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Abstract--This paper is a study on the shaft behavior of BTA deep hole drilling tool. The dynamics 
of tool shaft are often taken to be that of a second order lumped mass system for other cutting 
processes. This simplification does not apply for deep hole drilling because of its shaft length and the 
fact of fluid coupling. This paper constructed the general equations of motion for the pipe-like fluid 
conveying tool shaft of deep hole drill. The proposed general equations can be reduced to different 
specific forms of former works. Solutions for lateral and longitudinal motions were given. Series of 
experiments were designed and performed. Comparisons between theoretical and experimental 
results confirmed the validity of the constructed equations. The studies disclosed build the know- 
ledge about the tool shaft and pave the way for future research concerning the correlation between 
the tool shaft and cutting process taking place on the cutting head. 

Key words: deep hole drilling, shaft behavior, pipes, Bernoulli-Eulerian theory. 
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area of the cross section of the fluid flow, drill tube, respectively, m 2 
viscous damping coefficient in longitudinal and lateral vibration 
centroid of area A s of the fluid flow 
centroid of area As of the drill tube 
viscous damping coefficient in torsional vibration 
Young's modulus of the drill tube, Pa 
force resultant on the cross section of the drill tube, N 
fluid quality, l/min 
sheafing modulus of the drill tube, Pa 
gravity 
the moment of inertia of the area At, As, respectively, m 4 
the moment of inertia of the area A I with respect to x, y axis, respectively, m 4 
the moment of inertia of the area A~ with respect to x, y axis, respectively, m 4 
the polar moment of inertia of the area Ay, As, respectively, m 4 
mass moment of inertia of drill head, kg. m 2 
components of curvature of the strained central line of the drill tube, l/m, 
length of drill tube, m 
coupled resultants about Ss on the cross section of the drill tube, N. m 
coupled resultants about Cs on the cross section of the drill tube, N" m 
mass of drill head, kg 
tension, N 
tension at the centroid of the cross section on the tool head, N 
mass center of the small element of the fluid flow 
mass center of the small element of the drill tube 
fluid pressure, N/m 2 
fluid pressure on the tool head, N/m 2 
displacement of a point Pt  on the central line axis of the drill tube, m 
location of a point P on the strained central line axis of the drill tube, m 
location of a point Pt  on the central line axis of the drill tube, m 
location of fluid at the 0s, m 
arc length of the strained central line of the drill tube, m 
shear center of area A, of the drill tube 
time s 
torque at the centroid of the cross section on the tool head, N- m 
unit vector in the direction x, y, z, respectively 
fluid velocity, m/S 
component of ~ in the direction X, Y. Z, respectively, m 

461 



462 Jih-Hua Chin et al. 

Vx, Vy 
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q~, qf  
qes, qe f  
N,, N~ 

N,~ N, z 

shearing force in direction T~, T2, respectively, N 
eigencolumn matrix, 2M × 2M 
component of Tin  the direction X, Y, Z, respectively, m 
unit impulse function 
extension of the central line of the drill tube 
angle of twist 
eigenvalue 
absolute viscosity, kg/m' s 
density of fluid, drill tube, respectively, kg/m a 
twist of the shaft, 1/m 
force per unit length at the point O,, 0 s, respectively 
external force per unit length at the point 0~, O, respectively 
moment per unit length at the point Os, 0 z, respectively 
external moment per unit length at the point O,, Oi, respectively 

1. I N T R O D U C T I O N  

A deep hole drilling machine can drill deep holes with depth-diameter-ratio above 100 due 
to its special design and construction. In a deep hole drilling operation, good hole 
tolerances with respect to bore diameter, roundness and straightness [1] can be obtained. 
The hole surface qualities equal those from reaming, honing and grinding, sometimes even 
surpassing them. 

With such excellent machining performance, deep hole drillings are often applied in high 
precision manufacturing such as the military industry, machine tool and automobile 
industries. Applications examples are hydraulic cylinders, landing gears for aircraft, large 
holes in diesel truck applications, turbines, heat exchangers, and oil industry components, 
etc. [2]. 

There are three kinds deep hole drilling, namely, gun drilling, BTA(Boring and Trepann- 
ing Association) and ejector drilling. The gun drilling is used for a small size of hole and the 
BTA or ejector drilling is used for a large size of hole. In a deep hole drilling process the 
pressurized coolant is used. 

