 2004; received in revised form 9 August 2004; accepted 8 February 2005
Available online 28 April 2005

Abstract

This study develops a modified transfer matrix method for analyzing the coupling lateral and torsional
vibrations of the symmetric rotor-bearing system with an external torque. Euler’s angles are used to
describe the orientations of the shaft element and disk. Additionally, to enhance accuracy, the symmetric
rotating shaft is modeled by the Timoshenko beam and considered using a continuous-system concept
rather than the conventional “lumped system” concept. Moreover, the harmonic balance method is
adopted in this approach to determine the steady-state responses comprising the synchronous and
superharmonic whirls. According to our analysis, when the unbalance force and the torque with nx
frequency of the rotating speed excite the system simultaneously, the (n + 1)x and (n — 1)x whirls appear
along with the synchronous whirl. Finally, several numerical examples are presented to demonstrate the
applicability of this approach.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Rotor dynamics plays an important role in many engineering fields, such as gas turbine, steam
turbine, reciprocating and centrifugal compressors, the spindle of machine tools, and so on.
Owing to the growing demands for high power, high speed, and light weight of the rotor-bearing
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Nomenclature

E, G Young’s modulus and shear modulus

A, p  cross-sectional area and density of the
shaft

I’, I} transverse and polar area moment of

: inertia of the shaft
I, I]‘f transverse and polar mass moment of
inertia of the disk
L length of the shaft element
kg Timoshenko’s shear coefficient
e eccentricity
m mass

K.\, K,, direct axial stiffness of the bearing
K.y,K, cross-axial stiffness of the bearing
Koy, Kyy, direct bending stiffness of the

bearing

Koy, Ko,y cross-bending stiffness of the
bearing

K, torsional stiffness of the bearing

C.x, C,y direct axial damping of the bearing
C,,, Cy, cross-axial damping of the bearing
Coxx, Coyy direct bending damping of the

bearing
Coxy, Coyx cross-bending damping of the
bearing
C, torsional damping of the bearing
Q rotating speed
t time

M bending moment in fixed frame

V shear force in fixed frame

T axial torque

T torque due to bearing

X,y deflections of the geometric center in X
and Y directions

Xc, y.  deflections of the mass center in X and
Y directions

0 angular displacements

y shear deformation angles

1} angle of twist

S state variable vector

X general displacement state variable vec-
tor

F general force state variable vector

X(Z) mode function vector of general dis-
placement

F(Z) mode function vector of general force

[T] transfer matrix

[U] overall transfer matrix

Ey, E, Xkinetic energy and potential energy

w work

w weight

XYZ  fixed frame

UVW rotating frame coincident with principal
axes of rotating element

¢, 0,y Euler’s angles with rotating order in

rank

() spin angle of the rotating element about
the axis W

Subscript

c, s associated to cosine, sine terms

X,y components in X, Y directions

u, v components in U, V' directions

{e}, {!} to be referred to as derivatives with
respect to time and coordinate

Superscript

R, L  right, left

s, d, b superscript for shaft element, disk and
bearing

h, p homogeneous solution, particular
solution
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system, computations of critical speeds and steady-state response at synchronous and subcritical
resonances become essential for system design, identification, diagnosis, and control.

Currently, the finite element and transfer matrix approaches are becoming two of the most
prevalent methods for analyzing rotor-bearing systems. While the finite element method (FEM)
formulates rotor-bearing systems by second-order differential equations directly utilized for
control design and estimation, the transfer matrix method (TMM) solves dynamic problems in the
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frequency domain. The TMM utilizes a marching procedure, starting with the boundary
conditions at one side of the system, and successively marching along the structure to the other
side of the system. The satisfaction of the boundary conditions at all boundary points provides the
basis for solution location. The state of the rotor system at a specific point is transferred between
successive points through transfer matrices. This method is particularly suitable for “chainlinked”
structures such as rotor systems. The primary advantage of the TMM is that it does not require
the storage and manipulation of large system arrays [1].

The application of finite element models to rotor dynamics has been highly successful.
Numerous finite element procedures have attempted to generalize and improve the work of Ruhl
and Booker [2]. Nelson and McVaugh [3] employed a finite element model to formulate the
dynamic equation of a linear rotor system and determine the stability and steady-state responses.
Moreover, Nelson [4] and Ozgiiven and Ozkan [5] further improved the finite element model by
including the effects of rotary inertia, gyroscopic moments, shear deformation and internal
damping.

Genta [6] proposed a scheme for investigating the parametric vibration and instability of an
asymmetric rotor-bearing system via FEM without giving the general formulation of the motion
equation. Genta thus failed to investigate the effects of asymmetry on the motion of rotor-bearing
systems. The effects of deviatoric stiffness of shaft and bearing owing to asymmetry on steady-
state responses was investigated by Kang et al. [7] and transient responses under acceleration was
investigated by Lee et al. [8].

The TMM was first proposed by Prohl [9]. Subsequently, the effects of damping and stiffness of
the fluid film bearing were included by Koenig [10], Guenther and Lovejoy [11]. Lund [12]
achieved significant advances in the TMM by considering the effects of gyroscopic, internal
friction and aerodynamic cross-coupling forces. Bansal and Kirk [13] applied the TMM in modal
analysis for calculating the damped natural frequencies and examining the stability of flexible
rotors mounted on flexible bearing supports. Lund [14] presented a scheme for estimating the
sensitivity of the critical speeds of a rotor to change the design factors. The use of TMM on the
rotors being exposed to a constant axial force and torque was considered by Yim et al. [15]. In
the above works, the shaft is modeled using a lumped-system sense to relate the state variables of
the two ends of the segment via transfer matrix. Because the lumped mass is concentrated at each
end of the section, the shaft must be divided into numerous sections to yield accurate results.
Consequently, considerable computing time is required.

Lund and Orcutt [16] constructed the shaft transfer matrix in a continuous-system sense
analytically and examined the unbalance vibrations experimentally. Furthermore, Inagaki et al.
[17] devised a TMM scheme for determining the steady-state response of asymmetric rotor-
bearing systems by considering only the effect of transverse inertia, while ignoring the effects of
rotary inertia and gyroscopic moment. However, their study only considered a single harmonic
component for the synchronous whirl. Additionally, David et al. [18] showed that the harmonic
balance technique incorporating the TMM can be applied to analyze parametric systems.
Moreover, Lee et al. [19] improved the TMM of the continuous-systems sense to fit the
synchronous elliptical orbits of the linear rotor-bearing systems by doubling the number of state
variables to 16. Their study also considered the rotary inertia, gyroscopic and transverse shear
effects. Furthermore, the utilization of TMM for continuous systems was extended to the
unbalancing shaft [20] and asymmetric rotors [21]. All of the above studies assumed that the
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rotating shaft in the axial direction is rigid. However, the values of the transverse amplitudes
calculated based on this assumption may differ markedly from the actual values.

Regarding the torsional analysis using the TMM, Pestel and Leckie [22] provided a thorough
reference for applying the transfer matrix to determine the natural frequencies and mode shape
for torsional systems. Moreover, Pilkey and Chang [23] presented a generalized method for
applying the boundary conditions to a torsional transfer matrix model that is useful in developing
an algorithm for accomplishing the desired analysis. Sankar [24] presented one multi-shaft
torsional transfer matrix approach. This method built the transfer matrix for each branch
separately, applied compatibility relations at the junction, and then used the boundary conditions
to obtain the characteristic determinant of the system. Finally, Rao [25] employed the TMM to
analyze the free vibration, transient response, critical speed, and instability of the torsional rotor
system.

