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1. INTRODUCTION

For a graph G, let V(G) and E(G) be respectively the vertex set and edge set of G and
let S be a collection of cycles of length m (namely, m-cycles) such that each edge in
E(G) belongs to exactly one cycle in S. Then the pair (V(G), S) is called an m-cycle
system of G. An m-cycle system of K, is also referred to as an m-cycle system of
order v. Here, K, is the complete graph on v vertices. An obvious necessary condition
for the existence of an m-cycle system of K, is that m < v, v is odd, and m divides the
number of edges in K. 5

Alspach and Gavlas [1] and Sajna [14] have completely settled the existence
problem of m-cycle systems of K, and K, — I, where [ is a 1-factor.

Let a pair (V, S) be an m-cycle system of K, and let II be an automorphism group
of the m-cycle system (V, S) (i.e., a group of permutations on v vertices leaving the
collection S of cycles invariant). If there is an automorphism 7 € II of order v, then

Contract grant sponsor: NSC; Contract grant number: 93-2115-M-239-001
© 2005 Wiley Periodicals, Inc.

66



CYCLIC m-CYCLE SYSTEMS WITH m < 32 OR m = 2, 67

the m-cycle system (V, S) is said to be cyclic. For an m-cycle system of K, the vertex
set V can be identified with Z,. So, the automorphism can be represented by

mii— i+ 1(modv)orm:(0,1,...,v—1)

on the vertex set V = Z,.

In 1938, Peltesohn [10] proved that there exists a cyclic 3-cycle system for each
admissible value of v # 9. Kotzig [9] and Rosa [11,13] showed that for even m, there
exists a cyclic m-cycle system of order 2km + 1. Moreover, Rosa [12] also proved that
there exist cyclic m-cycle systems where m =3, 5, 7. Buratti and Del Fra [5], Bryant
et al. [7], and the present authors [8] independently proved that for any integer m with
m >3, there exists a cyclic m-cycle system of order 2km + 1. Recently, Buratti and
Del Fra [6] present the result that if m is an odd integer with m # 15 and m # p®
where p is prime and « > 1, then there exists a cyclic m-cycle system of order 2km + m
with exception: (m, k) = (3, 1). More recently, Vietri [16] has completely filled in the
gap created by Buratti and Del Fra [6]. So we have the following results.

Theorem 1.1 [5,7,8]. For any integer m with m > 3, there exists a cyclic m-cycle
system of order 2km + 1.

Theorem 1.2 [6,16]. Given an odd integer m >3, there exists a cyclic m-cycle
system of order 2km+m for any admissible value of k with the only definite
exceptions of (m, k) =(3,1), (15,0), and (p“, 0) with p a prime and o> 1.

The above theorem gives, in particular, a complete answer to the existence
question for cyclic g-cycle systems with g a prime power.

With the joint effort of a number of researches [5—13,16], the existence question
for cyclic g-cycle systems has been settled for g a prime power. When ¢ is not a prime
power, the problem becomes much more difficult and is far from being solved.

In this paper, we settle the existence questions for cyclic 2¢-cycle systems with g a
prime power and for cyclic m-cycle systems with m <32.

2. DEFINITIONS AND PRELIMINARIES

Throughout this paper, we shall assume that the vertex set of K, is Z, and
use &£ (a — b) to denote the difference of the edge {a, b} in K,. Given an m-cycle C =
(co,€1y-vsCm) on Ky, let C+i=(co+i,c;+1i,...,¢m—1 + i) (mod v), where
i €7,

The cycle orbit of C is the set of distinct m-cycles in the collection {C + i|i € Z,}.
The length of a cycle orbit is its cardinality, i.e., tbe minimum positiye integer k such
that C +k = C. A base cycle of a cycle orbit O is a cycle C € O that is chosen
arbitrarily. Any cyclic m-cycle system of order v is generated from base cycles. For
the convenience of notation, we write a cycle k-orbit for a cycle orbit of length k.

A cycle v-orbit of C on K, is said to be full and otherwise short; and for
convenience, the cycle C is called full or short, respectively.

A cycle C with vertices in Z, is of type d if its stabilizer under the natural action of
Z, has order d. The type of an m-cycle in Z, is a common divisor of m and v. It is
obvious that a cycle of type 1 (d>1) is a full (short) cycle.
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The following lemma (see [3,4]) is a crucial tool for constructing a cycle of a
prescribed type d(>1) in a cyclic m-cycle system.

Lemma 2.1. Let C = (co,c1,...,cm—1) be an m-cycle on K, satisfying the
following conditions:

(1) For0<i#j<r—1,¢ #cj (mod 1).

(2) The differences between edges {c;,ci—1} (1 < i <r) are all distinct.
3) ¢, — co = at with « coprime with q.

4) ciryj = iat + ¢j (mod gt), where 0<j<r—1and 1<i<qg—1.

Then C is a cycle of type q and the set {C + i|0 < i < t} forms a cycle t-orbit of C.
Consequently, C can be viewed as a base cycle of the cycle t-orbit.

To simplify, the m-cycle C = (co,c1,...,¢r—1,Qt,at+C1,y...,at+Crp,...,
(g—1)at,(g—1)at+cy,...,(q — 1)at+¢,—;) in Lemma 2.1 is denoted by C =
[co,¢1,- -, Cro1],, in accordance with [6].

For example, the 10-cycle C = (0, 14,13,27,26,40,39,53,52,1) = [0, 14],; is of
type 5 on Kes and the set {C,C + 1,...,C + 12} forms the cycle 13-orbit of C.