1.1. Purpose of the study 
Because of its length, the shaft dynamics of the deep hole drilling influences the quality of 

cutting process on the tool head. The deflection due to lateral bending and vibration 
worsens the axial hole deviation, tolerance, straightness, roundness, etc. 

The purpose of this study is to establish a system model and investigate the dynamics of 
the shaft behavior of deep hole drilling tool theoretically and experimentally. 

The behavior is correlative with the effect of fluid flow and structural dynamics. In 
this study we use the theories of pipes and tubes conveying fluid, with a velocity and 
Bernoulli-Eulerian theory containing symmetric bending and torsion to find the shaft 
behavior of the deep hole drilling. 

1.2. Literature review 
Flegel [1] published the quality of the deep hole drilling processes. Rudd and Hetherin- 

gton [2] explain each of the three deep hole drilling processes. Rao and Shunmugam [3-6] 
made many experiments about hole size, axis deviation, roundness error, surface finish, 
axial and transverse profiles of the holes of drilled length, and wear of center, support- 
ing pad of BTA drilling tool for many different machining conditions such as cutting 
speed, feed rate, cutting time, etc.. EI-Khabeery, et al. [7] made experiments about 
surface integrity of deep drilling holes (such as surface roughness, hardness, micro 
hardness, plastic deformation of the surface and subsurface layers) for many machining 
conditions. For example, drilling speed, feed rate and work hole diameter in gun drilling 
processes. Corney and Griffiths [8] presented experiments analyzing the combined 
cutting and burnishing action in which the forces generated at a single cutting edge are 
balanced by the rubbing pad in the BTA drilling process. Sakuma et al. [9] made 
experiments and proposed simple formulas about the burnishing action of guide pads 
and influence on hole accuracies for machining conditions such as cutting forces, 
cutting torque, depth of deformation, and waves on burnished surface in the BTA process. 



The shaft behavior of BTA deep hole drilling tool 463 

Sakuma et al. [10] found that the frequency of the bending vibration of the boring bar 
during machining of the holes corresponds to the number of the corners of the hole. 
Simple models of the support and boring bar was proposed by Sakuma et al. [10-1, 
but there were no complete considerations about motions, for example, the bending 
and torsional vibration of the shaft conveying fluid flow. Katsuti et al. [11] proposed 
comparison of single- and multi-edge tools for many conditions such as wall 
thickness, hardness of the bonded plate, etc.. This paper presented simple models for 
cutting forces. 

Yumshtyk and Kedrov [12] investigated the gun drill vibration with a very simple 
model which considered the lateral vibration by neglecting drill length, torsional 
vibration and the effect of the fluid flow. Sakuma et al. [13] presented the deflections 
of misalignment in tool pilot bush or bar support on the straightness error of a drilled 
hole, but there were no considerations about complete motion and fluid flow. Some 
guide values about gun drills, BTA drills and ejector drills, for example, cutting 
speed, feed, net power, cutting fluid quantity, cutting fluid pressure, etc. can be found in 
Ref. [14]. 

Chin et al. [15] proposed the theory of signal of chip formation and proved it experi- 
mentally. Detailed mathematics concerning chip signals were given by Chin and Wu [16]. 
Chin and Lin [17] discussed the stability of the drilling process by treating the tool shaft as 
a second order lumped mass system. Chandrashekhar et al. [18] proposed a three-dimen- 
sional model of the BTA machining system including the interaction between the workpiece 
and cutting tool. A physical model for stationary workpiece and rotating cutting tool was 
proposed. The modes method along with Lagrange's equation was used to obtain lateral 
and torsional vibration equations to represent the influence of axial force and torque. 
Chandrashekhar et al. [19] found the solutions and predicted the helical grooves which 
were observed on the drilled workpieces, and compared theories with experiments on 
roundness error, but there were obvious discrepancies between theoretical and experi- 
mental results. The radial and tangential forces were not considered in Ref. [19]; the 
velocity of fluid was held constant in the BTA drilling processes, and the vibration solution 
only considered the fundamental mode. 