Schwibinger and Nordmann [26] examined the influence of torsional-lateral coupling on
the stability behavior of a simple geared system supported by oil film bearings. Schwibinger
and Nordmann found that the classical eigenvalue analysis ignoring the coupling of torsional
and lateral vibrations in gears might cause serious errors in the stability prediction, such as the
critical speeds and natural modes. Qin and Mao [27] developed a new finite element model to
analyze the torsional-flexural characteristics of the rotor system. Additionally, Rao et al. [28]
investigated the lateral transient response of geared rotors raised by torsional excitation. Rao
et al. concluded that even if the critical speed of the rotor did not approach the running speed,
the lateral response at a multiple of the spin speed and the torsional response were very large, and
the influence of incremental bending stiffness because of axial torque was insignificant.
Mohiuddin and Khulief [29] presented a reduced modal form of the rotor-bearing system to
find the transient responses owing to different excitations using the FEM. Al-Bedoor [30]
presented a dynamic model for a typical elastic blade attached to a disk mounted on a shaft which
was flexible in the torsional direction. The resulting model and simulation results exhibited
strong dependence and energetic interaction between the shaft torsional deformations and the
blade bending deformations. Additionally, Al-Bedoor [31] presented a model for interpreting
the coupled torsional and lateral transient vibrations of the simple Jeffcott rotor. His
analysis demonstrated the existence of inertial coupling and nonlinear interaction between
the torsional and lateral vibrations. Lee [32] formulated the coupled equations of motion in a
lateral bending—torsion for an unbalanced disk of the simple Jeffcott rotor for analyzing the
instabilities.

This work develops a modified TMM for the coupling lateral and torsional vibrations of
symmetric rotor-bearing systems. Euler’s angles are used to describe the orientations of the
shaft elements and disks. First, Hamilton’s Principle and Newton’s second law are used to
derive the motion equations of the flexible shaft, rigid disks, and linear bearings with respect to
the fixed coordinate, and second, the transfer matrices of the elements are established using
the harmonic balance method. Third, the state variables of the element matrices are related
in stepwise fashion from the left end to the right end to obtain the overall transfer matrix
of the rotor system. The overall transfer matrix can be used to determine the steady-state
responses of synchronous and superharmonic whirls of the coupling lateral and torsional
vibrations. Finally, several numerical examples are presented to demonstrate the applicability of
the approach.
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2. Kinematics of rotating element

The orientation of the rotating element, in three-dimensional motion, can be completely
described using Euler’s angles defined via three successive rotations to specify the relations
between the principal axes of the rotating frame and the fixed frame. As shown in Fig. 1(a), the
rotating sequence for defining Euler’s angles is explained via the following steps: (1) rotate the
initial system, parallel to fixed coordinates, into a deflected mode by an angle ¢ about the Z-axis,
(2) rotate the intermediate axes (XYZ)' by an angle 6 about the X’-axis (the so-called nodal axis)
to another intermediate axes (UVW)', (3) rotate intermediate axes (UVW)' by an angle y about
the W’-axis to produce the principal coordinates UVW. The Euler’s angles ¢, 0, and y fully
characterize the orientation of the rotating element at any given instant.

When a rotating element is deflected in position and orientation as illustrated in Fig. 1(b), the
inclined angle 0 of orientation is measured counterclockwise from the fixed axis Z to the spin axis
W of the rotating element. In the projection description, the deflected angles (or angular
displacements) are the projections of the inclined angle 0, thus 0, = 0 cos ¢ and 0, = 0 sin ¢.
Additionally, the spin angle about the axis W is obtained as @ = ¢ + ¢ from the geometric
configuration of the rotating element with a very small oblique angle 6.

Through the coordinate transformation, the components of the angular velocities in the
directions of principal axes can be found to be

Wy cosy siny 071 0 0 cos¢p sing 0[O0
w, | =|—siny cosyy O[O0 cos® sinf||—sing cos¢p O[O
o 0 0 1||0 —sin® cosb 0 0 1]|[¢]
cosyy siny 0]l 0 0 0 cosyy sinyy 0[O
+ | —siny cosyy O||0 cos@ sinf||0]| 4+ |—siny cosy 0} 01,
0 0 1]|0 —sinf cos6] |0 0 0 1] v

@ v (b)

Fig. 1. Orientation of the rotating element.
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that is,
@, = 0 cos Y + ¢ sin 0 sin ,
w, = —0 sin Y + ¢ sin 0 cos ¥,
Wy =V + ¢ cos 0. (1)
Using principal axes, the kinetic energy Ej of a rotating element moving in three-dimensions is
given by
Ep = im(32 + 32 + 11,0k + 1ok + 1,0%). 2)
Notably the kinetic energy £ of Eq. (2) includes two parts, one associated with the motion of the
mass center, and the other associated with the angular velocities of the rotating element.
Substituting Eq. (1), I =1, =1,,0,=0cos ¢,0, =0sin ¢,P = ¢+, and & = ¢+ into
Eq. (2), the kinetic energy of the symmetric rotating element in the fixed frame is obtained as
. . . . . . . 2 . 2
Ep = 3m(2 + 32 + 1, + 1,0 - 0, — 0, - 0,) + 10, + )], (3)

The kinetic energy in the form of Eq. (3), was used by Greenhill et al. [33] to investigate rotor-
bearing systems with a symmetric shaft and symmetric disks at a constant speed.
3. Transfer matrix of the rigid disk

The disk is assumed to be rigid, thin, and symmetric. Fig. 2 shows the whirling orbit of the disk
with mass imbalance. The geometric relations yield

Xe x e
— + 1 3 “4)
Ye y ey
C : mass center
N| G : geometric center
Y e’ : eccentricity
c )
A\
%}we‘l\:\ Qt+ ¢
- y ~
AT e XA
/
//\—Whirling orbit
/
0 o X
e
7

Fig. 2. Whirling orbit of the disk.
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and
¢! cos(Qr+ @) —sin(Qt + @) | [ &
[e;’] T | sin(Qr+ ) cos(Qf + @) ef] ' )
Substituting Eq. (5) into Eq. (4) and differentiating it, following relations are obtained:
Yo = X — e/ (Q 4 ) cos(Qt + @) — e/ (Q + ) sin(Qt + ¢), (6)
Yo =9+ eUQ + §) cos(Qt + ) — e/(Q + §) sin(Qt + ¢). (7)

Inserting Egs. (6)—(7) and @ = Q¢ + ¢ into Eq. (3), the kinetic energy of the symmetric disk is
obtained by

E = im [ — 2%ed(Q + () cos(Qt + ¢) — 2x€!(Q + ¢) sin(Qt + o) + 7
+ 29e/(Q 4 @) cos(Qt + @) — 2yt (Q + ) sin(Qt + @) + (2 + ¢)*(e?)*]
. . .2 .2
+ 3I4Q+ @) + 1 TUQ + 0)(040, — 0,0,) +11(0, + 0)).

Fig. 3 illustrates that the work done by the disk weight, bending moments, shear forces, and the
torque on the left and right of the disk is

W=—wly+ VEx+ MR, + VEy+ MR+ TR¢ — (Vix+ M0, + VEiy+ M20, + Thg).

Using Hamilton’s principle
5]
5/ (Ex—E,+W)dt=0 (8)
4]

and assuming small twist angle displacement, the force equilibrium equations of the disk in the
fixed coordinates can be obtained as follows:

VR VL 4 m 5 + de? cos(Qt + @) + (el sin(Qt + @) — e (Q + @) sin(Qt + @)
+ e!(Q + ¢)? cos(Qt + )] =0, )

@ (b)

Fig. 3. Forces, moments, and torques acting on the disk.
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Vf - V)f + m?[—§ — (el cos(Qt + @) + pe sin(Qt + @) + e/(Q + @) sin(Qt + @)

+ ¢(Q+ @) cos(Qt 4 @)] — w! =0, (10)
where
m[pe? cos(Qt + @) + et sin(Qt + @) — e (Q + ¢)* sin(Qt + )
+ €l(Q2 + ) cos(Qt + ¢)]
and

mi[—ped cos(Qt + @) + de? sin(Qt + @) 4 e(Q + ¢)* sin(Q1 + ¢)
+ €(Q+ ¢) cos(Q1 + )]

are the unbalance forces of the disk in the x and y directions, respectively. The twist angle (¢) and
its derivatives affect the level of the unbalance force of the disk.
The bending moment equilibrium equations in the fixed coordinates are

MR — ME— 10, — 11960, — I9Q + )b, =0, (11)

ME— ME— 10, + 1190, + I9Q + ¢)0, = 0, (12)

where %I;f(pﬁy z_ind %I;f(p@x are the moments coupled with the twist acceleration (@), I;J(Q + (}))Qy
and I;J(Q + ¢)0, the gyroscopic moments coupled with the twist velocity (¢).
The torque equilibrium equations in the fixed coordinates is

TR — Tt — I;’g'b — %I;’éxﬂy + %I;{éyﬂx + m?[%e? cos(Qt + @) + Xe? sin(Qt + )
— e cos(Qt + @) + je! sin(Qt + @) — (e?)?d] =0, (13)

where %I ;’ éXBy and %I ;’ éyex are the torques coupled with bending angle and angular acceleration,
and

md[jéef cos(Qt + ¢) + )%eZ sin(Qt + @) — j}eZ cos(Qt + @) + j}ef sin(Qr + @) — (¢)*]

is the torque induced by the unbalance force.