Proposition 2.2. If m<v<2m+1 and gcd(m, v) is an odd prime power, then no
cyclic m-cycle system of order v exists.

Proof. Suppose, on the contrary, that there exists such a cyclic m-cycle system of
order v, (V, S), set gcd(m,v) = p® (where p is a prime), and let C be the m-cycle of S
containing the edge {0,v/p}. The hypothesis v<2m implies that |S|=
v(v —1)/2m < v so that the orbit of C has length smaller than v. Equivalently, the
stabilizer of C is not trivial. On the other hand, the type of C is a divisor of p® so that
the subgroup of Z, of order p (that is, <v/p >) is certainly contained in the stabilizer
of C. This means that C+iv/p=C for i=0, 1,..., p—1 and hence the edges

{O,V/p}, {v/p72v/p}, ) {(P - 1)V/p,0}

belong to C. Moreover, it is immediate to see that these edges form the p-cycle (0,
v/p, 2v/p, ..., (p — Dv/p). This is possible only if m = p but, in this case, m would be
a divisor of v so that we would have v=m or v > 2m, a contradiction. O

It is worthwhile to note that a cyclic m-cycle system of order less than 2m + 1 may
exist. As stated previously, Buratti and Del Fra in [6] proved that if m is odd with
m#15 and m#p®, where p is prime and « > 1, then there exists a cyclic m-cycle
system of order m.

Throughout this paper, we shall use 9C to denote the multiset of partial differences
{£(ci —cim)|i=1,2,...,m/d} of an m-cycle C = (co,c1,...,cm—1) of type d
where ¢,, = ¢o. Given a set D = {C,C3,...,C,} of m-cycles with vertices in Z,,
the list of partial differences from D is the union of the multisets OCy,...,
8Cp, i.e., oD = UleaC,-.

As a special case of general results concerning graph decompositions with a
sharply vertex transitive automorphism group [2], we have:

Lemma 2.3. A set D of m-cycles with vertices in Z, is a set of base cycles of a cyclic
m-cycle system of order v if and only if OD = Z, — {0}.
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For each integer m > 3, let Spec(m) be the set of v for which there exists an m-
cycle system of order v. By [1] and [14] we have Spec(m)= {2mt+ w|t €
N;w € W(m)} where W(m) is the set of odd integers w in the open interval (1, 2m)
such that w(w — 1)/2=0 (mod 2m). We have:

Proposition 2.4.

(1) If m is an odd prime power, then W(m)= {1, m}.
(2) W(15)=1{1, 15, 21, 25}.
3) WD ={1,17, 15, 21}.
(4) If m is an odd prime power and m=1 (mod 4), then W2m) = {1, m}.
(5) If m is an odd prime power and m=3 (mod 4), then W2m) = {1, 3m}.
(6) W(2X) = {1}for k > 2.
(7) w(2)={1, 9}.
(8) W(R0)={1, 25}.
(9) W4)={1, 33}.
(10) W(28)={1, 49}.
(11) W(30)={1, 21, 25, 45}.

Proof.  Applying the Chinese Remainder Theorem, we have that |W (m)| = 2" where
n is the number of odd prime factors of m. This allows us to check immediately all
equalities (1—-11).

For instance, it is immediate to check that W(15) D {1, 15,21,25}. On the other
hand, from the above paragraph, W(15) has size 4 so that (2) follows. O

Throughout we shall assume C; and C;* to be respectively full and short m-cycles
on K,, and each set of values of the form {+c;, *+c5,...,£c,} will be denoted by
+{c1,ca,...,c,}. In particular, the short m-cycle has the form stated in Lemma 2.1.

Proposition 2.5. Let m=2 (mod 8). Then there exists a cyclic m-cycle system of
order v with v=m/2 (mod 2m).

Proof.  Set v =2pm+m/2 for p>1. We claim that C; (1 <i<p) are full base
cycles and C;*(1 < j < k) are short base cycles.

Fori=1,2,...,p, let C; = (cip,Ci1,...,Cim—1) be (8k+2)-cycles defined as
B for 0 <j < 2k,
€% 7\ 8k —2j+1, for 2k + 1 <j < 4k;and
2k(dp + 1) +i+2(i+1)/2], for j = 0,
2k —1—j)(dp— 1)+ 4k +4i— 1, for 1 <j<2k—1,
Cinjrl = (Zk - 1)(4]7 + 3) +4l, fOI'j = 2k,
(j—2k—1)(dp— 1)+ 4k +4i —3, for2k+1<j<4k—1,
(2k—1)dp+ 1) +4i+ 1, for j = 4k.

We have | J_,0C; = £{2+j(dp+1),...,(j+1){dp+1),2k(4p+1)+1,...,
2k(4p + 1) +2p|0 <j < 2k — 11

For j=1,2,....k let G*=10,(2j—1)(dp+1)+1],,, and so IC;" =
H2-2)@p+ 1)+ 1,(2/ - (4p + 1)1}
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Since (J_, 9Ci) U (U;;l J0C;*) = Z, — {0}, the desired result follows from
Lemma 2.3. ' O

For clearness, we give an example to demonstrate the construction of full even
cycles. Let C; and C, be full cycles in a cyclic 18-cycle system of order 81. The
construction of C; and C; is shown in Figure 1. Note that the vertices with label 0
stand for the same one. By easy computation, we have 9C; U 9C, = £{2,...,9,
11,...,18,20,...,27,29,...,40}.

