
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks (2015)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1148
RESEARCH ARTICLE

Three-phase behavior-based detection and
classification of known and unknown malware
Ying-Dar Lin1, Yuan-Cheng Lai2*, Chun-Nan Lu1, Peng-Kai Hsu1 and Chia-Yin Lee3

1 Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
2 Department of Information Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan
3 Information & Communication Technology Laboratories, National Chiao Tung University, Hsinchu 300, Taiwan
ABSTRACT

To improve both accuracy and efficiency in detecting known and even unknown malware, we propose a three-phase
behavior-based malware detection and classification approach, with a faster detector in the first phase to filter most samples,
a slower detector in the second phase to observe remaining ambiguous samples, and then a classifier in the third phase to
recognize their malware type. The faster detector executes programs in a sandbox to extract representative behaviors fed
into a trained artificial neural network to evaluate their maliciousness, whereas the slower detector extracts and matches
the LCSs of system call sequences fed into a trained Bayesian model to calculate their maliciousness. In the third phase,
we define malware behavior vectors and calculate the cosine similarity to classify the malware. The experimental results
show that the hybrid two-phase detection scheme outperforms the one-phase schemes and achieves 3.6% in false negative
and 6.8% in false positive. The third-phase classifier also distinguishes the known-type malware with an accuracy of
85.8%. Copyright © 2015 John Wiley & Sons, Ltd.

KEYWORDS

malware detection; malware classification; behavior analysis; sandbox; system call

*Correspondence

Yuan-Cheng Lai, Department of Information Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
E-mail: laiyc@cs.ntust.edu.tw
1. INTRODUCTION

Many solutions have been proposed for preventing
malware infection. Existing anti-malware solutions can be
categorized into two types, that is, signature-based scan-
ning, which has light computation overhead, and
behavior-based analysis, which has heavy computation
overhead. Signature-based solutions extract the unique
string of a malware binary to construct a database of signa-
tures. These solutions can then check whether a program is
malicious or not by matching the binary of the file with the
malware signatures. Although signature-based solutions
are both efficient and effective in recognizing known
malware, they fail to identify unknown malware. To over-
come this drawback, behavior-based solutions execute
malware to monitor and analyze their runtime behaviors,
such as network access and memory modifications.
Because most malware share some common behaviors,
we could use such behaviors to judge whether a suspicious
file is malicious or not.

Malware behaviors can be observed from two different
perspectives: host behaviors and network behaviors. Host
Copyright © 2015 John Wiley & Sons, Ltd.
behaviors refer to all the activities that might change attri-
butes of the system, such as modifying the registry files of
the operating system (OS). On the other hand, network be-
haviors usually make connections to remote victims or
servers, such as command and control servers. Figure 1 il-
lustrates the relationship among different behaviors. Be-
nign programs have only benign behaviors (BB), whereas
malware exhibits suspicious behaviors (SB), which contain
both benign and malicious behaviors (MB). Malware
might make use of BB to shelter its malicious ones. Most
malware has malicious host behaviors; however, only
some kinds of malware have additional malicious network
behaviors, that is, intrusive behaviors (IB), which influence
remote victim hosts, where IB⊆MB. If we can recognize
such behaviors, we could detect and classify unknown or
zero-day malware more precisely.

Many behavior-based anti-malware solutions investi-
gate malware behaviors by internal observation [1–7] or
external observation [8,9]. For internal observation, it can
trace the program processes by interrupting the execution
or checking the registers to record certain footprints such
as system calls. Forrest et al. [1], Mutz et al. [2], and

Figure 1. Relationship between different behaviors.

Three-phase behavior-based detection and classification of malware Y.-D. Lin et al.
Warrender et al. [3] proposed methods to record the
normal system call sequences so as to detect anomalous
behaviors. These methods have to accumulate a large
number normal behaviors with large-scale experiments;
otherwise, they would generate high false positive rate.
Mehdi et al. [4] and Rozenberg et al. [5] obtained sequen-
tial system calls of a fixed length using the N-gram seg-
mentation model. This solution discriminates malicious
behaviors from benign ones by checking whether the sys-
tem call sequence is only invoked by malware, and gives
the system call sequence a goodness value used to calcu-
late the goodness of a program. However, both methods
view system call sequences in fixed length, which is the
main drawback, because different malicious behaviors
might invoke various quantities of system calls. Lin et al.
[6] built a variable-length system call sequences as behav-
iors and applied Bayes’ theorem to calculate the malicious
degree (MD) of evaluated behaviors and programs. The
value indicates the maliciousness and can also be used to
detect android malicious repackaged applications. Later,
Lin et al. [7] used a similar concept to classify obfuscated
bot binaries. Experimental result showed that their frame-
work could attain high accuracy in classifying bot. These
papers show that a system call sequence is actually a good
feature to detect and classify malware.

Observing the aggregated external activities of malware
can provide a helpful macroscopic point, such as modify-
ing files. Liu et al. [8] proposed a mechanism that defines
malicious behavior features (MBFs) and evaluates the
malware with the MBFs. Recently, Tsai [9] proposed an
effective malware detection scheme, called ANN-MD, to
obtain the representative behaviors of the malware using
three well-known sandboxes—the GFI sandbox, the
Norman sandbox, and the Anubis sandbox—to obtain 13
representative behaviors of a program. It then employs
artificial neural networks (ANNs) to calculate the MD of
a program.