Eqgs. (9)—(13) can be simplified into motion equations of the simple Jeffcott rotor [31,32]. In the
simple Jeffcott rotor, the unbalanced disk is located at the middle of the shaft, and only its lateral
and torsional motion is allowed. Gyroscopic and rotary inertia effects are neglected, i.e., Eqgs. (11)
and (12) vanish. The coupling terms %I;’éxﬁy and %Ig éyHX in Eq. (13) also disappear. If the shear
forces and torques are replaced by the lateral stiffness forces and torsional stiffness torques of the
shaft, respectively, Egs. (9)-(10) and (13) become

Kx + m[—5 4 ped cos(Qt 4 @) + pe sin(Qt + @) — e/(Q + @) sin(Qt + @)
+ /(@ + ¢)* cos(Qt + ¢)] =0,

Ky + mU[—3 — pe cos(Qt + @) + de? sin(Qt + @) + e/(Q + §)* sin(Qt + )
+ ef(Q + ¢)* cos(Qr + @)] —w? =0,



302 S.-C. Hsieh et al. | Journal of Sound and Vibration 289 (2006) 294333

ko — Ijé/') + m[%e! cos(Qt + @) + Xe? sin(Qt + )
— jel cos(Qt + @) + je? sin(Qt + @) — (/) *(p] = 0,

where k° denotes the shaft lateral stiffness and kfp represents the shaft torsional stiffness. The
above motion equations are the same as those in Refs. [31,32].
The compatible relations between the two sides of the disk are given by

R=xt, yR=yt 0f=0L o0f =0, of=e" (14)

For a nonlinear differential equation, Hayashi [34] introduced the harmonic balance method
for obtaining the solution of a higher approximation as follows. The solution was first expanded
into Fourier series with unknown coefficients. The assumed solution was then inserted into the
original equation, and the sine and cosine terms of the respective frequencies were set to zero.
Solving the simultaneous equations thus obtained can identify the unknown coefficients of the
assumed solution. The harmonic balance method has been utilized by Kang et al. [7,21].

Using the harmonic balance method, the steady-state responses of Egs. (9)—(14) can each be
expressed in Fourier series form as

n
x(t) = xo + Z Xjc COS iQt + x5 sin iQ1,

i=1

n
W(t) =y, + Z Vi COS iQt + y;; sin iQt,

i=1

n
0.:() =0y + Z Oy.ic cos iQt + 0, sin iQf,

i=1

n
0,(t) = 0,0+ Z 0y cos iQt + 0, sin iQf,

i=1

n
o(t) = @y + Z @;. COS iQt + @;, sin iQt. (15)

i=1
Other variables can be similarly expressed as

n
V)= Veo+ Y Ve cos iQ1 + Vg sin iQ1,

i=1

n
Vi) =Vyo+ D> Ve cos iQt + V,q sin iQ1,

i=1

n
M(t) =M+ Y My cos iQt + M sin iQr,

i=1
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My(1) = Myo+Y My cos iQt + My sin iQ1,

i=1

n
T(t)= To+ Z T cos iQt + T sin iQt. (16)

i=1
Using the relations

cos(Q¢ + @) = cos Qt cos ¢ — sin Q¢ sin @ ~ cos Qt — ¢ sin Qt,

sin(Qt 4+ @) = sin Qt cos ¢ + cos Q¢ sin ¢ ~ sin Qt 4+ ¢ cos Qf

substituting Egs. (15) and (16) into Egs. (9)—(14), ignoring the nonlinear terms, and equating the
coefficients of the same harmonic term provides the transfer matrix equation of the disk for static,
synchronous whirl and nonsynchronous whirls in the static frame:

R L

[SI ] = [lekxklsl ] (17

where k = 20n + 11 and the state variable vector S is denoted as
X
S= [F ], (18)
where
X = [X0 X1c* “Xne X1s* Xns Yo Vie* Vne Vis* Vas
00 Ox,tc * Oxcne Oxts + Oxcns 00 Oyic + Opne Ots = Opns @0 @re Pre Pl Pl

and

F = [Vx,O Vx,lc t Vx,nc Vx,ls o Vx,ns Vy,O Vy,lc t Vy,nc Vy,ls T Vy,ns
T
Mx,O Mx,lc : ‘Mx,nc Mx,ls : 'Mx,ns My,O My,lc : 'My,nc My,ls : 'My,ns TO Tlc : 'Tnc Tls : 'Tns] .

4. Transfer matrix of Timoshenko shaft

As shown in Fig. 4, the finite shaft element can be considered to comprise numerous small
rotating elements. Thus the total kinetic energy of the shaft element is the sum of these kinetic
energies of the rotating elements. Using a similar procedure to that illustrated in Section 3, the
kinetic energy of the symmetric shaft element expressed in fixed coordinates is

1

L
E, = 3P / [A[X* — 2x€5(Q + ¢) cos(Q1 + p) — 2x€5(Q + @) sin(Q1 + @)
0

+ 37+ 2)e5(Q + ) cos(Q1 + @) — 25e3(Q + ¢) sin(Q1 + @) + (2 + ¢)*(€)’]
+ I(Q+ ) + L@ + ¢)0,0, — 0,0.) + I'(0% + 0})} dZ. (19)
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€) (b)

Fig. 4. Forces, moments, and torques acting on the finite shaft element.

The total potential energy according to the bending and shear deformations can be expressed in
fixed coordinates as in Kang et al. [6]

1 [t , o /
Er= 2 / [EP(0,)° + EI(0,) + ksGA( + 73) + GI(¢')]dZ. (20)
0

The work done by the external force (see Fig. 4) is
L
W = / —pAgydZ + VEx + Mfﬂy
0

+ Vi + MEO+ TR — (Vix+ M0, + VEiy+ M0, + Tro). (21)

Using Hamilton’s principle and assuming small twist angle displacement, this study obtains the
force equilibrium equations of the shaft in the fixed coordinates:

— pAX + pA[pe) cos(Qt + @) + pe;, sin(Qt + @) — (2 + gb)ze‘; sin(Qt + @)
+ (Q + @)*¢ cos(Qt + )] + k,GA(x" — 0,) =0, (22)

— pAj + pA[—de;, cos(Qt + @) + de) sin(Qt + @) + (2 + (}))Zefl sin(Q7 + @)
+ (24 @)’ cos(Qt + )] + k,GAWO. + ") — pAg = 0. (23)

From above equations, the twist angle (¢) and its derivatives can be found to emerge from the
unbalance forces:

pA[pe cos(Qt + @) + (e’ sin(Qt + @) — (Q + )¢’ sin(Qt + @)
+ (Q+ qb)zei cos(2t + ¢)]
and
pA[—pes cos(Qt + @) + peb sin(Qt + @) + (Q + §)’e’ sin(Qr + @)
+(Q+ ¢)e) cos(Q + )]

and influence the level of the unbalance forces.
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The bending moment equilibrium equations in the fixed coordinates are

pI*0, + 1 pIp0, + pI5(Q + @)0, — EI'0) + k;GA(0x + ) =0, (24)
pI*0, — L pI 0, — pIS(Q + ¢)0, — EI'0)) + kyGA(6), — X') = 0, (25)

where % ol ;('bHy and % ol ;(p@x denote the moments coupled with the twist acceleration (¢), pI ;(Q +

qb)éy and pI)(2 + #)0, represent the gyroscopic moments coupled with the twist velocity (¢).
The torque equilibrium equation in the fixed coordinates is

pl,p + %p[ls)é)ﬂy — %plj,éyﬁx + pA[—Xe] cos(Qt + @) — Xe, sin(Qt + ¢)
+ je) cos(Qt + @) — je, sin(Qt + @) + (&) p] — Glf,qo” =0, (26)
where % ol ;@X()y and % ol ;éy()x are the torques coupled by bending angle and angular acceleration,
and

pA[—Xe) cos(Qt + ¢) — Xe), sin(Qt + @) + je, cos(Qt + @) — je) sin(Qt + ¢) + ()]

is the torque induced by unbalance force.
The natural boundary conditions are

VR 4 ksGAO) — X)z—p =0, VE4[kGAO, — x)]4_0 =0,
Vi 4 [=kGAO A V)72 =0, VY + [=k,GAOx + )]z = 0,
MR+ [-EF0),_;, =0, ML+[-EF0],_,=0,
ME+[—El0)),_;, My+[-EP0)], =0,