Proposition 2.6. Let m=6 (mod 8). Then there exists a cyclic m-cycle system of
order v with v=3m/2 (mod 2m) and v > 3m/2.

Proof.  Similarly, set v=2pm+3m/2 (p > 1) and m=8k+6 (k>0). The proof is
divided into two cases, depending on whether k=0 or k> 0.

Case 1. k=0.
Fori=1,2,..., p, let C; be 6-cycles defined as

(i+1)

C,-:(O,4(p+1)+i+2{

(p+1)
2

J,2,2p+3+2i,1,2i+2), if1<i<p—1and

Cp:(0,5p+4+2{ J,2,4p+5,1,2p+2).

We have | J/_, 0C; = £{3,...,4p,4p +3,...,6p + 4}.
The short 6-cycles are: Cy* = [0,4p +1],,,5 and C\" = [0,4p +2],,,5; and it
follows that 9Cy* U 9C;* = +{1,2,4p + 1,4p + 2}.

Case 2. k>0.
Fori=1,2, ... ,p let Ci = (cio,ci1, --. ,Cigk+s) be (8k + 6)-cycles given by
Y for 0 <j <2k +1,
871 8k —2j 45, for 2k+2 <j < 4k + 2;and
O 2 4 8 8 r = 3 i 0
Cli

3¢ 25 18 11 37 9 16 23 32
o 2 4 6 8 v L3 K] i 0

40 29 22 18 41 13 20 27 386
FIGURE 1.
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(2k—1)(4p+3) +4i + 3, for j =0,

(2k—1—j)(4p + 1) + 4k + 4i, for 1 <j<2k—1,

(2k+1)(4p +5) +1i, for 1 <2 and j = 2k,

(2 + )(4p+5)—|—1+i—|—2{@J, for i > 2 and j = 2k,
Ci2jtl =\ 2(4kp + 5k +p +2) + 2i, for j =2k + 1,

(j—2k —2)(4p + 1) + 4k +4i +2, for 2k +2 < j < 4k,

(2k—1)(4p+3) +4i+5, for j =4k + 1,

2k(4p +3) + 3, fori=1andj = 4k + 2,

2k(4p +3) + 2i + 3, for i > 1 and j = 4k + 2.

If p=1, then OC=+{4+7j,...,7+1)|j=0,1,...,2k — 2} U {14k — 2,

., 14k + 3,14k + 6,14k + 7,14k + 8,14k + 10}; if p>1, then leﬁCi:
+{44+ dp+3)j,....,(4p+3)(j+1)j=0,1,...,2k—2} U+{(2k— 1)(4p + 3)+
5+4ilp+1),..., 2h(4p +3) +3+4j(p + 1)]j=0,1}U+{(2k+ 1)(4p +3) +6,

.., p(8k +6) + 6k +4}.

The short (8k+6)-cycles are: for j=0,1,....,k—1,C;* =1[0,4p +4+j (8p+
6)]4)13:Ci+;"=[0,4p + 5+ j(8p + 6)]4p+37C2k+j* =[0,4p +6+j(8p +6)]4,,3. C3t”
= [0 2k(4p +3) +4],,.3, and G0 *[0, (2k + 1)(4p + 3) + 5]y, 5-

We have U35318C* +{1+i(8p+6),2+i(8p+6),3+i(8p+6),4p + 4+
i(8p+6), 4p+5—|—l(8p+6) dp+6+i8p+6)i=0,1,....k—1} UL {(2k—1)
(4p+3)+4,2k(4p +3) +4,2k(4p +3) +5, 2k + 1)(4p + 3) + 5}

It can be checked that (| J_, 9C;) U (U;’iarl dC;*) = Z, — {0}, as desired. 0
By virtue of Propositions 2.2, 2.4-(4), (5), 2.5, 2.6, and Theorem 1.1, we have:

Theorem 2.7. [f m is a prime power, then there exists a cyclic 2m-cycle system of
order v with the only definite exception of v=73m when m=3 (mod 4).

In next section, we shall deal with the m-cycle systems for m not greater than 32.
Since the constructions are different between odd cycles and even cycles, we classify
the m-cycle systems into two cases: odd and even.

3. ODD CASES

We begin with introducing two results that are important for constructing odd cycles.

Lemma 3.1 [8]. Let a, b, ¢, and r be positive integers with c =a~+ b and r > c. Then
there exists a cycle C of length 4s+3 with the set of differences =+ {a, b, c, r,
r+1,...,r+4s—1}.

Proof.  We claim that the cycle C = (vo, Vi, ..., Vasi1, Vst s Vas's - - -, v1') of length
4s 4 3 exists according to the following two cases.

Case 1. Either a or b is odd, say b.

The vertices of C are defined as:

vo=0; forj=0,1,...,5v341 =a+2j,vos1’ =c+2j; forj=1,2,...,5,vy =a—
r=2(G—1),v =c+r+4s—2j+1.
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Case 2. Both a and b are even.

If r is even, then the vertices of C are given by

vo=0vi =a,vi' =r+4s—2; forj=1,2,... .5,y =a+r+4s—2j+ 1,»/
=c+r+4s+2j—4,v =a+2j, and vy = c+4s —2j.

If r is odd, then

vo=0;vi =a,v,/ =r+4s—1; forj = L2,...,5,voj=a+r+4s —2j, v
:a+2j,v2,~':c+r+4s—|—2j—37 and V2j+1/:C+4S—2j.