The papers below proposed the theories of pipes and tubes containing a fluid flow. 
Blevins [20] proposed the planar lateral motion of the pipes with constant velocity of 
fluid flow, and the critical flow velocity due to the buckling of the pipe and due to the 
flutter. Paidoussis [21] proposed the extension of gravity on hanging cantilever tubes. 
Paidoussis and Issid [22] proposed the extension of the fluctuation velocity of fluid 
flow. Yoshizawa et al. [23] proposed another method about the theory of the pipes 
conveying fluid with fluctuation velocity, and obtained critical flow velocity and max- 
imum values of the static deflection of the buckling pipes. Thompson and Lunn [24] 
presented static elastic formulation and concluded that the net effect of the fluid flow 
in the static case was to add an end follower thrust to the mechanically applied forces. 
Lundgren et al. [25] investigated the three-dimensional lateral vibration of the tubes 
of uniform annular cross section containing fluid flow with constant velocity. The 
papers above investigated the lateral vibrational of the pipes with double symmetric 
cross section, and neglected rotary inertia. Edelstein et al. [26] applied the finite element 
method to the same equation described in [25] to obtain the oscillations. Hill and 
Swanson [27] proposed the lumped masses on the tubes conveying fluid. Sugiyama 
et al. [28] studied the spring effect on pipes conveying fluid and proposed the criterion of 
stability and critical flow velocity. The pipe theory above covered the stability and critical 
velocity due to flutter but did not consider the axial force, critical axial force and critical 
fluid pressure. 

Literature investigation reveals that there are no rigorous equations of motion available 
that govern the tool shaft of the BTA deep hold drill. In this paper the three-dimensional 
general equations of motion for lateral, longitudinal and torsional motion of the shaft 
containing the fluid flow are constructed. Specific equations solutions are given for lateral 
and longitudinal motions. Finally, the proposed equations for lateral motions are verified 
by experiments. 
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Fig. 1. Relation between the location ~'and the displacement ~. 

2. EQUATIONS OF MOTION 

The system under consideration consists of a shaft, conveying a fluid. The temperature 
and nozzle effect are neglected. The basic assumptions for the shaft are as follows: 

1. Elastic homogeneous isotropic material is considered. 
2. No shear deformation is considered. 
3. Plane sections before deformation remain plane during deformation because of the 

Bernoulli-Euler theory. 
4. The shaft is of uniform and thin-walled closed cross section and is initially straight. 
5. Warping deformation is neglected and shaft deflection is small. 

2.1. Bernoulli-Eulerian theory 
The determination of orientation of shaft element conforms to Love [29]. Figure 1 shows 

the coordinates of a slightly displaced tool shaft. Let P~ be a point on the central-line near 
P1, and PI be the displaced position of P~. The length of the arc P P~ is designated by 5~. 

The location of a point P on the shaft axis is given by 

7 =  X(s, t V +  Y(s, 07+ Z(s, t)-k (1) 

where T, ~, k" are fixed orthogonal unit vectors. The location of a point P1 is given by 

r-', = s,~" 

and the displacement vector is as follows: 

-R = 7 - 7 ,  = u(s, t)T+ v(s, t)7 + w(s, t)k. 

The unit tangent vector is 

d7 t3X-., t3Y~ t3Z.- 
-i'3 = T  = - ~ - , + ~ :  + ~ k .  (2) 

Let the force and torque on the cross section of the shaft be ~ and ~t~ with 

-F = Vx~ + V,-?2 + NT3 (3) 

where Vx, Vy are shearing forces, and N is the tension. 
If the shearing forces V~TI + VrT2 do not act through the shear center Ss, it can be 

replaced by a statically equivalent system shown in Fig. 2 [30]. We obtain 

~e  = ~ + s, Cs x (v j ,  + vj2) (4) 

where Cs is the centroid. 
Applying the Bernoulli-Eulerian theory yields 

~'le = EI,,skT, + Ely, k'T2 + C,z (5) 
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Fig. 3. The small element cut from the shaft. 

where k and k' are the component of curvature of the strained central line, z is the twist of 
the shaft and C, is the torsional with 

C, = GJ. 

2.2. Effect of  fluid f low 
Consider a small element of the shaft, with length 6s s (see Fig. 3). The corresponding mass 

of the enclosed fluid is 6my. p f  is the density of fluid. Then 

6m s = PsAsbss  . 