T*+[~GL¢ ., =0, T'+[-GL¢l;=0. 27

The steady-state solution of Egs. (22)—(26) can be expressed in Fourier series form as

x(Z,t) = xo(Z) + Z Xic(Z) cos iQt + x;(Z) sin iQ¢,

i=1

n
WZ,0) =y(Z) + > yilZ) cos iQt + y,(Z) sin iQu,

i=1

0(Z.1) = 050(Z) + Y Oxie(Z) cos iQ1 + 0. (Z) sin i1,

i=1

0,(Z,1) = 0,0(2) + Z 0,.i(Z) cos iQt + 0, ;(Z) sin iQt,

i=1

n

P(Z.1) = 9o(Z) + Y ¢, (Z)cos it + ¢, (Z)sin iQ1, (28)

i=1
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Where X()(Z), yO(Z)a GX,O(Z)s Hy,O(Z)s (pO(Z)’ X,'C(Z), xis(Z)> yic(Z)’ yis(Z)a Gx,ic(z)’ Hx,is(z)a Gy,ic(z)a
0,,5(Z), ¢;.(z) and ¢;(z) are the mode functions of the relative Oth order and nx harmonic whirl
with respect to the static frame of the shaft. For convenience, the mode function vector of general
displacement are denoted as X(Z), namely

X(Z) = [x(Z2)x1(2) - -xp(Z)X1(Z) - -Xn( L)y (L)Y (Z) = V(L)Y (Z) - -y (Z)
Bx,O(Z)Bx,lc(Z) : 'gx,nc(Z)gx,ls(Z) : 'Gx,ns(Z)Oy,O(Z)By,lc(Z) : 'Gy,nc(z)gy,ls(z) : 'Gy,ns(Z)
Po(2)91(2) - 0, 2)1(Z) - -0, (2] (29)

Substituting Eq. (28) into Egs. (22)—(26), ignoring the nonlinear terms, and equating
the coefficients of the same harmonic term produces 33 nonhomogeneous differential
equations as listed in Appendix A. The general solutions of the nonhomogeneous system,
Egs. (A.1)-(A.33), can be represented by the sum of the homogeneous and the particular
solutions, namely

X(Z) = X(Z)" + X(ZY. (30)
Assume the homogeneous solution X(Z)" in the forms
X(2)" = X", (31)

where the arbitrary constant vector X" =[x} x! ..x!t X ..xhoyhoph oo ph oph o ogh ot

X
ho oh h ah ph ho h ho ko h hoooh hqT : ot
~6x’m, 9x,1s . -Bx’ns Hy,O Hy,lc . -Qy,nc 9y,1s . -Hy’ns o5 @1, - @n. @l --@r] and A is the characteristic
value, with respect to a nature mode.

Substituting Eq. (31) into Egs. (A.1)—(A.33) yields the following characteristic equation:
(J*Es + JE; 4+ Eg)X", (32)

where E,, E; and E, are matrices with size (10n + 5) x (10n + 5) and are listed in Appendix B. Eq.
(32) can be rewritten as the generalized eigen-problem form

{} [ 0 E E, 0 } JX"
E2 El kxk

0 -E, Xh
where k = 20n + 10.
By solving Eq. (33), the eigen-value A and corresponding eigenvector X" are obtained. Hence
the homogeneous solution is

SHS
B 0 kxl’

kxk kx1

20n+10 .
X(Z)' =Y Xl (34)
i=1

where C; is an undetermined constant, and Xf’ is the eigenvector corresponding to 4.
From Egs. (A.3), (A.2), (A.10)—(A.12) and (A.19), the following particular solutions are
obtained

s s s s
.X’i, =& xq(f =€ yqs =~ yfc = €

A A A

2k,G 4EIF T 7 X0 T GEL
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Substituting Egs. (34) and (35) into Eq. (30) yields

C
X(2) = [G(Z)][ ) } (36)

where [G(Z)] is the matrix of the function of Z with size (10n + 5) x (20n + 11) and undetermined
constant vector C =[C,C; - - - C20n+10]T. Thus the general displacement state variable vectors can
be expressed as

XR=X(Z=L)= [Gﬂ[ﬂ, (37)

where [G1] = [G(Z = L)] and

XL=X(Z=0)=[GO][ﬂ, (38)

where [Gy] = [G(Z = 0)].
The solutions of Eq. (27) can be expressed in Fourier series form as

n
VAZ.0) = Vo(Z)+ > VyilZ)cos iQt + V.. i(Z) sin iQt,

i=1

n
VAZ,0) = Vyo(Z)+ Y VyiZ)cos iQt + V. i(Z) sin i1,
i=1

n
MAZ,1)= M o(Z)+ Y Myi(Z)cos iQt + M, ;(Z)sin iQr,

i=1

n
My(Z,1) = Myo(Z) + > My(Z)cos iQ1 + M, ;(Z)sin iQ1,

i=1

T(Z,0) = To(Z) + > Ti(Z)cos iQt + Ti(Z)sin iQt. (39)
i=1

The mode function vector of the general force F(Z) is defined as
F(Z) = [Vio( )WV 1 (ZL) - Ve L)V 1 (Z) - - Vien(Z)
Vo)V Z) - - Vi 2)V y15(Z) - Vyp(Z)
M o( )M ) (Z) - My ()M ) (Z) - - My 05(2)
My (2)My1(Z) - -Myu(Z)M ) 1(Z) - - My 5s(Z)
Ty )T\ (Z) - - Tl Z)T\(Z) - -T2 (40)
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By inserting Eq. (39) into (27) and using Eq. (36), the mode function vector of the general force
at right FR is given by

C
FF = [HL][ 1 } (1)

where [H ] denotes a matrix with size (10n + 5) x (20n + 11), and the mode function vector of the
general force at left F- is given by

L C
Fo=[Ho| | |, (42)

where [Hy] is a matrix with size (10n + 5) x (20n + 11)
Combining Egs. (37), (38), (41) and (42) yields

S ] C
= [M/] ; (43)
1 1
where [M ] is a matrix with size (20n + 11) x (20n + 11) and
S* ] C
| =0l (44)

where [M] is a matrix with size (20n + 11) x (20n + 11).
Using Eqgs. (43) and (44), the transfer matrix [7°] of the shaft can be obtained

R C L L
[SI } = [MLI[Mo] [SI ] = (7" [S ] (43)

1 1
The transfer matrix [7%], with size (20n + 11) x (20n + 11) is constructed to relate two sides of a
uniform and symmetric Timoshenko shaft with eccentricity for the relative Oth-order static
deflection, synchronous whirl, and nx whirl (nth order) in the static frame.

=[ML][

5. Transfer matrix of the linear bearing

In the rotor system, the bearing can be simplified into a linear element. Fig. 5 illustrates the
force F z, F ﬁ, bending moment M f(, M ly’, and torque T b acting on the shaft due to the bearing are

given by
F }; K,. K y X Cw Ci y X
Fy Ko Ky ||y G Cpy || o[
M i K Oxx K Oxy Qx CGxx C(?xy 0 x
Mﬁ B K()yx K()yy Qy C()yx C()yy Oy ’

T" = —K,p — Cpop. (46)
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Vas M§¢ ™ My 5}7%\9
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L ) Vi x =xt=xR y:yL:yR
T Ve [x o 8,-85-65 Y| 8.6
¢ =0 o =¢-¢"
z
Y * X z
Ki ic Ki ic
€) (b)

Fig. 5. Forces, moments, and torques acting on the node of the bearing.