A routine verification can show in each case that 0C = +{a,b,c,r,r+1,...,
r+4s—1}. O

As an example, we use the method stated above to construct a 15-cycle with the set
of differences +{1,2,3,6,...,17} and a=2, b=1, ¢=3, r=6, and s=3. See
Figure 2.

Next, we consider cycles of length 4s + 1. Note that Lemma 3.2-(1) is also known
in [8], but for completeness, we give a short proof here.

Lemma 3.2. Let a, b, ¢, and r be positive integers with c=a+b=+1 and r>c.

(1) There exists a cycle C of length 4s+ 1 with the set of differences * {a, b, c, 1,
r+1,..., r+4s—3}.

(2) There exists a cycle C of length 4s 4 1 with the set of differences + {a, b, c, r,
r+ 1, r+2k+3, r+2k+4,..., r+2k+4s—2} where k> 0.

Proof.

(1) Let C = (vo,v1,---, Va5, V2, vas—1’,- .., v1’) be a cycle of length 45+ 1 whose
vertices are defined as
vo=0,vi =a,v/ =c,vos =c+25s—3, o’ =c+r+2s—2+¢c,wheree =0
or 1 according as c=a+b+1ora+b—1;and fori=1,2,...,5s—1, vy, =
c+2i—3, v =c+r+4s—1—2i,vy;.1=c—r—2i— l,and vy, |’ =c + 2i.
(2) Using the same method of construction stated above, we can obtain the desired
result. O

2 -4 4 -6 6 -8 8
/o O e
0 o\c
OO
3 20 5 18 7 16 9

FIGURE 2.
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For the case of odd cycle, we also need the crucial help of Skolem sequences and
hooked Skolem sequences.

A Skolem sequence of order p is a collection of ordered pairs {(s;, #;) | 1 <i<p,
ti—si=1i} with ', {s;,t;} = {1,2,...,2p}; and a hooked Skolem sequence of
order p is still a collection of ordered pairs {(s; #;) | 1 <i<p, t;—s;=1i} with
Uf:l {Si7ti} - {1727 e 72p - 172p + 1}

Theorem 3.3 [15].

(1) A Skolem sequence of order p exists if and only if p=0 or 1 (mod 4).
(2) A hooked Skolem sequence of order p exists if and only if p=2 or 3 (mod 4).

In what follows, we will assume {(s;, #;) | 1 <i<p, t; —s; =i} to be a (hooked)
Skolem sequence of order p.

Proposition 3.4. There exists a cyclic 15-cycle system of order v with v=21 or 25
(mod 30) with v > 25.

Proof. By Proposition 2.2, we see that the value of v must be greater than 25. The
proof is divided into two parts: v=21 or 25 (mod 30).

Part 1. v=21 (mod 30).

Letv=30p+21 forp>1.If p=0or 1 (mod 4), by Theorem 3.3-(1), there exists
a Skolem sequence of order p so that | J_, {i,s; + p,t; + p} = £{1,2,...,3p}; and
if p=2 or 3 (mod 4), by Theorem 3.3-(2), there exists a hooked Skolem sequence of
order p so that  [J_, {i,s; +p,t; + p} = £{1,2,...,3p — 1,3p + 1}. This means that
if distinct consecutive integers, say + {d+1,d+2,..., d+ 12r} for some integers d
and r, are in the set of differences from a 15-cycle, then we can repeatedly utilize
Lemma 3.1 and hence, p full 15-cycles are obtained. It is therefore enough to show
that there exist short 15-cycles C;*(1 <j <'s) such that Z, — (J;_, 0C;* — {0} — &
{1,2,...,3p}(or £{1,2,...,3p — 1,3p+ 1}) constitutes the desired situation as
stated above. This can be done as follows.

Case 1. p=1 (mod 4).

Ifp=1,then C,* =10, 5, 1, 8, 2]17, Co* =0, 11, 3, 13, 4];7, and C = (0, 2, 20, 4,
26, 6, 32, 8, 9, 30, 7, 24, 5, 17, 3).

We have that 0C,* UJC,* = +{4,...,11,13,15} and OC = £{1,2,3,12, 14,
16,...,25}.

If p>1, then we split the proof into the following three subcases.

Subcase 1: p=5 (mod 12), say p=12k+ 5 for k> 0.
C,* = [0, 120k + 54, 156k + 71,120k + 55,300k + 141]]20,{+57 and C,* =10, 120k +
55,300k + 136, 120k + 56, 300k + 139]12()k+57.

OC* U 0Cy* = + {36k + 16, 36k + 17, 120k + 54, 120k + 55, 180k + 80, . ..,
180k + 85}.

Subcase 2: p=9 (mod 12), say p=12k+9 for k> 0.

Ci* =10, 120k 4102, 300k + 243, 120k + 101, 300k + 244]1204+97 and Cr* =0,
120k + 103, 156k + 131, 120k + 102, 300k 4 2421120497
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0C* U0Cy* = £ {36k +28, 36k +29, 120k + 102, 120k + 103, 180k + 140, ...,
180k + 145}.

Subcase 3: p=1 (mod 12), say p=12k+ 13 for k> 0.

Ci* =10, 120k + 138, 156k + 179, 120k 4139, 300k + 343112014137 and Cy* = [0,
120k + 139, 300k + 339, 120k + 138, 300k + 340] 120+ 137-

0C " U 0Cy* = £{36k+40, 36k+41, 120k + 138, 120k + 139, 180k + 200,...,
180k +205}.