The rate of change of momentum Ls can be written as: 

d-i I (02~ 02~ U2 02~ OU c~ I'~ 
dt = P s A f f s J ; \ O t 2  + 2 U o - ~ s / +  --~-s} +-~-~sL] (6) 

dLfd___t_ ( ~  0 )  2 = p~A~s~ + U ~  ~(s~, t). (7) 

The results agree with the papers by Blevins [20], Paiduossis and Issid [22], Yoshizawa, 
et al. [23], Lundgren et al. [25]. 

2.3. Small defection 
A small elements cut from the shaft is shown in Fig. 3. 
Coordinate transformation yields: 

02y_ 02X- ~-~Y3 
A-t, = - Elx, ~s2 t,  + EIy~ -~s2 tZ + GJ . (8) 

The following fundamental equation holds 
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Let (~o)s and (~o)s be the rates of change of the angular momentum about O, and O r 
respectively. If the shaft deflection is small, the following equation can be obtained: 

, 633y_ .1 633X- 1 6330- 
(]~o)s = - l~s at-~astl + l r s  ~t--~st2 + I~ ~ - t 3  

where l~s, I~, I~ denote the principal centroidal moments of inertia and 

I~ = psI,~,6s; l~s = pslrsgs; I~s = psl:s6S. 

Let 

then 

Similarly, 

and the tension is: 

- -  6 3 3 y  - -  633 X - -  632 0 ~  
h~ = - I~ ~-7~ t ,  + I ,  ~-~st~ + h~ ~i-~t~. 

633y _ a3X -- 6320_ 
her = - I ~ I  ~.-'2~'7-_ t '  + l r y  ~ - ~ t 2  + I ,  I -b-gt3 

o r e s  I o t  v s  I 

(9) 

(10) 

The force equation is: 

where 

where 
632y 

q~ = - p~,4~ ~i  ~ + p s , 4 j  + q~ 

The moment equation is: 

t3 ×~ +~'3 ×~ + - ~ -  s 

As = - p~hg, + Aes 

AI = - P$ hoy + Ael. 

The following relations can be established from Fig. 4: 

~'=NV~+T~x\ 63s +X,+X~.  

dE s 63 2_ 
-~ = P I A s 6 s ( ~ t - U ~ s  ) r(s,t). 

63F 63P 
63s + N  +~; + ~  =° (12) 

(13) 

(14) 

2.4. Equations of motion of BTA drill shaft with stationary cutting tool 
In BTA drilling processes, the shaft is of uniform annular cross section, the points C,, C s, 

Ss are of the same location, and the points Os, O I become identical. So we can take: 

l x s = I r s = I s ;  I~ I = l y I = I  I 

and the flow velocity U is opposite to the direction defined earlier, so the rate of change of 
momentum i f  of BTA drill becomes: 

63w 
N =  gAs 63-s" (11) 
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Fig. 4. The relationship of the force in rectangular coordinates. 

Substituting Eqn (14) into Eqn (12), the following general force equation can be obtained 

+ x 

(pd, + p/y) ~t-rAa~l t, + (o,I, + o/y) ~tT~sJ t2 

+-~S (N- -PAf )  N - p s A s - ~  - p y A f  + U-~s ~ 

+ (Ps As + pf Ay)g + -qe, + -qef dl- L aS 1'-73 X (~kes + ~kef)] = O. (15) 

If we do not consider the twist z, the gravity ~, the external force, the external moment, the 
rate of the change of the momentum ~(p~l, o3x~ it is the same as the equation in c~t2 ~M •"" ' 
Refs 1,,25] and 1,,26]. If we also neglect the kn, it is the same as the equation in Ref. 1,,20]. 

From i-'- in Eqn (15) the following form can be obtained by neglecting the high order terms 

Os 2 8s2) Os (P ' I '+pylY)  ot2OsA+-~s 

a2x (a a) 2 
-- p, A~ ~ -- py AS ~ -1- U-~s X - (Ps A, + pf Af)g 

a 1' ~3 x ~es + mey)] = O. (16)  

If we do not consider the twist ~, the gravity-~, the external force, the external moment, the 
pressure P of the fluid flow, it is the same as the equation in Refs 1,,18] and 1,,19]. 