Hence the equilibrium relations of the force, bending moment and torque acting on the shaft can
be expressed as

Vf V& F I‘Z . V)% + K xx K Xy X Cvc Cx y X
Vf VJl?‘ Ff B VJI; ny Kyy Y Cy X C)’ y y ’
Mf i M§ M?c . Mf K@xx Kﬁxy Qx " CHxx Cny Qx
M f M yL M [y7 | M yL Kopx Koy | | 0y Copx  Copy 0, ’
TR=T'+ Kyp + Cyop. (47)

Substituting the Fourier series representation of x, y, 0y, 0,, V., V,, M,, M, and T into Eq.
(47) and equating the coefficients of the same harmonic term, the transfer matrix of the linear

bearing can be obtained as [7”]
SK st
[ | ] = [T"Jeuk [ | ] (48)

where k = 20n + 11. The state variable vector S contains the total coefficient of the Fourier series
from static variables to the nth-order harmonic term.

6. Overall transfer matrix of the whole system

Fig. 6 shows that the typical system has multi-disks, bearings and a flexible shaft with a torque
at the right end. The overall transfer matrix of the rotor system is the relation between the two
ends of the shaft, and can be derived by stepwise relationship of the state vectors from the left end
to the right end. The multiplication of the matrices of all elements from the left to the right end
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Fig. 6. A general rotor-bearing system.
successively yields
SR St
[ = [U]
1
SL
= [TLIT" YT, (T, - - [TLIT LT U, | ] (49)

where the subscripts denote station numbers. Because a torque acts on the right end of the shaft,
Eq. (49) becomes

XR U, Uy w] Xt
FR| =|U;y Uy u 0 |, (50)
1 0 0 1 1

where

X= [XO Xle * *Xne X1s * Xns Yo Vie " Vne Vis* Vns

ex,O Hx,lc . ‘Hx,nc Hx,ls : 'Hx,ns Hy,O Hy,lc : 'Qy,nc Qy,ls : 'ey,ns

Do Pie* " Ppe Pis - '(pns]Ta

FR=[00-00--000-00-000--00--000--00--070T 1+ -TreT1sTrs]',

0 is a zero vector with size (10n + 5) x 1 and w; represents the excitation vector resulting from
unbalanced and unidirectional loads. The state variables of stages 0, X* and n, X% can be solved
using Eq. (50), and the state variables of other stages then are obtained by multiplying transfer
matrices from stage 0 of the left end stepwise until a specific stage is reached. For instance, the
state variables of stage 4 (see Fig. 6) are given by

SL

1 b

SR
¥

where S® comprises state variables of stage 4.

= [T [T LIT"T,
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Fig. 7. System for the numerical examples.

7. Numerical examples

To demonstrate the applicability of this approach and show the effects of mass unbalance and
external torque on the steady-state vibration, a rotor-bearing system with the symmetric shaft is
used, as illustrated in Fig. 7. The response amplitude is defined as the maximum flexural

displacement, i.e.,
Amplitude = maximum value of \/x(¢2)* + y(¢)*.

The systems supported by the isotropic and anisotropic bearings are analyzed individually.
Table 1 lists the details of the rotor-bearing systems.

Case 1: Isotropic rotor-bearing system: If no external torque but only the unbalance force is
acting on the system, the whirling orbit is forward, synchronous, and right circular (Fig. 8). A
synchronous lateral mode occurs at 3024 rev/min and the amplitude becomes increases at this
rotating speed. Fig. 9 illustrates the response amplitudes excited by the different 1x torques along
with the unbalance force, and the orbits of disk 1 when torque = 5000 cos Qf Nm. Two peaks
other than synchronous resonance clearly appear. With increasing the amount of external torque,
the amplitudes of the added resonant peaks increase, and the positions of the resonant peaks
become irrelevant to the amount of the external torque. This behavior implies that the amount of
external torque cannot alter the rotor nature frequency. The whirling orbits excited by both the
unbalance force and external torque are forward but not necessarily synchronous and right
circular. The whirling orbit is double-looped at 1490 and 2530 rev/min, and is roughly circular at
3050 rev/min (near the lateral resonant frequency 3024 rev/min).

Fig. 10 shows the response amplitudes of the components for torque = 5000 cos 2t Nm. The
response is composed of synchronous (i.e., 1x) and 2x whirls. Notably, the synchronous
component is the same as in Fig. 9 for 7" = 0. Accordingly, the unbalance force, with 1x exciting
frequency, is known to excite the synchronous component. The torque excites the torsional
vibration with torsional exciting frequency and, under the system coupling effect, also stimulates
the lateral vibration whose whirly frequency is that of the torque plus or minus the rotating
speed. Thus, owing to the coupling effect of the rotor system, the 1x torque excites a 2x lateral
mode at 1497.3rev/min, which is a half of the lateral resonant frequency (3024 rev/min), and
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Table 1
Details of the three-disk rotor system

The coefficients of the shaft

E 207 x 10° N/m>
G 81 x 10° N/m?
ky 0.68
p 7750kg/m>
e 2x 107 m
e 0
The coefficients of the disks
md 13.47kg
I 1020 x 10~ kgm?
I 512 x 104 kgm?

ed of the disk 1

ed of the disk 2 and disk 3

ed of the disk 1, disk 2, and disk 3
The coefficients of the bearings

K., Ky,

K., K,, (isotropic rotor-bearing system)
K,,.K,, (anisotropic rotor-bearing system)
K()xxa K()yya K()xy> K()yx

K, of the left bearing

K, of the right bearing

1x107m
0
0

1 x 10" N/m

0

5x 10°N/m

0

3 x 10*Nm/rad
0

C);x, ny 2 x 103 Ns/m
C);ya nya C()xxa C()yya C()xya C()yx 0

C, of the left bearing I Nms/rad
C,, of the right bearing 0

a 1x torsional mode at 2516.7 rev/min. Fig. 11 illustrates the orbits of 1x, 2x, and synthetic
whirls. The orbits of the 1 x and 2x components are all forward, so that the synthetic orbit is also
forward. At the rotating speed of 3050rev/min (near the lateral resonant frequency), the
amplitude of 1x whirl component exceeds that of the 2x whirl, and therefore the resulting
synchronous orbit is right circular.

When 1x external torques are replaced by 2x ones, the nonsynchronous resonant peaks are
located at 995.3 and 1258.0rev/min, but the synchronous resonant peak is still located at
3022.6rev/min (see Fig. 12). The positions of the resonant peaks are also irrelevant to the
amplitude of the external torque. The whirling orbits at 7= 5000 cos 2Q¢ Nm are also displayed
in Fig. 12. The response amplitudes and the whirling orbits of the components comprise 1x and
3x components, and are illustrated in Figs. 13 and 14, respectively. From Fig. 13, a 3x lateral
mode occurs at 995.3 rev/min (around one-third of the lateral resonant frequency 3022.6 rev/min)
since, under the system coupling effect, the 2x torque excites the 3x forward and 1x backward
whirls. Furthermore, a 2x torsional mode occurs at 1258.0 rev/min (half of the torsional resonant
frequency 2516.7 rev/min) and, because of the system coupling effect, these modes appear on the
Ix and 3x whirl components simultaneously. The unbalance force excites the 1x forward
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Fig. 8. Synchronous whirling orbits of disk 1 (isotropic rotor-bearing system without torque).
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Fig. 9. Response amplitudes and orbits (7" = 5000 cos Qr) of disk 1 (isotropic rotor-bearing system with 1x torques).
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Fig. 10. Response amplitudes of the components of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos Q).

component. The 1x forward (excited by the unbalance force) and backward components
(excited by the torque) may result in the 1x ellipse whirl orbit. If the 1x forward com-
ponent is exceeding the backward component, the 1x whirl orbit is forward, and vice versa.
Finally, the 3x whirl orbit, which is excited by the torque alone, is forward and right circular
(see Fig. 14).