Although both internal and external observations can
help us to find malware’s trail, they still have some limita-
tions [10]. Internal observation provides a much more fine-
grained way to diagnose symptoms of malware, which
makes it more time-consuming to dissect malware. By con-
trast, external observation is attractive because of its rapid
examination but results in coarse-grained inspection. We
conducted some experiments to evaluate the time cost of
external and internal observations. An external observa-
tion, such as using sandboxes with ANNs to observe
malware behaviors, took about 3min. The time cost of
the internal observation, such as using system call ap-
proaches with the longest common substring (LCS), took
approximately 15min. We observed that the sandbox-
based approach was faster on analyzing a program,
whereas the system call-based approach analyzed a pro-
gram in a finer-grained way, with higher detection
accuracy.

Because internal and external observations have differ-
ent time costs and achieve different degrees of detection
accuracy, this work proposes a hybrid system to combine
the advantages of these two approaches. We deployed a
new three-phase approach: the external observation in the
first phase and internal observation in both second phase
and third phase. In the first phase, we used a sandbox to
obtain all behaviors and then calculated the MD values
for each to-be-detected program using the ANN. In the sec-
ond phase, we discovered some common behaviors be-
tween different malware by extracting the LCS of system
call sequences and then employed the Bayesian model to
check for likely malicious behaviors. While detecting, the
second phase only processed the to-be-detected programs
(DP) not caught or ruled out by the first phase, which re-
duced the loading to the slower second phase. In the third
phase, on the basis of those malicious behaviors, we de-
fined malware behavior vectors and calculated the cosine
similarity to classify malware. Selecting the ANN and the
Bayesian model was based on past experience. Our previ-
ous work using ANN [9] and the Bayesian model [6,7]
achieved very good detection accuracy, so they were
suitable choices.

Our method is based on behavior-based analysis and
has the following three advantages: (i) even if malware
has been encapsulated or obfuscated, our method can still
capture the malicious behavior by extracting their com-
mon subsequences; (ii) our method uses a three-phase ap-
proach, rather than a one-phase method, by leveraging
existing solutions to improve detection accuracy and
reduce time costs on malware detection; and (iii) our
method not only detects malware but also classifies the
malware. Known malware is classified to the type it
belongs to, whereas a new malware is classified to an un-
known type.
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Three-phase behavior-based detection and classification of malwareY.-D. Lin et al.
The rest of this paper is organized as follows. In
Section 2, we first review some related works and then
compare existing schemes with ours. In Section 3, we pres-
ent the proposed scheme in details. The experiment setup
including the implementation of the three-phase scheme is
described in Section 4. Section 5 presents experimental re-
sults. Finally, concluding remarks are given in Section 6.
2. RELATED WORK

In order to overcome the drawback of signature-based
anti-malware solutions, many behavior-based anti-malware
solutions (which observe malware behaviors by internal
[1–7] or external observation [8,9]) have been proposed.
In this section, we review some of the related work on
malware and intrusion detection, identify particular flaws,
and then propose improvements.

For internal observation, Forrest et al. [1] first proposed
a method to record the series of normal system calls by
executing benign programs into the database. When a
compromised program executes malicious codes, the
anomalous system call sequence patterns can be detected
because those patterns do not exist in the database. Since
then, many other system call-based approaches have been
proposed. In 2006, Mutz et al. [2] identified anomalous be-
haviors by system calls using different criteria: string
length consists of human-readable characters and rarely ex-
ceeds a hundred characters; string character distribution is
based on the observation that strings have a regular struc-
ture and almost always contain only printable characters;
and token finder determines whether the values of a certain
system call argument are drawn from a limited set of pos-
sible alternatives, that is, elements of an enumeration.
These two anomaly-based detection methods are required
to first accumulate normal behaviors with large-scale ex-
periments, or they would introduce high false positive
rates. Besides, attackers might evade those defenses.

Recently, Mehdi et al. [4] came up with a method,
named IMAD, which obtained sequential system call in
fixed length using the N-gram segmentation model. This
method discriminates malicious behaviors from benign
ones by checking whether the system call sequence is only
invoked by malware, and assigns the system call sequence
a ‘goodness value’. If the sequences are invoked by both
malware and benign programs, IMAD will evaluate their
goodness by genetic algorithm. Those goodness values
can then be used to calculate an overall impression value
of a process. The larger the impression value of a process,
the greater probability that the process is declared as
benign. Later, Rozenberg et al. [5] tackled system call se-
quences with SPADE sequence mining methodology and
genetic algorithms. Those system call sequences invoked
only by malware were reserved for later detection. The
main drawback of both methods is that they view system
call sequences in fixed length because different malicious
behaviors might invoke various quantities of system calls.
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Lin et al. [6] extracted the longest common system call
subsequences from the same types of malware to represent
behaviors. Subsequently, they employed Bayes probability
model to assign a value for each behavior. This value indi-
cates maliciousness and can be used to detect obfuscated
programs. Although this method handled variable-length
system call sequences, it is inclined to miss many of the se-
quences because there is always only one longest common
subsequence (LCS) between two system call sequences.
Lin et al. [7] used the similar concept to develop a frame-
work for the automatic analysis and classification of bot bi-
naries, which uses dynamic analysis to extract system call
sequences from the bot binaries. The framework then
classifies the binaries on the basis of the LCS similarity
of system call.

