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Abstract The solution of a remnant was suggested for
the black hole ground state after surface gravity is cor-
rected for the loop quantum effect. On the other hand, a
Schwarzschild black hole in asymptotic anti-de Sitter space
would tunnel into the thermal soliton solution known as the
Hawking–Page phase transition. In this letter, we investigate
the low temperature phase of a three-dimensional Banados–
Teitelboim–Zanelli (BTZ) black hole and four-dimensional
AdS Schwarzschild black hole. We find that the thermal soli-
ton is energetically favored rather than the remnant solution
at low temperature in three dimensions, while a Planck-size
remnant is still possible in four dimensions. Though the BTZ
remnant seems energetically disfavored, we argue that it is
still possible to find in the overcooled phase if strings were
present, and its implication is discussed.

1 Introduction

It was shown that for a Schwarzschild black hole evapo-
rating by massless particles, the Hawking–Bekenstein area
law [1] receives a logarithmic correction, S = 4πM2 −
4πσ log(M + σ) for one-loop corrected temperature T =
(8πM)−1(1+σ(M2)−1), where σ is the conformal anomaly.
In particular, a Planck-size remnant is implied for σ < 0 [2].
There were complaints about remnants such as the one in
[3], mainly due to the extraordinary large amount of entropy
confined within a tiny volume. Nevertheless, if the Hawking
radiation were not exactly thermal, the retained information
would have been released through the evaporation process.
One could have expected the existence of a remnant with a
zero or small amount of residual entropy. In this case, instead
of helping to resolve the information loss paradox, the rem-
nant solution might still answer the call for the hypotheti-
cally fundamental Planck scale. In general, remnant solutions
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can be easily found in those theories such as noncommuta-
tive geometry, doubly special relativity, or the generalized
uncertainty principle (GUP). Readers are referred for a recent
review to [4] for instance.

On the other hand, it is well known that a Schwarzschild
black hole in asymptotic anti-de Sitter space would tunnel
into the thermal AdS solution known as the Hawking–Page
phase transition [5,6]. In particular, the three-dimensional
Banados–Teitelboim–Zanelli (BTZ) black hole system [7]
has two distinct phases: the black hole with mass M > 0 and
thermal AdS with M = −1 [8]. It is unclear for us whether
this thermal AdS phase is still energetically favored at low
temperatures after the BTZ or AdS black hole receives a
loop quantum correction. In other words, there might be a
possibility that the black hole would have already stopped
evaporating and stayed as a warm remnant before it enters
the soliton phase.

To proceed our discussion, one needs to assume that both
the first law of thermodynamics and the logarithmic correc-
tion to the black hole entropy are valid within the energy
range in our discussion. The extrapolation of both relations
to the limit of the Planck size may be too naive, especially as
regards our ignorance of a complete theory of quantum grav-
ity. However, our strategy is to compare the free energy of the
remnant and that of the thermal AdS around the Hawking–
Page temperature THP = 1/2πl. This corresponds to the
energy scale O(l−1), which is still far from the Planck or
string scale; it should be reasonable to assume that the laws
of thermodynamics are valid and the black hole size around
O(l) can be treated as a classical and static background.

Finally, we comment that the logarithmic correction
retains a similar form as long as, on the dual CFT side, the
number of states reads [9]

ρ ∼ cγ eS, (1)

where c is the central charge, γ is some rational power,
and S is the entropy to be identified with the Bekenstein–
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Hawking entropy on the black hole side. We do not expect this
Cardy formula to be abruptly modified for large or small BTZ
black holes. Another supportive though hand-waving argu-
ment comes from the GUP modified Schwarzschild black
hole entropy [10]:

SGUP = 4π f (M2)M2 − log(M +
√
M2 − 1), (2)

where the black hole mass M is measured in units of the
Planck mass, and the function f (M2) interpolates between
0 and 1 for 0 ≤ M < ∞. It is obvious that the logarithmically
corrected form survives for all M > 1.

This letter is organized as follows. We review the
Hawking–Page phase transition between BTZ black hole and
thermal AdS3 in Sect. 2. In Sect. 3, we compute the up to
two loops corrected entropy and free energy for the BTZ
black hole and discuss its phase transition to thermal AdS. In
Sect. 4, we calculate the one-loop corrected entropy and free
energy for an AdS4 black hole and discuss its phase transi-
tion. In Sect. 5, we discuss a new scale set by the AdS remnant
and its effect on the Hawking–Page phase transition. Finally,
we discuss possible scenarios around the phase transition if
a stringy excitation is considered.