Fig. 15 shows the response amplitude and whirling orbits at 7 = 5000 cos 3Q2¢ Nm. The
response amplitudes and whirling orbits of the components are illustrated in Figs. 16 and 17
respectively. Fig. 16 indicates that the response components involve the 1x, 2x, and 4x whirl.
The response components of 2x and 4x whirls are excited by the external torque. A 2x lateral
mode appears at 1468.6 rev/min, and a 4x lateral mode appears at 745.3 rev/min. 3x torsional
modes appear at 838.6 and 3712rev/min and, due to the system coupling effect, these modes
appear on the 2x and 4x whirl components simultaneously. The unbalance force excites the
forward 1x whirl and the torque excites the backward 2x and forward 4 x whirls (see Fig. 17). At
rotating speed of 3698 rev/min (near the second torsional mode), the amounts of the components
are comparable, and thus the synthetic whirling orbit becomes complex.

As shown in Figs. 18-20, respectively, when the system is simultaneously excited by 1x, 2x, and
3x external torque (7" = T,(cos Qt + cos 2Qt + cos 3Q¢) Nm), the response amplitude, response
amplitude of components, and whirl orbits are the sum of those when the system is excited by just
one of these external torques. Table 2 lists the relations between the critical speeds and exciting
frequency.

Case 2: Anisotropic rotor-bearing system: Fig. 21 shows the response amplitudes and orbits at
T =0 and T = 1000 cos Q¢ Nm when neglecting the eccentricity of the shaft. The response and
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Fig. 11. Whirling orbits of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos Q¢).
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Fig. 12. Response amplitudes and orbits (7 = 5000 cos 2Q¢) of disk 1 (isotropic rotor-bearing system with 2x
torques).
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Fig. 13. Response amplitudes of the components of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos 2Q1).
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Fig. 14. Whirling orbits of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos 2Q1).

orbits at 7' = 0 are denoted by solid lines agree with our previous work of Lee et al. [19]. The
analytical results reveals that, due to anisotropic bearing, two synchronous (1x) lateral modes
(2683.3 and 3082.6 rev/min) are excited and the orbits are always elliptical and synchronous for
different rotating speeds. The synchronous whirling orbit reverses and becomes backward at
speeds between the split critical speeds. The response and whirling orbit at 7' = 1000 cos Q¢ Nm
are denoted by dashed lines. Besides the synchronous lateral modes, the external torque excites
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Fig. 15. Response amplitude and orbits of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos 3Qr).
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Fig. 16. Response amplitudes of the components of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos 3Q1).
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Fig. 17. Whirling orbits of disk 1 (isotropic rotor-bearing system, 7" = 5000 cos 3Q1).

nonsynchronous (2x) lateral modes (1344 and 1539.3 rev/min) and the torsional mode (2516 rev/
min), which make the orbits no longer elliptical and synchronous. Consequently, the coupling
effect is disregarded and the nonsynchronous lateral modes are left out when the lateral and
torsional vibration are analyzed separately.



320 S.-C. Hsieh et al. | Journal of Sound and Vibration 289 (2006) 294-333

1

0.1

0.01

0.001

Ta=1000

Amplitude (mm)

Ta=100
0.0001 Ta=10
Ta=0

1E-005

1E-:006 — ‘ { ‘ { ‘ { ‘ \
o 1000 2000 3000 4000

Rotating speed (rev/min)

Fig. 18. Response amplitudes of disk 1 (isotropic rotor-bearing system with different torques).
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Fig. 19. Response amplitudes of the components of disk 1 (isotropic rotor-bearing system, 7', = 5000).
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Fig. 20. Whirling orbits of disk 1 (isotropic rotor-bearing system, 7, = 5000).
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Table 2
Critical speeds of the isotropic rotor-bearing system

External torque 7" (N m) Lateral natural frequency

The first mode (rev/min)

4x subcritical 3x subcritical 2x subcritical (1x) synchronous
speed speed speed critical speed

A. Critical speeds corresponding to the lateral natural frequency

T=0 3024.0 (F)
T = 5000 cos Qf 1497.3 (F) 3024.0 (F)
T = 5000 cos 2Q¢ 995.3 (F) 3022.6 (F)
T = 5000 cos 3Q¢ 745.3 (F) 1468.6 (B) 3023.3 (F)
T = 5000(cos Qf 745.3 (F) 995.3 (F) 1496.0 (F) 3024.0 (F)

+cos 2Qt 4 cos 3Q1)

External torque 7" (N m) Torsional natural frequency
The first mode (rev/min) The second mode (rev/min)
3x 2% (1x) 3x 2% (1x)
subcritical subcritical critical subcritical subcritical critical
speed speed speed speed speed speed
B. Critical speeds corresponding to the torsional natural frequency
T=0
T = 5000 cos Qt 2516.7
T = 5000 cos 2Qt 1258.0
T = 5000 cos 3Q¢ 838.6 3712.0
T = 5000(cos Qt 838.6 1258.0 2516.0 3713.3

~+ cos 2Qt + cos 3Q1)

F: forward, B: backward

Figs. 22-24 show the response amplitudes, component amplitudes, and whirl orbits
at T = T,(cos 2t + cos 2Q¢), respectively. Fig. 22 reveals that the synchronous resonance
occurs at 3082 and 2682.6rev/min. The steady response is comprised of the 1x, 2x, and
3x whirl components (Fig. 23). Because of the effect of the system coupling, two 2x lateral
modes occur at 1538.6 and 1340 rev/min, two 3x lateral modes exist at 1025.3 and 897.3 rev/min,
one 1x torsional mode occurs at 2517.3rev/min, and one 2x torsional mode exists at
1258.0 rev/min.

Fig. 24 shows the orbit shapes of the 1x, 2x, and 3x whirls and the synthetic whirling orbit
shape. The synthetic whirling orbit is complex because the whirl components involve the 1x, 2x,
and 4x whirls. Table 3 lists the relations between the resonant critical speeds of the anisotropic
rotor-bearing system and the exciting frequency.



Fig. 21. Response amplitudes and orbits of disk 1 (anisotropic rotor-bearing system).

Fig. 22.

S.-C. Hsieh et al. | Journal of Sound and Vibration 289 (2006) 294333

2000 rev/min
3500 rev/min

1
1000 rev/min %92y v
Sora (T 30826 o0
- . 0.003 X
N »)5.0E—4 0.01
o1 2683.3
I

E i 1539.3 i 2516.0
] | y
| |
801 — l I
:E\ E T 1000c050t ‘ 1344\'0/ ~ orbit unit: mm |
S 1'- J_\\// v =
§ 0001 —= =0 ‘ ‘ ,S@ !
- 3 | rotation .
= 3 2850 rev/min ‘
> ] ‘ 0.027y |
* ooo0r | |
E i 02 i
1E-005 — | i
E ‘ | |
a ! ‘
1E008 SN S
0 2000 3000 4000

Rotating speed (rev/min)

1 3082.0

1025.3 1258.0
1538.6 2517.3 7gg2.

0.1

o
2

Ta=5000

Ta=1000

Amplitude (mm)
(=]
8

0.0001

1E-005

1E-006
[ ' [ ' [ ' [ ' |
o 1000 2000 3000 4000

Rotating speed (rev/min)

Response amplitudes of disk 1 (anisotropic rotor-bearing system with different torques).

323



324 S.-C. Hsieh et al. | Journal of Sound and Vibration 289 (2006) 294333

1X, 2X and 3X whirls
3082.0

Ta=5000

1025.3 1258.0

©
2 e

:

1X whirl

Amplitude (mm)

3X whirl

1E-007 T T T T T T T ]

0 1000 2000 3000 4000

Rotating speed (rev/min)

Fig. 23. Response amplitudes of the components of disk 1 (anisotropic rotor-bearing system, 7, = 5000).

8. Conclusion

The main objective of this work is to offer a modified TMM for analyzing the coupling lateral
and torsional vibrations of the symmetric rotor-bearing systems with an external torque. The state
variables of the modified transfer matrix include the lateral deflection, angular displacements,
angle of twist, shear force, bending moment, and torque. The modified transfer matrix can be used
to determine the steady-state responses of synchronous and superharmonic whirls of the coupling
lateral and torsional vibrations. When the unbalance force alone excites the isotropic bearing-
rotor system, the whirl orbit is synchronous, forward, and right circular, and only 1x lateral mode
can be excited. However, when the unbalance force and the torque with nx frequency of the
rotating speed excite the system simultaneously, the (n + 1)x forward and (n — 1)x backward
whirls appear along with synchronous whirl. If the unbalance force alone excites the anisotropic
bearing-rotor system, the whirl orbit is synchronous and elliptical. Two split 1x lateral modes
appear and the synchronous whirl reverses direction and becomes backward between the split
critical speeds. Like the isotropic system, if the unbalance force and the torque with nx frequency
of the rotating speed excite the system simultaneously, the (n 4+ 1)x and (n — 1)x whirls appear
along with synchronous whirl. In conclusion, the external torque excites the superharmonic
response and affects the dynamic behavior of the rotor-bearing system. Thus, during the design
stage, the effect of the external torque should be considered carefully to avoid unexpectedly
damaging the rotor-bearing system.
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Fig. 24. Whirling orbits of disk 1 (anisotropic rotor-bearing system, 7, = 5000).