The papers [1–6] noted earlier show that a system call
sequence is actually a good feature to use to detect and
classify malware. The key concept of using system call se-
quences during runtime is that, even if a malicious program
can be camouflaged as a benign application or obfuscated
to avoid detection, its malicious behavior would still ap-
pear in the invoked system call sequences. From observa-
tion, the system call sequences in a malicious program
can be roughly divided into four stages, namely program
loader, unpacking handler, execution handler, and exit
handler. Program loader includes system calls related to
the initialization of a new process, for example, memory
allocation and loading-related library files. Unpacking han-
dler is mainly about the decomposition of the program it-
self. The most important part is the third stage, execution
handler, which contains the system calls made by the orig-
inal malicious program itself. System calls in this stage
characterizes the behavior of a program. The final stage,
exit handler, contains system calls used for the de-
allocation of resources at the time of process termination.

For external observation, Liu et al. [8] extracted the
MBF of malware by observing processes of Windows sys-
tems and then using the MBF in a sandbox to detect the
malware, where MBF is a three-tuple, that is, Feature_id,
Mal_level, and Bool_expression. Note that Feature_id is
a string identifier that is used to uniquely represent an
MBF; Mal_level divides an MBF into three malicious
levels: high, warning, and low; Bool_expression is a Bool-
ean expression that specifically defines the behavior of an
MBF; and the MBF can be used to calculate the MD of a
suspicious program. If the program conforms to more
MBFs, there is a greater probability that it is malware. Tsai
[9] used three sandboxes, that is, GFI sandbox, Norman
sandbox, and Anubis sandbox, to obtain representative be-
haviors of a program. They selected 13 behaviors that
malware frequently carry out but rarely benign programs
do. Finally, this method constructed an MD expression
by using ANN for malware detection. However, these
two methods, of which one declared only three malicious
levels and the other considered only those behaviors re-
lated to malware, lack precise inspection.

Because internal and external observations have differ-
ent time costs and achieve different degrees of detection

Three-phase behavior-based detection and classification of malware Y.-D. Lin et al.
accuracy, this work proposes a new three-phase approach,
with the external observation in the first phase and internal
observation in both second and third phases. In the first
phase, using the similar concept as in [9], we use a sandbox
to obtain all behaviors and then calculate the MD values
for each to-be-detected program using the ANN. In the sec-
ond phase, using a similar concept to that in [6], we iden-
tify some common behaviors between different malware
by extracting the LCS of system call sequences and then
employ the Bayesian model to check likely malicious be-
haviors. In the third phase, on the basis of those malicious
behaviors, we then classify the different types of malware,
using a similar concept to that in [7].

In our architecture, the ANN and the Bayesian model
used in the first and second phases, respectively, can be re-
placed with other similar techniques. We selected these
two methods mainly for two reasons. First, they are com-
monly used in this field. Second, our previous work using
ANN [9] and the Bayesian model [6,7] achieved very high
accuracy, confirming that they are suitable choices.

Note that our major contribution is to propose a new
three-phase architecture by leveraging existing malware
detection mechanisms. Thus, we do not pay much attention
to improving individual malware detection in each phase.
Compared with existing methods, our method is based on
behavior-based analysis and has the following three advan-
tages: (i) even if malware have been encapsulated or obfus-
cated, our method can still capture the malicious behavior
by extracting their common subsequences; (ii) our method
uses a three-phase approach, rather than a one-phase
method, by leveraging existing solutions to improve detec-
tion accuracy and reduce time costs on malware detection;
and (iii) our method not only detects malware but also clas-
sifies it. Malware is classified to the type it belongs to,
whereas new malware is classified to an unknown type.
However, our method has the drawback that the detection ac-
curacy of first phase is affected by the adopted sandbox and
neural network. In the first phase, we use a sandbox to obtain
all behaviors and then calculate the MD values for each to-
be-detected program using the ANN. Different sandboxes
and neural networks have distinct performance and limita-
tion, and hence, adopting which sandbox and neural network
will affect the final performance of our approach. The related
works referred to are summarized in Table I.
Table I. Related works on

Category Schemes Cor

System call Forrest et al. [1] Sequence miss m
Mutz et al. [2] String distribution
Mehdi et al. [4] SPADE with gene
Rozenberg et al. [5] N-gram with gen
Lin et al. [6] LCS with Bayesia
Lin et al. [7] LCS with similari

Sandbox Liu et al. [8] Malicious behavio
Tsai [9] ANN

System call and sandbox This work Hybrid of ANN an
common sequen
3. THREE-PHASE BEHAVIOR-BASED
ANALYSIS

Considering both detection accuracy and time cost, we
propose a three-phase approach with the front two phases
serving detection and the rear phase serving classification.
Two different mechanisms are adopted: sandbox-based de-
tection mechanism (SDM) and system call-based detection
mechanism (SCDM). SDM provides a faster way to ob-
serve a program, whereas SCDM observes a program in
a finer-grained way and achieves better detection accuracy.
The proposed three-phase behavior-based analysis is de-
ployed with SDM in the first phase, SCDM in the second
phase, and Behavioral Classifier in the third phase.