2 BTZ black hole and Hawking–Page phase transition

To justify which phase is energetically favored at a specific
temperature, we would like to compare the free energy of a
BTZ and that of vacuum. Since we expect a vacuum without
nonzero angular momentum, we will only consider a nonro-
tating BTZ black hole. Having said this, we will not inspect
solutions such as an extremal BTZ solution or exotic BTZ
[11]. Although the phase diagram would become rich and
interesting by including those solutions, they cannot tunnel
into the AdS vacuum as long as the conservation of angular
momentum is respected. The nonrotating BTZ solution has
the metric

ds2 = −
(

−M + r2

l2

)
dt2 +

(
−M + r2

l2

)−1

dr2 + r2dφ2

(3)

with horizon r+ = l
√
M . The thermal quantities, such as the

Hawking temperature TH , the Bekenstein–Hawking entropy
SBH , the internal energy E , and the free energy FBH are
given by

TH = κ

2π
=

√
M

2πl
, (4)

SBH = AH

4G
= πl

√
M

2G
, (5)

E = M

8G
, (6)

FBH = E − TH SBH = − M

8G
. (7)

There also exists a thermal AdS solution with on-shell action
I and free energy FAdS:

I = − β

8G
,

FAdS = − 1

8G
,

(8)

and the phase transition occurs at temperature T = 1/(2πl),
when the free energy of the nonrotating BTZ becomes higher
than that of the thermal vacuum.

3 Quantum correction to surface gravity and the
emergence of the remnant

The quantum correction to the Hawking temperature has the
following form [12]:

T q
H = TH

/
(

1 +
∑

i

αi
h̄i

r i+

)

. (9)

In general, the coefficients αi will depend on a species of par-
ticles included in the i th loop perturbative correction [2]. Fol-
lowing the first law of thermodynamics, the entropy receives
a corresponding correction as follows:

Sq′
BH =

∫
dM

Tq
H

= πr+
2G

+ α1h̄
π

2G
ln r+

−α2h̄
2 π

2Gr+
+ − · · · (10)

The conformal field theory (CFT) calculation also implies a
similar logarithmic correction with coefficient α1 = − 3G

π h̄ in
the above expression [9]. However, we remark that the tem-
perature in the CFT computation was not modified according
to (9). Therefore, it is more appropriate to think of the log-
arithmic correction we will discuss here as to come from a
different origin and therefore α1 could be negative but varied
for different models of quantum gravity. Nevertheless, Eq.
(10) is not UV complete, for it suffers from the divergence as
M → 0. Without knowing much about gravity at the Planck
scale, we would like to assume that the entropy takes the
same expression as (10) for simplicity. Therefore, one can
regard the undetermined integral constants as counterterms,
such that the expression (10) can be regularized in each loop
computation. Moreover, the uniqueness of the ground state
implies that the would-be regularized SqBH must vanish at
some critical mass mc, which can be regarded as the remnant
mass. Finally, the finite expression suggests that
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Fig. 1 A numerical simulation of entropy for BTZ black hole (black
solid), one-loop corrected remnant (red dash), two-loop corrected rem-
nant with α2 > 0 (blue dot), and two-loop corrected remnant with
α2 < 0 (blue dot-dash). The inset zoom-in graph shows some exotic
behavior near the critical remnant mass for α2 < 0. This unphysical
region of negative entropy should be excluded and the remnant mass is
chosen to be the larger root to the equation SqBH = 0

SqBH = πl
√
M

2G
− πl

√
mc

2G
+ α1h̄

π

4G
ln(M/mc)

−α2h̄
2 π

2Gl
√
M

+ α2h̄
2 π

2Gl
√
mc

+ − · · · (11)

In Fig. 1, we plot the entropy versus mass for a BTZ black
hole and its quantum correction. Though there is no constraint
on the coefficient of the second loop α2, the numerical result
indicates that there is a small region with negative entropy for
the case α2 < 0. This unphysical region should be excluded
and the remnant mass is redefined as the larger positive root
to the equation SqBH = 0 in the case α2 < 0.

Finally, the quantum-corrected free energy can be com-
puted as

Fq
BH = E − T q

H SqBH . (12)

We simulate the free energy of quantum-corrected solutions
and plot them in Fig. 2. We find that with a quantum cor-
rection, the Hawking–Page transition happens at slightly
larger M and the black hole turns into the AdS thermal
vacuum before a remnant could possibly form. This result
can be partially understood by absorbing those quantum cor-
rections in (9) into a definition of an effective horizon size
re f f+ ≡ r+ − α1h̄ − · · · for r+ 	 l p. That is, the quantum
fluctuation makes the horizon look smaller than its classical
value, therefore less stable (for a small black hole). However,
unless the quantum-corrected black hole stops the radiation
before it hits the Hawking–Page temperature, it eventually
becomes energetically disfavored and decays into the thermal
vacuum. This is what happen to the BTZ case. In the follow-
ing, we will examine a phase transition of the Schwarzschild
black hole in AdS4.