Rotating speed = 3126.0 rev/min
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Table 3
Critical speeds of the anisotropic rotor-bearing system

External torque 7" (N m) Lateral natural frequency

The first mode (rev/min)

3x subcritical speed 2x subcritical speed (1x) synchronous critical speed

A. Critical speeds corresponding to the lateral natural frequency

T=0 2683.3 (B)
3082.6 (F)
T = 1000 cos Qt 1344.0 (B) 2683.3(B)
1539.3 (F) 3082.6 (F)
T = 5000(cos Qt + cos 2Qr) 897.3 (B) 1340.0 (B) 2682.6 (B)
1025.3 (F) 1538.6 (F) 3082.0 (F)

External torque 7' (N m) Torsional natural frequency

The first mode (rev/min)

2x subcritical speed (1x) critical speed

B. Critical speeds corresponding to the torsional natural frequency

T=0
T = 1000 cos Qt 2516.0
T = 5000(cos Qt + cos 2Qt) 1258.0 2517.3

F: forward, B: backward
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Appendix A

Substituting Eq. (28) into Egs. (22)—(26) and equating coefficients of the same harmonic terms,
the following equations are obtained:

kyGAX) — k,GAO,, = 0, (A.1)

kyGAX|, — k,GAO, |, + pAQLx1. —LpAei o, —LpAei QP o, — pAQPel g,
= —pAQ’e, (A.2)



S.-C. Hsieh et al. | Journal of Sound and Vibration 289 (2006) 294333

ke GAX), — k,GAO.

s T pAQ x| — %PAeiQZ%S + %PAe}iQZV’zc - PAQZeZV’o
= pAQ*e’,

ksGAx;, — k,GAO, ,, + pALQ* Xy, — 2p A Q s, — 2p A Qs — 2p A Q7
+2pAeQ%p,, =0,

ksGAxy — kyGAD, 5 + pA4Q X5 — 2p A€} @3 + 2p A, Q3. — 2p AL
— 2p4&2%p,, =0,

kyGAx], — k,GAU,,

202 22 2 A2
e T PAT L Xje = 3 p AT L @1 — 3pACT L P,

— 3P4 Q01 +1p A Py, =0,

ks GAX), — k,GAD),

Vs + ijz'szjS - %pAei]-2Q2(rD(/+l)S + %pAeftjz‘Qz(P(j—H)c

- %PA@SJZQ%P(/A)S - %PAEZ/QQZQ’(/?UC =0,

kyGAX!, — kyGAO!

y,ne

+ p A Q*x, — %pAef)n%Zz(p(n_l)c + %pAeinzgz(p(n_l)s =0,

kyGAX!. — k,GAO  + pAn*Q*x,, — %pAe‘;an%o(n_l)s - %pAeflanzq)(n_l)c =0,

yns

ksGAO' , + ksGAy; = pAyg,

ksGAO, 1, + k;GAY], + pARLy .+ 1 pAe, @0y — 1p AP0y + pAQ e,

x,lc

= —pAQZe‘Z,

kSGAB;,ls + ksGAy/l/s + pAszlS + %pAeftQ2q)2s + %pAei‘qu)% - PAQzeZ%

= —pAQze‘;,

ksGAO, 5, + ksGAYS, + pAAL s + 2p A, Q5. — 2p AR 3 + 2p A€, ¢,

x,2¢

+ 2pAej.qu)1S =0,

ksGAO, 5, + ksGAyy, + pALQ* Y, 4 2p A D@y, + 2p A7 5, + 2p A Q0

—2pAeiQ*p,, =0,

ksGAO, ;. + ksGAY), + pA @y, + L pAe Q¢ 1) — S pA€ Q2o 1),

x,jc
+ %PAeszQzﬁD(;—l)c + %PAeiszzq)(;—l)s =0,
ksGAO, ;, + ksGAYj + pAFQy, + 3 p A Q1) +3p A€ L0,
+ %pAef‘szz(p(j_l)s — %pAeiszz(p(i_l)c =0,

327

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)
(A.8)
(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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kSGAQ;’nC + k,GAy), + pAR*Q?y, . + %pAe;anz(/)(n_l)c + %pAe‘z,nQQz(p(n_l)s =0,
kSGAH;,ns + kSGAst + pAnzgzym + %pAe‘;anz(p(n_l)s - %pAei*n292q)(n—l)c = O’

EP0), — k,GAOyo — k,GAy) = 0,

EP0),, — ksGAO. ;. — ksGAy), — pI3QiQ0, ;s + pI** Q0 = 0,
EI0) — ksGAOy s — ksGAY, + pI3QiQ0,. ;. + pI’i* Q0. i = 0,
—EP0), — kyGAx| + ksGAbyo =0,

—EIl0), — kyGAX], + ksGAOy;c — pI)QiQ0, i — pI'* Q70,0 = 0,
—EP0), — k,GAX} + kyGAO, js + pI}QiQ0 ;. — pI° P20y 5 = 0,

GI;(pg — %pAe‘;'Q%ch — %pAe;szls + %pAe‘;QZylc — %pAe‘;QZylx =0,

GL\, + pA@)' Py + pl3 Ry, — 2p A€} x5, — 2p A, QX + 2p A€, Qpy,

P
— 2pAeQy,, =0,

GL@\, + pA(eY Q2 \, + pIy Q@ — 20 A€} X5 + 2p A, X2 + 2p A€, Q7 ps,

+ 2pAeQ?y,, =0,

— 1AL X1+ 3 pAe, QL xi + §p AR + 1Ay + GL 5,
+ 4 AV Lo+ 4p1y Q2 0y — pACIQ X3 — pAEIY X3,
+ pAEZQys. — pAe3Qys, =0,

v

—3pAexi, — JpAe L xi + L pAE Ly — FpAei Xy + GLoh,
+4pAE@Y L@y + 4pIQ 0y — pASD X3, + pACI P xs,

v

+ pACIQys + pAe3Qys, =0,

GL). +  p A ) P, + pIy ¢, — pAei(j + 1’1 Q2xi1)e

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

— pAel(j — D Q2x_ne — pAel(i + 1) Qxginy + pAel(i — 1)L Q2x_1) + pAel+ D Q210

+ pAe,(j — 1)2% ‘sz(j—l)c — pAe(j + 1)2% sz(/'-i-l)s + pAe,(j — 1)2% sz(]._l)s =0,

(A.30)
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Gl + A L+ 1,28 0 — pAC,( + 13 QX
— pAej(j — 1322 x 1y + pAe( + DL Qxine — pA€y( — 132X,
+ A + D3 Ly + pAe,( = D@Ly, + pAGG + DRy,
— pAel(j — 1’1 Q% ), =0, (A31)

GI;QZL + nsz(es)zgz(pnc + nzp[;,nggnc - pAef)(n - 1)2% sz(nfl)c
+ pAe(n — 1L Qxu_rys + pAel(n — 11 Q).
+ pAei(n — D) Q2,1 =0, (A.32)

GLy gy + W pA(@ )Y Qs + 17 pIy Q7 0, — pAel(n — 15 Qx1ys
— pAey(n— D3 Qxgone + pAey(n — P52y,
— pAey(n — 1’12y, ), =0, (A33)

where

i=1,2,3,...,n, and j =3,4,5,...,n— 1.