Each sample must pass through SDM. If SDM judges a
program as suspicious, that program is sent to SCDM for
further examination. Finally, the intrusive or non-intrusive
malware is also identified according to its exhibited behav-
iors. Note that there are two processing flows in our ap-
proach, that is, training flow and detection/classification
flow. For the training flow, we target at digging out the
MB together with IB using BP and MP and then define
malware types, T, depending on the MB. For the
detection/classification flow, our goal is to detect and clas-
sify malware using MB and T. The detection/classification
flow is processed after the training flow is done. Notations
used in this paper are summarized in Table II, and the ar-
chitecture of the proposed scheme is illustrated in Figure 2.

3.1. Sandbox-based detection mechanism

As the training flow in Figure 2(a) shows, we first submit-
ted benign and malicious samples, bpi and mpj, to a
sandbox for training and collected all corresponding
runtime behaviors from the sandbox. Next, we selected
representative malicious behaviors into MB by calculating
their appearance frequency in the malicious and benign
samples and used binary vectors to keep trace of exhibited
representative malicious behaviors for each sample. After-
ward, those binary vectors were fed into an ANN algorithm
to adjust the weight of each behavior in MB dynamically.
The ANN is one kind of machine learning algorithm in
the field of artificial intelligence. An ANN was composed
of several interconnected artificial neurons. Each neuron
anti-malware solutions.

e concept Goal

atch rate Intrusion detection
, structural inference Intrusion detection
tic algorithm Malware detection
etic algorithm Malware detection
n model Obfuscated malware detection
ty Obfuscated bot classification
r feature Malware detection

Malware detection
d Variable-length
ce with Bayesian model

Malware detection and classification

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Table II. Notations used in the proposed scheme.

Category Notations Mathematical properties Descriptions

Program BP {bp1, …, bpi, …, i = 1…I} A set of benign programs
MP {mp1, …, mpj, …, j = 1…J} A set of malware
DP {dp1, …, dpk, …, k = 1…K} A set of to-be-detected programs

Behavior BB {bb1, …, bbm, …, m = 1…M} Benign behaviors obtained from BP
SB {sb1, …, sbn, …, n= 1…N} Suspicious behaviors exhibited by MP
MB {mb1, …, mbo, …, o= 1..O} =

{nb1, nb2, …, nbQ, ib1, ib2, …, ibO � Q}
Malicious behaviors of MP, where MB⊆ SB

NB {nb1,…, nbq, …, q= 1…Q} Non-intrusive behaviors of MP
IB {ib1, ib2, …, ibq’ , …, q’ = 1…O�Q} Intrusive behaviors of MP
B {b1,…, bk, …, k = 1…K} Behaviors of DP

Type T {t1, t2, …, tv}, where tv =
<nb1, nb2, …, nbQ, ib1, ib2, …, ibO � Q >

A set of type vectors

Three-phase behavior-based detection and classification of malwareY.-D. Lin et al.
of ANN can receive data from multiple inputs and perform
a local computation. The output of a neuron is determined
by an activation function. We employed feed-forward
ANN to cluster malware and benign software. Finally, an
MD expression was constructed, and two MD values could
be manually set as the thresholds, upper bound and lower
bound, by checking the evident misjudgment. A few sam-
ples fall into the middle of the distribution and is named
the ambiguous area.

The detection flow assesses whether a given sample,
dpk, is malware. In the same way, we collected the runtime
behaviors and calculated the MD values of the sample. If
its MD value is larger than the upper bound, the program
is judged as malware. If its MD value is lower than the
lower bound, it is judged as benign. For those suspicious
samples whose values fall into the ambiguous area, the
processing should be handled by SCDM rather than han-
dled by SDM.

The sandbox-based detection mechanism was also used
as the first-phase filter. We adopted three filters, that is,
benign filter, malware filter, or fuzzy filter. A benign filter
was used to filter out the benign samples. The malware fil-
ter performed exactly the other way around. A fuzzy filter
was used to filter out samples in the ambiguous area.
3.2. System call-based detection mechanism

As illustrated in Figure 2(b), SCDM contains four modules
and a database. The System Call Tracer traces programs’
trails by recording their issued system calls and then con-
structs SB and BB in the training phase and behaviors (B)
in the detection phase. The Common Sequence Extractor
observes programs’ common behaviors in the training
phase by mining all common system call subsequences.
Afterward, the Bayes Analyzer investigates those common
behaviors using the Bayes probability model, together with
BB to put the likely malicious common system call subse-
quences into MB. Then, in the detection phase, the
Sequence Detector evaluates dpk by comparing dpk’s
system call sequences with MB. The database serves as a
storage pool for SB, BB, B, and MB.
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
3.2.1. System Call Tracer
Malware cannot alter the invocations of system calls

while carrying out some critical actions. Hence, for all of
programs to be analyzed in BP,MP, and DP, each program
can be individually executed to record the runtime-issued
system calls. The recorded system calls for each process
would be ordered by timeline to form a system call se-
quence. Then, the system call sequence can be regarded
as the trail of bpi, mpj, or dpk, and stored in BB, SB, or B,
respectively.