FromT3.in Eqn (15) the following equation is obtained 

280s (El~)k~ + EI= N ~ k,, +Ta'~s (GJ z ~s x Os 2 ,] 

~s 8U _ 827 . 
+ (N -- PAy) -- pyAy - ~  -- (p~A. + pyAy)t3" 8t 2 

+ (psAs + pfAf)~3"g+T3"(qes "[--qef) 

-~---t3 "-'~S 1' t3 X (me, + "mef)] = 0 (17) 

where k. is curvature in the normal direction k. = I-~1 -- 0=2. 
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Fig. 5. Boundary condition on the tool head. 

If E, I,, U are constant and the twist z, gravity 0", external force, external moment are 
neglected, it is the same as the equation in Refs [25] and [26]. 

2.5. Boundary conditions 
The boundary conditions are constructed as that shown in Fig. 5. The condition at 

location s = l can be expressed by two models. 

Model 1. The boundary condition contains the mass m~, the moment of inertia of mass J1, 
the forces, the torque, the springs and the dampers. 

Model 2. The boundary condition at s = l is free while the mass m~, the moment of inertia 
of mass J~, the forces, the torque, the springs and the dampers are replaced by concentrated 
forces and torques. 

3. THE SOLUTIONS OF EQUATIONS OF MOTION 

The solutions of equations of motion of the BTA drill shaft will be given for the following 
general cases: 

q-'~= = - c -~ + f i  (s, t)i +f2 (s, t)j +f3 (s, t)k" (18) 

- c ~ denotes viscous damping force and fl ,  f2, f3, are the external forces per unit where 
length. 

~'of = 0 (19) 

- 80_ 
Ae= = - ct 8 t  t2 +f4(s, t)k" (20) 

where - c, ~ denotes viscous damping torque and f4 is the external torque per unit length. 

A e f  = 0. (21) 

3.1. Lateral motion of the shaft 
The equation of motion for lateral motion can be derived from Eqn (16): 

~4X 84X 8 [  8X] 
-- EI= ~ + (psi, + pflf) ~ + ~ (N - eAf) ~s 

- -  p=A= -~- - p f A f  ~ t  -4- ~,s X - -  (Ps A s  "k- pfAf)g 

8X 
- c - ~ -  + f ,  (s, t) = O. (22)  
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B.C.'s 

~X 
s = 0 ,  X = 0 ,  -~s - -0  

~2X 
s = l ,  EIs--~s2 = 0  

~aX ~2X aX ~X 
s = l, EI~ -~-s3 = - m, - -~-  - c t - ~  - k l X  - N, -~s . 

If m~, Cl in boundary condition are neglected it is similar to the equation in Ref. [22] .  I.C.s 

t = 0 ,  X = gxl(s )  

dX 
t = 0 ,  =  xs(s). 

Assume the solution of Eqn (22) is of following form: 

X(s,  t) = X~(s, t) + X2(s). 

We first find Xs(s) by applying model 1 of the boundary conditions. 
Suppose 

X2 = Xs~ + X2p 

where Xzh is the homogeneous solution and X2j, is the particular solution. We have 

s2(ps As + pfaf)g 
X2p = - 2 ( _ N 1  + P tA f  + p f A f U 2 ) "  

Because N~ < 0 which is a compressive force we have 

b~ = - Nt + P tA f  + p f A f  U 2 

EI~ 

Xzh = d, sin bvs + d2 cos bvs - dlbvs  - d2 

where dl, d2 can be obtained from the following two linear equations: 

~2X2(l) = - d~ b 2 sin bol - ds b~ cos bvl - (psAs + p f A f ) o  = 0 
as s -- Nt + P t A f  + p t A f  U s 

- EI,( - dtb~ cosb~/+ dsbav sin b,,l) = 

kl[dl(sin bvl - bd) + d2(cos b,,l - 1) 

l 

1 

- 2( - Nt + P~A: + o : A :  U2i - Nl dl(b~ cos bJ )  - d2b~ sin b~l 

l(p~As + p : A / ) g  ] 

- _ p-;-AsV2-j. 