Case 2. p=2 (mod 4).
Subcase 1: p =2 (mod 12), say p=12k+ 2 for k> 0.

Ci*=[0, 120k+21, 300k+61, 120k+25, 300k+ 6411201427 and Cr* =][0,
120k + 22, 300k 4- 60, 120k + 25, 156k + 33]120k-+27-

0C1*UoC* = + {36k+6, 36k+8, 120k+21, 120k+22, 180k+35,...,
180k +40}.

Subcase 2: p=6 (mod 12), say p=12k+ 6 for k> 0.

Ci* =10, 120k+ 69, 300k + 166, 120k + 68, 300k + 167]1201+67 and Cr* =0,
120k + 70, 300k + 165, 120k + 69, 156k + 87]120k-+67-

0C1"UO0Cy* = £{36k+18, 36k+20, 120k+69, 120k+70, 180k+095,...,
180k +100}.

Subcase 3: p =10 (mod 12), say p =12k + 10 for £ > 0.

Ci* =10, 120k + 105, 300k + 261, 120k + 106, 300k + 264]120x+107 and C* =[O0,
120k + 106, 300k + 265, 120k + 105, 156k 4 137]120k+107-

0C* U 0Cy* = {36k + 30, 36k + 32, 120k+ 105, 120k + 106, 180k + 155,. ..,
180k + 160}.

Case 3. p=3 (mod 4).
Subcase 1: p =3 (mod 12), say p=12k+ 3 for k> 0.

Ci" =10, 120k+38, 156k+47, 120k+36, 156k+49]120¢137 and C* =0,
120k + 39, 300k + 91, 120k + 38, 300k + 92]120k137-

0C* U0C* = £{36k+9, 36k+ 11, 36k+ 12, 36k+ 13, 120k + 38, 120k + 39,
180k +52,..., 180k+55}.

Subcase 2: p=7 (mod 12), say p=12k+ 7 for k> 0.

C1* =10, 120k +74, 156k + 97,120k +76, 156k + 101],,0. 5, and Co* = [0, 120k+
75,300k + 188, 120k + 76,300k -+ 191] 50, . 77-

0C* U 0Cy* = {36k + 21,36k + 23,36k + 24,36k + 25,120k + 74,120k + 75,
180k + 112,...,180k + 115}.

Subcase 3: p=11 (mod 12), say p=12k+ 11 for k> 0.

C1* = [0, 120k + 110, 156k + 146, 120k + 113, 300k 4 289] 5,117 and Co* =
[0, 120k 4 111, 156k + 148,120k + 113,300k 4 290} 504 117-

0C* U 0Cy* = +£{36k + 33, 36k + 35, 36k + 36, 36k + 37, 120k + 110, 120k +
111,180k + 172, ...,180k + 175}.
Part 2. v=25 (mod 30).



CYCLIC m-CYCLE SYSTEMS WITH m < 32 OR m = 2, 75

Let v=30p+25 for p > 1. Similarly, unless otherwise stated, we just consider
here the construction of short 15-cycles.

Case 1. p=0 (mod 4).

For i=1, 2, 3, 4, C;* =0, 6p—|—z 21p +jlgp.5. Where ]—11 10, 12, or 16
according as i=1, 2, 3, or 4, andU 0C*=+t{6p+1,...,6p+4, 15p+5,.
15p +12}.

Case 2. p=1 (mod 4).

Fori=1,2,3,C =[0,6p + 1 +1,21p +jlg, 5, Where j = 10 14, or 11 according
asi=1,2,or3,and C;* =[0,6p +7,21p + 17]6 .5 and so Ul L O0C* = £{6p+2,
6p+3,6p+4,6p+7, 15p+5,..., 15p+12}.

Fori=1,2,..., p, let C; be the full 15-cycles. Let C; =(0, t; + 1, t; + 6p + 14,
Hh+2, y+6p+13, 11 +3, t1+6p+12, t; +4, s;—6p—1, —6p—2, —3p—1,
—6p—3, —3p, —6p—4, 1) and then 9C, =+ {1, s1+1, 1, +1, 3p+1,...,
3p+4, 6p+5, 6p+6, 6p+38,..., 6p+13}. The rest of the full 15-cycles are
constructed by the same method described in Part 1.

The proofs of the cases when p=2 (mod 4) and p=3 (mod 4) are analogous to
that in Case 2, so we omit the details.

By routine computation, it can be verified in each case that the union of differences
of the short and full 15-cycles is equal to Z, — {0}, and the proof then follows from
Lemma 2.3. O

Proposition 3.5. There exists a cyclic 21-cycle system of order v with v="T or 15
(mod 42).

Proof. Let v=42p+7 or 42p+15 for p>1. If p=0 (mod 2), for i=1, 3,...,
p—1, let

(ai7bi7ci) = (l+ 17si +p7ti+p)

and
(@it1,biv1,civ1) = (6,801 +pyti1 +p).