Appendix B

E>(1,1) = Ex(2,2) = E2(2+ 1,2 +n) = E2(3,3) = E23+ 1,3+ n)
=E(0+4+j,14+))=E(1+n+j,14+n+j)=Ex(1+n,1+n)
=E)(1+2n,1+ 2n) = E>x2 + 2n,2 + 2n)
=E3+42n,3+2n) =E;3+3n,3+3n) =Ey(4+2n,4+2n) =Ey(4+ 3n,4+ 3n)
=EQ2+2n+j2+2n+j)=E2+3n+/,2+3n+j) = E2(2+ 3n,2 4 3n)
=E;2+4n,2 + 4n) = m,

E-3+4n,3+4n)=E;3+4n+i,3+4n+i)=EB3+5n+i,3+5n+1i)
= —E;4+6n4+6n)=—E(4+6n+i,4+ 6n+1i
= —E@4+Tn+i,44+Tn+i)=a,

Ex(5+48n,5+ 8n) = E»(6 + 8n,6 + 8n) = E»(6 + 91,6 + 9n) = Ey(7 + 8n,7 + 8n)
=E(74+m74+9m)=E05+8n+/,54+8n+j)=Ex(5+9%m+/,5+ 9 +))
=Ex(54+91,5+9n) = Eo(5+ 101,54+ 10n) = A,
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—E((1,4+6n) = —E((2,5+6n) = —E{Q2+n,5+7Tn) = —E((3,6 + 6n) = —E\(3 + 1,6 + 7n)
= —E(1+/,4+6n+j)=—E(1+n+j,4+7Tn+))
= —E(14+m4+7n) = —E;(1+2n,4+8n) =E 2+ 20,3+ 4n)
— E\(3+ 21,4 + 4n) = E/(3 + 31,4 + 5n)
=E(@4+2n5+4n)=E/(4+3n5+5n)=E 2+ 2n+j,3+4n+))
—EQ 434,34 51+ )) = E1(2+3n,3 4 5n) = By (2 + 4n, 3 + 6n)
— CEG4+4n242) = —E G+ 40242+ = —EG+5n+i2+3n+10)
— B4t )= —E@+6ntil+i)=—E@+Tntil+nti)=m,

—Eo(3+4n,3+4n) = E¢(4 + 61,4 + 6n) = m,

—Ey3+4n+i,3+4n+i)= —Ey3+5n+i,3+5n+1i)=Ey4+6n+i,4+ 6n+i
=Ey4+Tn+i,44 Tn+i)=m— i,

Eo(2,2) = E¢2+n,2+n) =E¢(3+2n,3+2n) =E(3+3n,3+3n) =c,
Eo(3,3) = Eo(3+n,3 +n) = Eo(4 + 2n,4 + 2n) = Eo(4 + 3n,4 + 3n) = 4c,

Eo(1 4,1 +/) = Eo(1l +n+j,1+n+)) = Eg2 +2n+j,2+ 2n +))
=Eo2+3n+/,243n+)) =’

Eo(l +n1+n) =Ey(1+2n1+2n) = EoQ2+3n2+ 3n) =Ey2+4n,2+ 4n) = n’c,
Eo(6 +8n,6 +8n) = Ey(6+91,64+9n) =s,

Eo(7+8n,74+8n) = Eo7+ 9,7+ 9n) = 4s,

Eo5+8n+/,5+81+j) = EoS+Im+/,5+9m+)) =/,

Eo(5+91,5+91) = Eo5+ 10n,5+ 10n) = n’s,

—E)3+4n+i,4+Tn+i)=Ey3+5n+i,4+6n+i)=—-Ey(d+6n+i3+5n+1i)
=E4+Tn+i,34+4n+1i)=id,

—Eo(2,7+9n) = Eo(2+n,7+8n) =Eq(3+2n,7+ 8n) = Eo(3 + 3n,7 + 9n)
= —Eo(5+8n,2+n) = Eo(5+8n,3 4+ 2n) = Eo(7 + 81,2 + n)
= Eo(7+8n,3+4+2n) = —Eo(7+9n,2) = Eo(7 + 91,3 + 3n) = %f,

—Eo(2+n,5+8n) = Eo(3+ 21,5+ 8n) =1,

“Eo(3,8 + 1) = Eo(3,6 + 1) = Eo(3 + 1,8 + 81) = —Eo(3 + 1,6 + 8n)
— Eo(4 + 21,8 + 8n) = Eo(4 + 21,6 + 8n) = Eo(4 + 31,8 + 9n) = Eo(4 + 3n,6 + 9n)
— — Eo(6+ 81,3 +n) = Eo(6 + 81,4 + 21) = Eo(6 + 9n,3) = Eo(6 + 9n,4 + 3n) = 2f,
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—Eo(7+ 8n,4 +n) = Eo(7 + 8n,5 + 2n) = Eo(7 + 9n,4) = Eo(7 4+ 9n,5 + 3n) = %f,

—Eo(1+/,6+%%+))=Eo(1+/,44+9+j)=E)(l +n+j,6+8n+))
= —Ey(l+n+/,44+8n+))=E)2+2n+;,6+8n+))
=E)2+2n+j,44+8n+))=Ey2+3n+/,6+9+))
= EoQ2+ 3n+/,4+ 9 +j) =17,

—Eo(5+8n+j24+n+j)=Ey(5+8n+/j,3+2n+j)=Ei(54+9n+/,2+))
=Eo(5+9+/,3+3n+))=1(+ 17,

=Eo(5+ 9 +j,14+3n+))=1(G-17f,

Eo(1 + 1,4+ 10n) = — Eg(1 + 21,4+ 9n) = Eo(2 + 3,4 + 1) = Eo(2 + 41,4 + 10n)

Eo(5 4+ 9n,2n) = Eo(5 + 9n,1 4+ 3n) = —Eo(5 + 10n,n) = Eo(5 + 10n, 1 4 4n)
= %(l’l - 1)2fa
—Eo(2,7+8n) = —E¢(2+n,74+9n) = —Eo(3+2n,7+ 9n) = Eo(3 + 3n,7 + 8n)

— —Eo(5+81,2) = —Eo(5 + 81,3 + 3n) = —Eo(7 + 8n,2) = Eo(7 + 81,3 + 3n)
= —Eo(74+9n,2+n) = —Eo(7+ 91,3 + 2n) = 1g,,

—Eo(2,5+ 8n) = —Eo(3 + 31,5 + 8n) = g,,
—Eo(3,8+8n) = —Eo(3,6+8n) = —E¢(3+n,8+9n) = —E¢(3+n,6 + 9n)
= —Ey(4+2n,8+9n) =Ey4+2n,6+9n) = Eo(4 + 31,8 + 8n) = —Ey(4 + 3n,+8n)
= — Ey(6+ 8n,3) = —Ey(6 + 81,4 + 3n) = —Ey(6 + 91,3 + n) = E¢(6 + 91,4 + 2n)
= 2gy,

—Eo(7 + 8n,4) = —Eo(7 + 81,5+ 3n) = —Eo(7 + 9n,4 + n) = Eo(7 + 91,5 + 2n) = 3 g,

—Eo(14+/,64+8n+j)= —Eo(1 +j,4+8n+j)=—Eo(1 +n+/,6+9n+))
= —E(l1+n+j,44+%+))=—-E/Q2+2n+,,6+9+))
=E/2+2n+j,44+9m+))=E)2+3n+/j,6+8n+))
= —Eo2 +3n+j,4+8n+)) =1/,

—Eo(5+8n+j,2+j)= —Eo(5+8n+j,34+3n+))=—-Ei(5+9+j,2+n+))
=Eo(5+9n+4,3+2n+)) =1+ 1)g,,
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—Eo5+8n+/,j)) =Eo(5+8n+j,14+3n+j)=—-Eo(5+9+j,n+))
= —Ey5+9n+j,1+2n+j)=1G - 1)’gy, —Eo(1 + 1,4 + 9n)
= —Eo(1 +2n,4 4 10n) = Eo(2 + 3n,4 4+ 10n) = —Eo(2 + 4n,4 + 9n)

_ 1,2
=319,

—Eo(5 +9n,n) = Eo(5 +9n,1 + 4n) = —Eo(5 + 10n,2n) = —Eo(5 4+ 10n,1 + 3n)

= %(l’l - 1)2905
where
a=EP, b=pl'Q, c¢=pAQ, d=pl,Q,
f=pAeQ, gy=pAeQ, h=GIL, m=kAG, s=pQ A +p2QL),
i=1,2,3,...,n, and j = 3,4,5,...,n— 1.
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