It is convenient to introduce the dimensionless quantities for X~: 

X1 s 
2,= T, 

1 (.p Els_.. ~1/2 
i = t-~ ,A ,  + p f A y )  

+ p : l :  U = UI ( P f A f ~  1/2 
ip = 12(p~A ~ + p:A: ) '  \ El ,  ) 
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p f a r  
p~A~ + p/A/)' 

m! 
fill = 

l(psA, + pfAf)' 

~ = c  
12 

[EI~(psA~ + p/A/)] 1/2 

I 

cl = c~ [El~(psA~ + p y -  )j 

12 
Pt = PIAf 

l 3 12 

13 gx3 
0 3= T 

Fix,, = gx41 (p,A, 
p f A f ~  1/2 + 

)' 

and the equation is rearranged as: 

04 YG 04 X1 
dg 4 lp Of 2 Og 2 

0XI 
- -  + Nt6(g-  1) dg 

02Xi 02.,~" 1 02XI  

+ 02 02X1 0X1 0221 
+ e -y i -  + m,a 1) 

+ 5,6(g - 1) ~ + fq6(g - 1)S, = fl(g, F) (23) 

with B.C.'s 

g=O, 21=0, --021=0 Og 

0221 0321 O. 
g=l, --~--=0, Og----T= 

The Galerkin method is used to find X1. Suppose that 

M 
)~,(g, i ~) = ~ ~b.,(g)q.,(t) 

ra=l 

where q~.. (g) satisfy all the boundary conditions of the system. 
We take 

~b,.(g) = cosh fling- cos fl,. g -  a,.(sinh #,. g -  sin fl,.g) 

where fl,. satisfies the equation 

cos fl,. cosh fl,. + 1 = 0 

and 

(24) 

(25) 

(26) 

sinh fl,. - sin fir. 

a,. cosh fl,. + cos fl,. 

By the Galerkin method, the following equation in matrix form can be obtained: 

Aq + B(1 + Cq = f f f )  

where A, B, C are M x M matrices and q, f, • are M x 1 matrices. We can write: 

X,( s ,  f)  = (1)T(s)q(t) 

(27) 

(28) 
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where qff) is of the following form [31]: 

q(~) = W=p e ~z J o e  - ' s  W ~  ~ A - t f ( z ) d z  + W=p e ~J W -~ ~q~O)~, (29) 
t"  l x "~t 

(4(0) j 
where J is the Jordan matrix, W = [W,~, W,o] T, W- ' = {-W~' W~'], W = eigencolumn 
matrix. 

The matrices q(O), 4(0) are found by using I.C. and the orthogonality of ~b,(g) as follows: 

q,n(0) = ~ c~m(g)gxa(g)dg 

4.(0) = f '  ~.(~)~,(~)d~. 
d0 

Finally, we obtain 
Xl(s, t) = Xl(,~, f ) l  ---- ldpT(g)q(t) 

X(s,  t) = X, (s ,  t) + X2(s). 

This completes the solution of equations for lateral shaft motion. Y(s, t) can be obtained 
in a similar way by neglecting gravity. 

3.2. Longitudinal motion of  the shaft 
The equation of motion for longitudinal motion can be derived from Eqn (17): 

d2w d2w dw 
EAs ~ - PdA:  -- (psA~ + p:  A:)  - ~ -  -- c ~ -  +fs(s, t) = 0 (30) 

Op 8~U 
w h e r e  Pd ---- ~'~ = - -  ~ [32]. 

B.C.'s: 
s = 0 ,  w = 0  

dw t~2w aw 
s = l, EAs -~s = - ml -- ~ -  - kaw - c3 --~ + N 1 

I.C.'s 

t = 0 ,  w ( s , O ) = O l ( S )  

t = 0, ~ (s ,  0) = 0z(S). 

Assume the solution of Eqn (30) is of following form: 

wts, t) = w~(s, t) + w2(s). 

We first find the static solution w2(s) by solving the following reduced equation: 

t~2W2 
EA~ ds 2 Pd A / =  O. 