Suppose that p=1 (mod 4), say p=4k+ 1. If k=1, let
(alablycl) = (27 137 14)7 (a2;b2702) = (1767 8)7 (Cl3,b3,C3) = (4797 12)7

(Cl4,b4,C4) = (3,7, 11), and (a5,b5,65) = (5, 10, 16), and if k > 1,

then let
(ai,bi,c;) = (i+ 1,8, +p,t; +p) for odd i < 4k — 3,

(@ir1,biv1;civ1) = (6,801 + p, iy +p) for odd i < 4k — 3,
(asg—1,bag—1,car-1) = (4k — 1,4k + 1,8k + 1),

(a4k, by, C4k) = (4](, 8k + 3,12k + 4)7
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and

(a4k+1,b4k+1704k+1) = (4k + 2,6k + 2,10k + 3)

Refer to [15, p. 458].
Assume that p = 3 (mod 4), say p = 4k — 1. If k = 1, then let

(alablacl) = (17577>> (a27b2702) = (278>9)7 and (a3,b3,63) = (37476);

and if £ > 1, then let
(ai,bi,c;) = (i+1,s; +p,t; +p) for odd i < 4k — 3,
(a,~+1,b,~+|,c,-+1) = (i75i+1 +p,t[+] +p) for odd i S 4k — 3,

and

(Qar—1,bag—1, car—1) = (4k — 1,8k — 1,12k — 3).

Clearly, ¢; =a; + b; + 1 or a; + b; — 1 for 1 < i < p. Furthermore, it is easy to
check that (J_, {ai,bi,c;i} = £{1,2,...,3p}, if p=0 or 3 (mod 4) and
U {ai, bi,eiy = £{1,2,...,3p = 1,3p+ 1}, if p =1 or 2 (mod 4).

Part 1.v=42p+7 for p > 1.
The proof is divided into four cases, depending on whether p = 1, 3, 2, or 0 (mod 4).

Case 1. p =1 (mod 4).

C* =1[0,3p,24p + 4]g, ., and C* = £{3p, 18p + 3,21p + 4}. The construction
of full 21-cycles is the following.

Subcase 1: p = 1 (mod 12).

C = (O,Cl],al + by, a; + by —3p—2, ay+by+2,a + b —3[)—4, ay + b+
4,611 +b1 —3]7—6, ay +b1 +6, ap +b1 —3p—8, a1+b1 +8,C1 +18p+12+6,
c1+8 ci+3p+1l,c1+6,c1+3p+13,c1+4,c1+3p+15,¢c1 +2,¢c1 +3p+
17,¢1), where ¢ = 0 or 1 according as ¢; = a; + by + 1 or a; + by — 1, and we have
oC, = t{ay,b1,c1,3p+2,...,3p+17,18p + 4,18p + 5}. Moreover, by Lemma
3.2-(1), the remaining p — 1 full 21-cycles C», ..., C, follows.

Notice that the construction of the full 21-cycles C, ..., C, in the remainder of
Part 1 is the same as that stated above, so we just indicate the construction of the full
21-cycle C;.

Subcase 2: p =5 (mod 12).

C = (O,al,al + by,a; + by —3[)—2, ai+ by +2,a; +b; — 18p—2, ay + b+
4-7 611+b1 — 18}7*4, ay +b1 +6, ap +b1 — 18p—6,a1 +b1 +8,Cl +]8p+24+
e c1+8 ci+3p+11,ci+6,ci+18p+11,¢c;+4,c; +18p + 13, ¢c1 +2, c1 +

18p + 15,¢1), where € = 0 or 1 according as ¢; =a; +b; + 1 or a; +b; — 1, and
we have 0Cy = +{ay,b1,¢1,3p +2,...,3p+5,18p +4,...,18p + 17}.

Subcase 3: p =9 (mod 12).

Ci=(0,a1,a1+by,a1+b —3p—2,a1+b+2,a +b; —3p—4,a1 + b+
4, a1 +by —18p,ay + by +6,a,+b;— 18p—2,a,+b;+8,¢c1+3p +18 + ¢,
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ca+8,c+3p+1l,c;1+6,c14+3p+13,c1+4,c1 +18p+9,¢c1 +2,¢1 + 18p+
11,¢1), where e = 0 or 1 according as ¢; = a; + by + 1 ora; + by — 1, and it follows
that 0C; = +{ay,b1,¢1,3p+2,...,3p+ 11,18p +4,...,18p + 11}.

Case 2. p =3 (mod 4).
The proof is similar to that in Case 1 and omitted.
Case 3. p =2 (mod 4).
=[0,3p,9p + 3], and OC* = £{3p,3p +2,6p + 3}.
Subcase 1: p =2 (mod 12).

Ci = (0,a1,a1 +by,a1 + by —3p—4,a1 +by +2,a1+b; —6p—2, a1+ b +
4,a1+b1—6p—4,a1—|—b1—|-6,a1—|—b1—6p—6,a1+b1—|—8,c1+3p+15—|—67
a+8 c+3p+11l,c1+6,ci+6p+11,¢c; +4, ¢ +6p+13,c1+2, ¢ +6p+
15,¢1), where € =0 or 1 according as ¢; =a; +by+1 or a; +b; — 1, and so
8C1::E{al,bl,C1,3p+3,...,3p+8,6p—|—4,...,6p—|—15}.

Subcase 2: p = 6 (mod 12).

By directly and repeatedly using Lemma 3.2-(1), we then have p full 21-cycles
Ci,...,Cp.

Subcase 3: p = 10 (mod 12).

Ci=(0,a1,a1+by,a1+by —3p—4, a1 +b+2,a+by —3p—6,a,+ b, +
4.a1+by—3p—8,a,+b1+6, a+b—6p+2,a +b+8,¢c1+6p+16+¢,
ci+8,ci+3p+1l,e0+6,c1+3p+13,c1+4,c1+3p+15,¢1 +2,¢c1 +6p+
7,c¢1), where ¢ =0 or 1 according as ¢y =a;+by+1 or a;+b; — 1, and
0Cy = t{ay,b1,c1,3p+3,....3p+ 14,6p+4,...,6p+9}.