Fig. 2 A numerical simulation of free energy for BTZ black hole (black
dash), one-loop corrected remnant (blue dot), two-loop corrected rem-
nant (red dot-dash), and thermal soliton (black solid)

4 Schwarzschild–AdS4 black hole

In this section, we would like to compute the free energy
of Schawarzschild black hole in AdS4. The following black
hole metrics are given:

ds2 = −V (r)dt2 + V (r)−1dr2 + r2d
2
2,

V (r) = 1 − 2GM

r
+ r2

l2
. (13)

The thermal quantities read

TH = l2 + 3r2+
4πl2r+

, (14)

SBH = πr2+, (15)

FBH = −r+(r2+ − l2)

4l2
, (16)

where V (r+) = 0 is satisfied. The free energy is defined with
respect to the AdS soliton, that is, FAdS = 0. The Hawking–
Page phase transition happens at THP = 1/(πl), where r+ =
l.

The loop-corrected thermal quantities after regularization
are given by [13]

T q
H = TH

(
1 + α

M2

)−1
, (17)

SqBH =
∫

dM

Tq
H

= SBH − πr2
c + 4πα

l2(r2
c − r2+)

(l2 + r2+)(l2 + r2
c )

−4πα ln
r2
c (r2+ + l2)

r2+(r2
c + l2)

, (18)

Fq
BH = E − T q

H SqBH . (19)

In Fig. 3, we plot the entropy versus horizon radius for the
AdS black hole and its quantum correction. The unphysical
region of a negative entropy should be excluded in the case
α > 0 and the remnant mass is chosen to be the larger root
to the equation SqBH = 0. On the other hand, the case of a
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Fig. 3 A numerical simulation of the entropy for an AdS black hole
(black solid), one-loop corrected remnant (blue dash) with α < 0, and
one-loop corrected remnant with α > 0 (red dot). The inset zoom-in
graph shows some exotic behavior for α > 0 near the remnant critical
mass, where the unphysical region of a negative entropy should be
excluded. We has used the unit l = 1 in the plot

Fig. 4 A numerical simulation of free energy for an AdS black hole
(black dash), one-loop corrected remnant (blue dash) with α < 0, one-
loop corrected remnant with α > 0 (red dot), and thermal soliton (black
solid or x-axis). The inset zoom-in graph shows that the AdS soliton
is energetically favored rather than a black hole below the critical size
r+ = l; nevertheless a one-loop corrected remnant phase is favored for
α < 0. We have used the unit l = 1 in the plot

negative α is consistent with the previous observation from
the AdS–CFT correspondence [9] and an argument based on
the remnant [14,15].

In Fig. 4, we plot the free energy versus the horizon radius
for an AdS black hole and its quantum correction. It shows
that below some critical size, the thermal AdS soliton is ener-
getically favored rather than the AdS black hole and its one-
loop corrected remnant with positive α. Nevertheless the one-
loop corrected remnant with negative α seems to survive all
the way to the Planck size.

5 Implication of AdS remnant

The partition functions of thermal AdS3 and BTZ black hole
are related by a modular transformation [16],

ZBTZ(TBTZ,
) = ZAdS(TAdS,
),

TAdS = 1 − 
2l2

4π2TBTZl2
(20)

where 
 = r−
r+l is the chemical potential conjugated to the

angular momentum of BTZ. In the nonrotating case, the
Hawking–Page transition temperature is defined as TAdS =
TBTZ = (2πl)−1. Since the loop correction does not mod-
ify the metric, this discrete symmetry is believed to persist.
Therefore, the remnant temperature implies a cutoff temper-
ature in the thermal AdS phase, that is,

T c
AdS = 1

2πl
√
mc

. (21)

A geometric picture is available to explain this relation [17]:
that one can view the Euclidean BTZ or thermal AdS as a
hyperbolic three-manifold with a two-torus as its boundary.
The choice of one cycle gives the description of temperature
in either BTZ or thermal AdS3 and the modular transforma-
tion (20) simply swaps the cycle. While the loop correction to
the Hawking temperature obstructs the unlimited expansion
of the Euclidean time cycle of BTZ, it also creates a lower
bound such that the period of the Euclidean time cycle of an
AdS cannot be less than 1/T c