It leads to 

w 2 ( s ) = ~  - L s - ~  2(EA~+k31) s 4 E A s + k a l S "  

w,(s, t) is governed by the following reduced equation: 

d2w, d2wl t~wl 
EA~ ~ - (p~A~ + p:  A:)  - ~  - c - ~ -  + f3(s, t) = 0 

B.C.'s 

s = 1, EAs 

s = 0 ,  w, = 0  

dwl ~2wl dw, 
~s = --m~ ~ - - c 3  ~ - -  k3Wl" 

(31) 
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I.C.'s 

t = O, w~(s, O) = g3(s) = g l (s )  - w2(s) 

t = O, . q ( s ,  O) = g4(s) = e~(s). 

It is convenient to introduce the following dimensionless quantities 

b = ~  1 
1 + --psAs 

p~As 

b t ( EA,  ~1/2 
f = t ~ = -l \ p , A ,  + p /A/ , ]  

l 
( = C  

[EA~(p, As + pfAf)]  1/2 

1 
C3 = C3 [EA~(p~A, + p fA:)]  t/2 

l g3 (74 
f a = f a ~-~,, O 3 = - f  , g,, = --~ 

o~ = f~l (p ,A~EA,  + P/ A(~l/2J 

and the equation is normalized as 

~2W 1 ~2W 1 02W1 ~21~ 1 
- a - -  T + ~ + e ~ + ,~, -~-  a(~ - 1) 

- ~ w l  ~ . -  + ca'--~-ots - 1) + k3#~a(g - 1) =fa(s, f) 

with B.C.s 

g = 0 ,  ~ 1 = 0  

g =  1, - 0 .  

Again the Galerkin method is used to find Wl. Suppose that 
M 

~1(~, t-) = ~, Ckm(g)qmff) 
m=|  

where ~bm(g) satisfy all the boundary condition of the system. 
We take 

~bm(g) = sin 2m s, where 2~ = (2m - 1)n 2 , m = 1 , 2  . . . .  

The ~m(s) are orthogonal over the span of the cantilever. 
By following operation similar to that in Section 3.1, we can obtain 

Aij + Bd 1 + Cq = f ( f )  

where A, B, C are M x M matrices and q,f, • are m x I matrices. 
Using 

q,(0) =--m,,l[f~¢,(~)g3(g)dg 1 

dq,(O)d_t = mi--~-l[f2 O,(g)g,(g)dg] 

(32) 

(33) 

(34) 
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Table 1. The natural frequencies of lateral vibration of the shaft of BTA drill 
(hanged horizontally with no fluid) 

Mode 

Theoretical values Theoretical values Experimental 
of Eqn (35) of Euler beam values 

(Hz) (Hz) (Hz) 

1 36.522 36.538 38.752 
2 100.629 100.718 103.469 
3 197.170 197.447 199.699 
4 325.541 326.390 326.396 
5 485.673 487.571 492.157 
6 677.275 680.987 693.670 
7 900.084 906.640 914.559 
8 1153.745 1164.528 1178.076 

where mii = ½, the q(t-) can be found by the same method is Section 3.1. Finally, we obtain 

w,(s, t) = g'l(g, f)l  = lq~(g)q(f) 

w(s, t) = ~l(s ,  t) + w~(s). 

This completes the solution of equations for longitudinal shaft motion. 

4. SYSTEM SIMPLIFICATION 

The foregoing equations of motion were established in a general sense. They could be 
simplified to cope with the practical engineering features. 

For  example, the tool shaft is of steel material so that the deformation is small and the 
effect of rotatory inertia could be neglected. This leads to an Euler Beam. In order to make 
system simplification the following two preliminary system analyses are performed. 

4.1. System eigenproperties--solid shaft 
The equation of motion in lateral direction can be derived from Eqn (22) as follows: 

~*X ~2X ~X c~*X 
EI, ~ + psAs ~ + C ~ - psi, 0s--5~ = 0. (35) 

This equation can be further simplified to become an Euler beam equation: 

?,*X ~2X ~X 
EI,  ~ + p, As ~ + C ~ -  = 0. (36) 

The following boundary conditions are used to investigate the shaft eigenproperties. 

d2X ~3X 
s---0, ~-~-32 - (~$3 - 0  

?,2X daX 
= 0 .  

The natural frequencies of modes 1-8 of the two theories and of experiment are listed in 
Table 1 which reveals that theoretical values of Euler Beam are closer to the experimental 
values than those predicted by Eqn (35). 