3.2.2. Common Sequence Extractor
Because common malicious behavior is the great identi-

fier of malware, the system call sequences recorded from
the malware should have similar system call subsequences.
LCS is a sequence mining algorithm for extracting the lon-
gest common consecutive subsequence, also named as
substring. For any two sequences, only one LCS can be ex-
tracted. In order to dig out all common subsequences, we
recursively extract the LCS between any two sequences
to dig out all common subsequences between any two se-
quences. Whenever mpj in MP is fed into the extraction
procedure, we can extract all common subsequences
between mpj and any other malware in MP.

3.2.3. Bayes Analyzer
We acquired many system call subsequences after the

extraction procedure. Not all of them can be regarded as
malicious behaviors because malware might exhibit both
benign and malicious behaviors. Accordingly, we have to
evaluate every extracted substring in terms of the probabil-
ity of appearance under the Bayes probability model. The
formula is

P Mjsbnð Þ ¼ p sbnjMð Þp Mð Þ
p sbn MÞp Mð Þ þ p sbn BÞp Bð Þjðjð (1)

where sbn is the extracted system call substring to be evalu-
ated. P(B) denotes the probability that the given programs
are benign programs, whereas P(M) denotes the probability
for malware. P(sbn|B) and P(sbn|M) represent the probability
that sbn is carried out by benign programs and malware,

Figure 2. The proposed three-phase behavior-based analysis.

Three-phase behavior-based detection and classification of malware Y.-D. Lin et al.

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Three-phase behavior-based detection and classification of malwareY.-D. Lin et al.
respectively. Then, we can obtain the probability P(M|sbn),
which implies the probability of a program being malware
given the condition that the program practiced sbn. On the
basis of the experimental results of Lin et al. [6], sbn with a
probability of 1 can achieve the best representation for a
malicious behavior. Because intrusive behaviors are only
exhibited by intrusive malware, we also label mbo with its
owner to tell intrusive behaviors apart. Finally, MB and IB
can be obtained.

3.2.4. Sequence detector
As mentioned earlier, the calculated probability of mbo

is 1. It is inferred that only malware carries out mbo. For
each dpk, we first record its runtime-issued system call se-
quence as bk and then compare the bk with all elements in
MB. Once bk matches mbo, dpk is deemed to be malware.

3.3. Behavioral Classifier

Behavioral Classifier is designed to distinguish different
types of malware. We describe two major modules, that
is, Type Definer and Malware Classifier, as shown in
Figure 2(c).

3.3.1. Type Definer
We use a behavior vector tv to represent the type of

malware, where tv is defined as

tv ¼< mb1;mb2;…;mbo >
¼< nb1; nb2;…; nbq; ib1; ib2;…; ibo�q >

where nbq and ibo� q are non-intrusive behavior and intru-
sive behavior, respectively. Behavior vectors are identified
with o-tuple of Boolean numbers, where ‘0’ denotes the
absence of mbo, and ‘1’ denotes the presence of mbo. A
behavior vector tv is built by noting down what malicious
behaviors a piece of malware performs. Subsequently, in
order to make sure that each tv retained in the set of repre-
sentative behavior vectors, T, resemble close enough to the
vectors of the same type but differ far enough from the vec-
tors of the other types, we need a training flow to remove
less-representative tv. We calculate the cosine similarity
[11] between tv and tv′ by

tv·tv′
tv �j jtv′j j ¼

∑o
i¼1tvi�tvi ′ffi

∑o
i¼1 tvið Þ2

q
�

ffi
∑o

i¼1 tvi ′ð Þ2
q (2)

where tv′ is any other behavior vector of the same type as tv.
According to formula (2), all the calculated similarity
values are between 0 and 1. The higher the similarity value
is, the more similar two behavior vectors are. We keep the
calculated maximal similarity value Tα and set a value as
the threshold Tτ, where Tτ is decided heuristically, to deter-
mine whether to retain tv. If the Tα is lower than the Tτ, tv is
not sufficiently representative and should be discarded.
Otherwise, we calculate the cosine similarity between tv
and the behavior vectors of other types, tv ", and then keep
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
the calculated maximal similarity value Tβ. If the Tβ is
larger than the Tτ, tv does not differ far enough from the vec-
tors in the other types and should be discarded too. In this
way, we can retain only representative behavior vectors in
T for classification. The aforementioned training flow is
depicted in Figure 3.

3.3.2. Malware Classifier
In the classification flow, we build a behavior vector for

each dpk to keep track of its exhibited malicious behaviors
and then calculate the cosine similarity between dpk’s vec-
tor and all behavior vectors in T. We classify dpk into the
type that its behavior vector represents, where the calcu-
lated similarity between dpk’s vector and tv is greatest. In
addition, a threshold is also set as the lower bound for
the calculated similarity to determine whether the dpk be-
longs to a known type or an unknown type. Note that if
we want to classify the malware caught by SDM, we
should also collect the runtime-issued system calls of that
malware by System Call Tracer.
4. EXPERIMENT SETUP

We collect 1800 executable programs as the sample space,
comprising 1000 malicious and 800 benign programs, with
900 programs (500 malicious and 400 benign programs) for
training and detection, separately. Note that malware samples
are collected from ‘VX Heaven’ (http://vxheaven.org/) and
belong to five well-known types, namely Backdoor, Bot,
Hoax, Trojan, and Worm. ‘VX Heaven’ contains a massive
collection of malware. People who are interested in this kind
of work can find useful resources, including documents,
samples, and source codes.