Case 4. p =0 (mod 4).

The proof can be obtained by a method similar to that in Case 3.
Part 2. v=42p 415 for p > 1.

Case 1. p=1 (mod 4), say p =4k + 1.

C*=1[0,3p,6p+2,9p +6,6p+3,27p + 11,6p + 5]y, s and IC* = £{3p, 3p+
2,3p+3,3p+4,8p,21p + 6, 21p+7}

By Lemma 3.2-(2), we have k full 21-cycles Cy,...,C; with Ul ,0Ci =+
{3p+5,...,3p + 2k + 4, 8p +1,...,12p — 4} and by Lemma 3.2- (1) there exist
3k + 1 full 21- -cycles Cy1, - C4k+1 with Uks L 0C =27, — aC UL, 8c; — {0}.

Case 2. p =2 (mod 4), say p = 4k + 2.

C*=1[0,3p,6p+2,9p +7,6p+4,9p +10,6p + 6] ,,, 5 and OC* = +{3p,3p+
2,3p+3,3p+4,3p+5,3p+6,8p — 1}.

Similarly, by Lemma 3.2-(2) and Lemma 3.2-(1), there exist k + 1 full 21-cycles
Ci,...,Cry with U 0C =+{3p+7,.. 3P+ 2k 48,8, 12p+ T} and
3k + 1 full 21- -cycles Cryt,. .., Caxyr With U 2,00 =2, — oc" — Ul ac —
{0}.
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Case 3. p=3 (mod 4).

C*=10,3p+1,6p+3,9p+8,6p +5,9p +11,6p +7]14p+5 and 9C* = +{3p + 1,
...,3p+6,8p —2}.

The p full 21-cycles can be obtained by the analogous method as mentioned in
Case 1, so we omit the details.

Case 4. p =0 (mod 4).

C*=[0,3p+ 1,6p+3,9p+6,6p+2,14p +7,35p + 13]14p+5 and 0C* = +{3p +
1,3p+2,3p+3,3p+4,8p+5,2lp+6,21p+ 7}.
It is still similar to Case 1, and omitted. O

4. EVEN CASES

Proposition 4.1. There exists a cyclic 12-cycle system of order v with v=9 (mod 24).

Proof. Letv=24p+9 for p> 1.

Cc'=10, 1, 3, 12p+8lgy43 and for i=1,..., p, GG=(0, 10p—-4i+7, 2,
10p—4i+8, 4, 12p—2i+49, 5, 4p—4i+ 10, 3, 4p—4i+9, 1, 1), where t= — 3,
ifi=1and t=6p—2i+7,if i>1.

Proposition 4.2. There exists a cyclic 20-cycle system of order v with v =25 (mod
40) and v > 25.

Proof. Note that by Proposition 2.2, there does not exist a cyclic 20-cycle system of
order 25. Let v=40p + 25 for p > 1.

¢ =10,2,1, 8p-|—8]gp+5, G, =10, 6, 1, 8p+9]8p+5, and C3*=[0, 12p+ 11, 1,
20p+ 14]8p+5'

For i =1,...,p, C;=(0,20p — 8i+ 19, 2, 20p — 8i + 20, 4, 20p — 8i + 13,6,
20p —8i+21,8,12p —4i+ 18,9, 8p —8i+17,7,8p — 8i + 14,5,8p — 8i + 16,3,
8p —8i+15,1,12p — 4i + 12). O

Proposition 4.3. There exists a cyclic 24-cycle system of order v with v =33 (mod 48).

Proof. Similarly, we just consider the case when v=48p + 33 for p > 1.
C\*=[0,4p +15,4p + 11,8p +12,12p +14,12p + 13,12p + 11, 16p + 14]16p+11
and C,*=1[0,8p+31,4p+11,12p + 28,8p + 11,16p—|—29,24p+48,20p+30]16p+11.
C, =(0,8p+25,2,8p +26,4,8p + 33,6,8p + 34,8, 8p + 40,10, 8p + 31, 11,
4p +25,9,4p +19,7,4p + 18,5,4p + 11,3,4p + 10,1, —4p — 4) and fori = 2,...,
p,Ci= (0,80 —4i+24,2.8p —4i+25,418p —4i +34,6,18p — 4i + 35,8,22p —
4i+ 33,10, 24p — 2i +30,11,22p — 4i + 35, 9,14p — 4i + 40,7,14p — i + 39,5,
4p — 4i 4+ 10,3,4p —4i+9,1,10p — 2i + 34). O

Proposition 4.4. There exists a cyclic 28-cycle system of order v with v =49 (mod
56) and v > 49.

Proof.  As mentioned previously, we see that v>49. Let v=>56p +49 for p > 1.