AdS.
On the other hand, if the black hole stops radiation at the

temperature of remnant, it also implies a minimum length
scale τ c2 associating to the remnant size, such that the period-
icity of cycle τ2 ≥ τ c2 . Using the same method to determine
the Hagedorn temperature β−1

H , now the partition function
for lowest excitation modes becomes [18]

Z ∼ e
− 1

4πτc2
(β2−β2

H )
. (22)

The available states above the Hagedorn temperature (β <

βH ) still grow exponentially but may not be as sharp as that
of the usual BTZ where the point-like string limit τ2 → 0
can be taken. That is, the existence of a BTZ remnant may
also smooth out the phase transition for its slower growth of
partition function.

6 Stringy point of view

Earlier it has been shown that a BTZ remnant (up to two-loop
correction) is not energetically favored below the critical tem-
perature, nevertheless we would like to argue that it may still
survive as a metastable state during the overcooling phase.
First we have learned that if there is a stringy excitation, there
would appear two Hagedorn temperatures TH/L , which are
different from the Hawking–Page transition temperature by
[18]
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Fig. 5 Stringy states of pure momentum mode (m, n) = (±1, 0)

(black solid) become tachyonic for M2 < 0 at small temperature. They
can be stabilized if nonzero winding modes (for the non-contractable
Euclidean time cycle of the remnant) are also present. We plot the states
of (±1,±1) (blue dotted), and (±1,∓1) (red dashed)

TL = THP
1√
k

(
4 − 1

k − 2

)1/2

= 4π2l2

TH
,

THP = 1

2π
(23)

where strings propagating in the AdS3 space are described
by the SL(2, R) WZW model at level k. The BTZ could be
overcooled between TL and THP , while a thermal AdS could
be overheated between THP and TH . If the critical remnant
mass locates in the following range:

1 > mc >
1

k

(
4 − 1

k − 2

)
, (24)

then the remnant is still likely to be observed as a metastable
state in this overcooled phase. To further illustrate this pos-
sibility, we recall that while the higher Hagedorn tempera-
ture TH can be understood as the appearance of the Atick–
Witten tachyon winding mode [19], the lower temperature
TL can also be understood as the appearance of the tachyonic
momentum mode as shown in Fig. 5. The previously men-
tioned obstruction of an unlimited expansion of the Euclidean
time cycle of BTZ can be understood as the appearance of
a winding mode to stabilize this tachyon. To illustrate this
point, let us consider a toy model of a string with compacti-
fied time dimension of circumference β, that is,

X0(σ, τ ) = x0 + 2πmτ

β
+ nβσ

π
+ · · · , (25)

with mass shell condition

M2

4
= N + 1

2

(
mπ

β
+ nβ

2π

)2

− 1

+Ñ + 1

2

(
mπ

β
− nβ

2π

)2

− 1, (26)

satisfying the level matching constraint N − Ñ = mn. In
Fig. 5, we show that for a pure momentum mode (m, n) =
(±1, 0), the state becomes tachyonic for large enough β

(such that the temperature is lower than TL ), however, this
tachyonic state could be stabilized if at the same time a
winding mode associated with a remnant is present, say
(m, n) = (±1,±1). This metastable remnant solution could
be understood from the partition function (22) as well. If the
scale τ c2 ∼ O(1/TL), then the phase transition would be too
mild to happen, or the difference between two phases is hard
to distinguish. In the former case, the BTZ phase remains (as
a remnant); while in the latter case, it could be a coexistent
phase for both thermal AdS and BTZ.

7 Summary

In this letter, we investigated the low temperature phase of the
three-dimensional BTZ black hole and the four-dimensional
AdS Schwarzschild black hole. We found that the thermal
AdS is energetically favored rather than the remnant solution
at low temperature in three dimensions, while a Planck-size
remnant is still possible in four dimensions for a negative
one-loop coefficient. Though the BTZ remnant seems ener-
getically disfavored, we argue that it is still possible to find
in the overcooled phase if strings were present. Finally, we
showed that the existence of a BTZ remnant scale might have
the effect to smooth the change of degrees of freedom dur-
ing a Hawking–Page transition. In order to justify our con-
clusions derived from black hole thermodynamics and the
loop-corrected Hawking temperature, one may need to study
possible candidates for microstates, which are responsible to
the thermal properties of BTZ remnant. In other words, one
would ask, whether after introducing a loop quantum correc-
tion a new mechanism for a phase transition between BTZ
and remnant could exist in the dual CFT description. We will
leave this for a future study.
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