These types were used to evaluate the proposed
classification method. The benign programs were collected
from Windows OS system directories and CNET.com
(http:// www.cnet.com/). All benign programs were
checked by several online anti-virus tools [12].

4.1. SDM implementation

We input our training samples to the GFI sandbox to
monitor the external behaviors. The malware collected
are Trojan, Backdoor, Worm, Bot, and Hoax. After a large
statistical calculation and eliminating those behaviors that
malware and benign programs rarely perform, such as
Opens Physical Memory and Modifies Local DNS, only
12 representative behaviors were kept, where their appear-
ance frequencies in malware or benign programs were
above 5%. The representative behaviors included Starts
EXE in System, Starts EXE in Documents, More than 5
Processes, Makes Network Connection, Injected Code,
Hooks Keyboard, Deletes Original Sample, Deletes File
in System, Creates Mutex, Creates Hidden File, Copies to
Windows, and Checks for Debugger.

Next, we usedMatlab 8.0.0 ‘Neural Network’ toolbox to
implement the ANN. The input layer of the ANN consists

http://www.cnet.com

Figure 3. Type training flow.

Three-phase behavior-based detection and classification of malware Y.-D. Lin et al.
of 12 representative behaviors. We adopted the built-in
function initnw to distribute the initial weight for each neu-
ron. Choosing enough numbers of samples and neurons, the
resultant ANN with weights can be obtained after the train-
ing. Also the MD value of each sample was also obtained
and stored in the database.

4.2. SCDM implementation

System Call Tracer comprises two components, the
Controller and the Recorder. The Controller coordinates
the execution and recording environment; it fetches a pro-
gram from the database and then executes the program
with the Recorder. The Controller is also responsible for
the integrity of the recording environment. Before a pro-
gram is processed, the Controller restores the snapshot to
preclude the possibility that a program is influenced by
the other programs’ execution results.

The Recorder relies on the dynamic instrumentation
tool PIN (http://www.pintool.org/) to record the system
calls invoked by a program during its execution. In later
experiments, the length of each recording is set to 3min
because the number of system calls invoked does appar-
ently not increase after this time length. The just-in-time
compiler of PIN can monitor the SYSENTER instruction.
We use PIN API PIN_AddSyscallEntryFunction() to in-
strument the monitoring routine callback_before() immedi-
ately before each SYSENTER/INT 2Eh instruction, so that
the Recorder registers the instant that the program invokes
a system call. The PIN API provides us the information
including the thread ID, system call ID, and the system call
arguments. We only retain the thread ID and system call ID
while ignoring the arguments of system call.

For Bayes Analyzer, on the basis of Lin et al. [6], we set
a probability of 100% as the threshold for Equation 1,
which implies that only the a program that meets a proba-
bility of 100% is retained; otherwise, it will be filtered out.

For Sequence Detector, as long as the program matches
any sample in our MB database, it must be malware be-
cause the probability of Bayes Analyzer is set to 100%.
5. EXPERIMENT RESULTS

We present our results in terms of four metrics, that is, true
positive ratio (TPR), true negative ratio (TNR), false posi-
tive ratio (FPR), and false negative ratio (FNR). TPR and
TNR denote the ratio that we truly identify malware and
benign programs, respectively. FPR and FNR mean that
benign programs or malware are mistakenly identified. We
measured the time cost for SDM as well as SCDM and com-
pared three strategies that two detection mechanisms serve in
different phases. Furthermore, we give results for malware
classification and intrusive malware recognition.

5.1. Impact of MD threshold

This experiment evaluates sandbox-based detection ability.
As discussed earlier, we can obtain the MD value for each
program using the ANN. In order to delimit the ambiguous
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.pintool.org

Three-phase behavior-based detection and classification of malwareY.-D. Lin et al.
area and determine the optimum MD threshold, the distri-
bution for MD values is shown in Figure 4.

As seen in Figure 4(a), there is an obviously ambiguous
area from 0.2 to 0.75. We observed that SDM could not
discriminate between malware and benign programs within
the ambiguous area, whereas SDM could discriminate be-
tween them well outside the ambiguous area. Therefore,
we investigated detection ratio versus different MD thresh-
olds in Figure 4(b), and we observed that FNR increased
sharply within two intervals, that is, from 0.2 to 0.25 and
from 0.4 to 0.5. We looked into the cause of the trend
and noticed that a large quantity of benign programs and
malware practice the same suspicious behaviors and their
calculated MD values would thus be similar. This might
result from the inability of the GFI sandbox to dissect pro-
grams in a fine-grained way. If we wanted to retain the
FNR at less than 10%, the best MD threshold was 0.4.
Figure 4. Impact o

Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
5.2. Detection ability versus time cost

Two different detection approaches, that is, SDM and
SCDM, were adopted in our system. Table III(a) shows a
big gap in the FPR produced by SDM and SCDM. Observ-
ing behaviors with a sandbox could catch suspicious pro-
grams but might result in higher false positive. We also
measured the time cost in observing time and detecting
time. Observing time means the time consumed by the
GFI sandbox or the System Call Tracer to observe the be-
haviors of a program, and detecting time refers to how
much time the ANN or the Sequence Detector takes to
process a program. SCDM spends much more time than
SDM, and the observing time for both mechanisms
dominates the time cost. Because of the larger number
of system call sequences observed, SCDM obtains better
detection ability.
f MD values.