If p=1, then C;"=][0, 2, 1, 18];5, C;i*=[0, 2i+6, 1, i+ 17];5 for 2<i<5,
Ces" =10, 32, 1, 23];5, and C=(0, 48, 2, 49, 4, 47, 6, 50, 8, 38, 10, 39, 12, 62, 13, 36,
11, 35,9, 43,7, 40, 5, 42, 3, 41, 1, 52).
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Ifp > 1, then C;' =[0,2,1,8p + 10],,7, Ci* = [0,8p + 12+ 2i,1,8p + 9 + i,
for 2<i<6, and for i=1,..., p, C; = (0,24p — 16i + 40,2, 24p — 16i + 41,4,
24p — 16i +39,6,24p — 16i + 42, 8,8p — 8i + 24,10, 8p — 8i + 25,12,28p — 4i +
38,13,8p — 8i +22,11,8p — 8i +21,9,24p — 16i + 35,7,24p — 16i + 32,5, 24p—
16i + 34,3,24p — 16i + 33, 1,28p — 4i + 28).

Proposition 4.5. There exists a cyclic 30-cycle system of order v with v=21, 25, or
45 (mod 60).

Proof.
Part 1. v=60p 421 for p > 1.

C*=10,4p+2,4p+1,8p+4,8p+2,12p +6,12p + 3, 16p + 8, 16p + 3,20p+
11}20p+7'

If p=1, then C=(0, 30, 2, 31, 4, 38, 6, 39, 8, 46, 10,47, 12,53, 14, 24, 13, 36, 11,
35,9, 28,7,27,5, 20, 3, 19, 1, 14).

If p>1, then C; =(0, 28p+2, 2, 28p + 3, 4, 28p + 10, 6, 28p + 11, 8, 28p + 18,
10, 28p+19, 12, 1, 14, 4p+23, 13, 16p+20, 11, 16p+19, 9, 16p+ 12, 7,
l6p+ 11, 5, 16p+4, 3, 16p+3, 1, 4p+7), and for i=2,..., p, C;=(0, 28p —
12i+14, 2, 28p — 12i+ 15, 4, 28p — 12i + 22, 6, 28p — 12i + 23, 8, 28p — 12i + 30,
10, 28p — 12i+31, 12, t;, 14, 4i+ 12, 13, 16p —12i+32, 11, 16p — 12i+31, 9,
16p —12i+24, 7, 16p — 12i+23, 5, 16p — 12i+ 16, 3, 16p — 12i+ 15, 1, 4i+ 1),
where forj =1,..., WLzl)J’ -1 = 30p + 26 — 44j + 1, where 1 = 0 or 1 accord-
ingasp=0or 1 (mod?2)andforj=1,...,|p/2], trj = trj_1 — €2, Where e, =1 or

3 according as p=0 or 1 (mod 2).
Part 2. v=60p + 25 for p > 1.

If p=1, then C;* =10, 14, 11, 16, 15, 19];7, C>* =[0, 32, 11, 34, 15, 37],7, and
C=(0,27,2,28,4,35,6, 36, 8,46, 10,47, 12, 55, 14,53, 13,23, 11, 22,9, 15,7, 14,
5,20, 3, 19, 1, 34).

If p>1, then C\" = [0,4p +10,4p +7,8p +8,8p + 7, 12p + 7]y, 5, C2" = [0,
8p+20,4p+7, 12p+ 18, 8p+7, 16p + 17]12p45.

Ci1=(,8p+15,2,8p+ 16,4, 8p+23,6,8p+24, 8, 26p + 20, 10, 26p + 21, 12, 11,
14, 28p +25, 13,26p + 18, 11, 26p+17,9,4p+ 15,7, 4p+ 14,5, 4p+ 7, 3, 4p + 6,
1, 26p+4) and for i=2,..., p, C;=(0, 8p—4i+17, 2, 8p—4i+ 18, 4, 26p —
8i+ 18, 6, 26p —8i+19, 8, 26p —8i+26, 10, 26p —8i+27, 12, t;, 14, 28p —
2i+427, 13, 18p —8i+36, 11, 18p—8i+30, 9, 18p —8i+33, 7, 18p —8i +27, 5,
4p —4i+9,3,4p —4i+ 8, 1,10p — 2i + 22), where for j=1,..., [@J,tzj_l =
30p —4j+ 28 + ¢, where € =0 or 1 according as p=0 or 1 (mod 2) and for
J=1,...,|p/2], thj = tj_1 — &2, where £, = 1 or 3 according as p=0 or 1 (mod 2).

Part 3. v=60p +45 for p > 0.

Note that by Proposition 2.6, we know that there exists a cyclic 30-cycle system of
order v with v=60p + 45 for p > 1. It is therefore enough to prove that there exists a
cyclic 30-cycle system of order 45. This can be easily given as follows:

Ci" =10,8];,C" =10, 16]5,C3* = [0,20]5,Cs" = [0, 1,5,8,6,21]y, and
Cs* =1[0,14,3,13,6,27,9,31,40,34| 5. O



80 WU AND FU

We now have the main result, which is obtained by combining the known results
[5-13,16] and the propositions proved in Sections 2, 3, and 4.

Theorem 4.6. [f 3 <m <32, then there exists a cyclic m-cycle system of order v for
all possible values of v with exceptions of (m, v)=(3,9), (6, 9), (9, 9), (14, 21), (15,
15), (15, 21), (15, 25), (20, 25), (22, 33), (24, 33), (25, 25), (27, 27), and (28, 49).

5. CONCLUDING REMARK

Reviewing the construction of above-mentioned cyclic m-cycle systems, it is clear
that the construction of the case when m is even is much easier than that of m odd. We
expect that the cyclic m-cycle systems with m even can be solved in the near future.
Furthermore, in view of Proposition 2.2, we believe that for any admissible value of v
such that m <v<2m+ 1 and gcd(m, v) is not a prime power, then there exists a cyclic
m-cycle system of order v.
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