Table III. SDM and SCDM: comparison and combination.

(a) Detection ratio versus time cost

Mechanism FNR (%) FPR (%)

Time cost (s)

Observing Detecting

SDM 7.6 44.9 180 0.068
SCDM 7.4 7.5 900 0.35

(b) Decision on first phase

Strategy

% of processed programs
Total time

cost (s/program)
FNR for

first phase
FPR for

first phaseFirst phase Second phase
SDM→ SCDM (fuzzy filter) Benign 100 76 731 2.4% 0.4%

Malware 100 49.4
SDM→ SCDM (benign filter) Benign 100 76.1 973 2.4% —

Malware 100 97.6
SDM→ SCDM (malware filter) Benign 100 99.4 837 — 0.4%

Malware 100 51.8
SCDM→ SDM (benign filter) Benign 100 19.5 1015 1.2% —

Malware 100 98.8
SCDM→ SDM (malware filter) Benign 100 80.5 966 — 19.5%

Malware 100 1.2

Three-phase behavior-based detection and classification of malware Y.-D. Lin et al.
5.3. Detection: two-phase based on time
cost, FN, and FP

Our major contribution is to leverage existing malware
detection mechanisms and to propose a new three-phase
architecture (two-phase detection, SDM+SCDM) for im-
proving detection accuracy and reducing time costs. We
thus pay more attention to the feasibility of this architec-
ture and compare the performance of our two-phase
detection and one-phase detection (SDM, SCDM). The
advantages and drawbacks of individual existing malware
detection are not covered in this work and can be found
in other work.

Because we take a two-phase behavior-based approach
for malware detection, we have to decide which detection
mechanism should be put in the first phase. As the first
phase defense, both accuracy and time cost should be con-
sidered. As shown in Table III(b), given the condition that
FNR of both SDM and SCDM remains within the toler-
ance, if SDM plays the front, there are 76% of benign pro-
grams and 49.4% of malware sent to second phase,
compared with 19.5% and 98.8% for SCDM as a benign
filter. SCDM as a malware filter introduces such high
FPR that we should abandon it. In considering the time
cost for analyzing a program, the first strategy took 731 s
to analyze a program, which was better than all the other
strategies. We deduced that the difference in time cost
was a result of SDM ignoring the programs whose calcu-
lated MD values are in the ambiguous area. SDM can act
as both malware and a benign filter, that is, fuzzy filter.
On the other hand, SCDM cannot generate such a fuzzy
decision so that it can serve as a malware filter only. We
conclude that SDM as a fuzzy filter should serve the first-
phase defense, that is, the first row in Table III(b).
Comparing SDM+SCDM with the first-phase SDM
and SCDM, the FNR/FPR is 7.7%/7.5%, 7.3%/48.1%,
and 3.6%/6.8%, respectively. Although SDM alone does
not perform well, it complements SCDM in the two-phase
combination.

5.4. Classification by behavior vectors

To classify detected malware into defined types, we ex-
tracted the behavior vector of a malware and calculated
its cosine similarity with the representative behavior vec-
tors of well-known types of malware. If the cosine similar-
ity of this malware does not exceed a threshold, it belongs
to a new type. To find the representative behavior vectors
of each known type among the 500 training malware sam-
ples divided into five types, we took four types as known
types and the remaining type as the unknown type, and cal-
culated the cosine similarity of the malware in the four
known types to identify which malware could be represen-
tatives. The other 500 malware samples, also divided into
five types, were classified into the four known types or
the new type. We evaluated the classification accuracy to
find that we could distinguish malware of known types
from the unknown type, and malware of the unknown type
from known types with an accuracy of 85.5% and 80%, re-
spectively. The behavior vector does characterize the type
of malware.

5.5. Intrusive versus non-intrusive

According to the statistics of all the malware from VX
Heaven (http://vx.netlux.org/index.html), intrusive
malware accounts for only 3.8% of the total. We observed
that the proposed Behavioral Classifier could differentiate
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://vx.netlux.org/index.html

Table IV. Behaviors carried by non-intrusive or intrusive malware.

Malware type

Non-intrusive malware Intrusive malware

Worm Backdoor Trojan Hoax Bot

Overlapping behavior ratio (%) 28.9 27.8 22.0 17.5 44.4

Three-phase behavior-based detection and classification of malwareY.-D. Lin et al.
intrusive and non-intrusive malware with an accuracy of
85.8%. There is still some malware incorrectly recognized,
probably because some intrusive behaviors were mistaken,
or the intrusive malware hid its intrusive behaviors. We
then compared the behaviors that non-intrusive malware
and intrusive malware practices and give the results in
Table IV. We observed that overlapping behavior ratio in-
dicates the percentage of the behaviors carried out by this
type of malware and also carried out by other types of
malware. For example, among all behaviors that Worm
carries out, 28.9% is also carried out by other types of
malware. In other words, 71.1% is carried out by worms
only. We observed that intrusive malware has the greatest
overlapping behavior ratio. More behaviors carried out
by intrusive malware are also carried out by other types
of malware. Therefore, we can deduce that intrusive behav-
iors are a minor part of the overall behaviors.
6. CONCLUSIONS

In this paper, we propose a three-phase behavior-based ap-
proach, with the front two phases serving detection and the
rear phase serving classification. Compared with existing
methods, our method is based on behavior-based analysis
and has the following three advantages: (i) even if malware
have been encapsulated or obfuscated, our method still has
the chance to capture the malicious behavior by extracting
their common subsequences; (ii) our method uses a three-
phase approach, rather than a one-phase method, by
leveraging existing solutions to improve detection accu-
racy and reduce time costs on malware detection; and
(iii) our method not only detects malware but also tries to
classify malware. Malware would be classified as the type
it looks most like, whereas new malware would be classi-
fied as an unknown type. However, our method has a
drawback that the detection accuracy of first phase would
be constrained by the detection accuracy of adopted sand-
box and neural network.

We summarize some insights as follows. First, the first
phase takes about 180 s to analyze a program, whereas
the second phase takes approximately 900 s. However,
the first phase introduces 7.6% FN and 44.9% FP, com-
pared with 7.4% FN and 7.5% FP of the second phase.
The second phase takes more time to achieve a better per-
formance. Next, the integrated two-phase detection ap-
proach performs better than any one-phase approach
alone in both detection accuracy and time cost, where it
produces 3.6% FP and 6.8% FP and spends 731 s on ana-
lyzing a sample. Finally, the proposed approach can
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
distinguish malware of known types from unknown type
with the accuracy of 85.8% and discriminate the malware
of unknown type from known types with the accuracy of
80.0%. It can also recognize intrusive malware with an ac-
curacy of 82.7% and non-intrusive malware with an accu-
racy of 88.9%.

There are further issues to pursue. How to further im-
prove the accuracy in the behavior-based detection through
the sandbox and system call sequences requires more stud-
ies. Clustering behavior vectors into self-defined types
beyond the current five well-defined types is another in-
teresting topic. In our architecture, the ANN and the
Bayesian classifier can be replaced with other similar
classifiers. Thus, we will try other classifiers to know
whether they can outperform the current approach using
ANN and Bayesian. Finally, the contribution of this pa-
per is the three-phase approach to improve detection ac-
curacy and reduce time costs on malware detection. It is
proven that this approach is effective on detecting
malware for Windows OS. We will further investigate
detecting mobile malware using this proposed approach
in the future.
REFERENCES

1. Forrest S, Hofmeyr SA, A Somayaji, Longstaff TA. A
Sense of Self for Unix Process, Proceedings of the
1996 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 1996; pp. 120–128, .

2. Mutz D, Valeur F, Vigna G, Kruegel C. Anomalous
system call detection. ACM Transactions on Informa-
tion and System Security 2006; 9(1):61–93.

3. Warrender C, Forrest S, Pearlmutter B. Detecting In-
trusions Using System Calls: Alternative Data Models,
Proceedings of the 1999 IEEE Symposium on Security
and Privacy, 1999; pp. 133–145.

4. Mehdi SB, Tanwani AK, Farroq M. IMAD:
In-Execution Malware Analysis and Detection, Pro-
ceedings of the 11th Annual conference on Genetic
and Evolutionary Computation, Montreal, Canada,
July 2009; pp. 1553–1560.

5. Rozenberg B, Gudes E, Elovici Y, Fledel Y. A
Method for Detecting Unknown Malicious Execut-
ables, Proceedings of the 2011 IEEE 10th Interna-
tional Conference on Trust, Security and Privacy in
Computing and Communications, Nov. 2011;
pp. 190–196.

Three-phase behavior-based detection and classification of malware Y.-D. Lin et al.
6. Lin YD, Lai YC, Chen CH, Tsai HC. Identifying an-
droid malicious repackaged applications by thread-
grained system call sequences. Computers & Security
2013; 39(B):340–350.

7. Lin Y-D, Chiang Y-T, Wu Y-S, Lai Y-C. Automatic
analysis and classification of obfuscated bot binaries.
International Journal of Network Security 2014;
16(6):506–515.

8. Liu W, Ren P, Liu K, Duan HX. Behavior-based
malware analysis and detection. Proceedings of Inter-
national Workshop on Complexity and Data Mining,
Nanjing, China Sept. 2011; 39–42.
9. Tsai HY. Suspicious behavior-based malware detection
using artificial neural network. Master thesis, Institute of
Network Engineering College of Computer Science. Na-
tional Chiao Tung University: Hsinchu, Taiwan, June 2012.

10. Moser A, Kruegel C, Kirda E. Exploring multiple exe-
cution paths for malware analysis, IEEE Symposium
on Security and Privacy, May 2007.

11. Manning C, Raghavan P, Schütze H. Introduction to
Information Retrieval. Cambridge University Press:
Cambridge, United Kingdom, 2008.

12. Virus total. [online], Available: http://www.virustotal.com/
[accessed on March 2013].
Security Comm. Networks (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.virustotal.com/