4.2. System eigenproperties--solid shaft with static fluid 
The purpose of this analysis is to examine the system under the influence of the static 

fluid. 
The equation of motion can be rewritten from Eqn (22) for lateral shaft motion as follows: 

~4X c~2X ~X ~4X 
El, ~ + (p,A, + PsAs) ~ + C ~ - (p,I,  + psls)  ~ = 0. (37) 
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Table 2. The natural frequencies of lateral vibration of the shaft of BTA drill 
(hanged horizontally with static fluid) 

Mode 

Theoretical values Theoretical values Experimental 
of Eqn (37) of Euler beam values 

(Hz) (Hz) (Hz) 

1 34.935 34.989 34.877 
2 96.258 96.338 96.881 
3 188.612 188.861 189.887 
4 311.432 312.195 313.895 
5 464.658 466.368 472.781 
6 648.028 651.373 654.917 
7 861.305 867.213 868.056 
8 1104.167 1113.887 1116.072 

t Amplifier ~ 1  

~ Amplifier]CHf 

MieroL irtk 

Oil Outlet 

39 
Acvelerometer 

tlammer\ /~Shaft of BTA drill 

- /  
PeTso'n~.[ 
Compufer 

Oil Pump 
(R68)  

\ 

Fig. 6. The setup of experimental equipments. 

The equation of motion of an Euler Beam is: 

b4X ~ZX 8X 
El, ~ + (psA~ + p/A:) - ~ -  + C ~ = 0. (38) 

Both system equations are subjected to the same boundary conditions as that in Section 
4.1. 

Comparing the theoretical values of natural frequencies of modes 1-8 with those of 
experiment in Table 2, it is seen again that the theoretical values of an Euler Beam are closer 
to the experimental values than those predicted by Eqn (37). 

Based on the results of the above two series of preliminary analyses, the proposed 
equations of motion can be simplified and the shaft of the BTA drill be taken as an Euler 
Beam. In the following studies only the simplified equations of motion will be used. 

5. T H E  E X P E R I M E N T A L  A R R A N G E M E N T S  

The experimental arrangements are shown in Fig. 6, in which a heavy duty lathe is 
equipped with self-designed fixtures to hold the drill on both ends. The experiments which 
involve generally modal testing techniques 1-33, 34] are divided into two parts: 
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Chuel¢ 

Fig. 7. The arrangements of experiment (shaft without fluid, both ends are clamped). 
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(1) The shaft of the BTA drill is installed on the machine without introduction of oil. 
(2) The shaft of the BTA drill is installed on the machine with both ends fixed and oil is 

supplied. 

Details of the experimental arrangements are as follows: 

1. Lathe: 
SAN SHING SK26120 HEAVY DUTY PRECISION LATHE. 
(Distance between chuck center and tailstock center: 3m) 

2. Hammer: 
Hammer: PCB 086B05 SN5163 (range: 0-5000 lb) 
Amplifier: PCB model 4801906 power unit. 

3. Accelerometer: 
accelerometer: TEAC 601Z (weight: 0.3 g) 
amplifier: TEAC SA620. 

4. Data acquisition system: 
MicroLink: four independent channels, stand-alone type with 64k samples per channel on-board memories. 

5. The deep hole drill: 
a. drill head: 

Type: SANDVIK 420.6-0014D 18.91 70 
Mass: 0.030205 kg 
Mass moment of inertia J~: 1.420 x 10- 6 kg. m 2. 

b. drill tube: 
Type: SANDVIK 420.5-800-2 
Length: 1.6 m 
Internal diameter: 11.5 mm 
External diameter: 17.0 mm 
Material: JIS SNCM 21 
Density p,: 7860 kg/m 3 
Young's modulus E: 2.06 x 1011 Pa 
Shear modulus G: 8.1 x 10 l° Pa 

6. Fluid: 
Type: R68 
Density Ps: 866 kg/m 3 
Absolute viscosity #: 0.383 kg/m. s. 

6. T H E  S H A F T  B E H A V I O R  IN I N S T A L L E D  C I R C U M S T A N C E S  

The shaft is installed on the lathe by the fixtures and the shaft behavior in installed 
circumstances is investigated in this section. The arrangements of this experiment are shown 
in Fig. 7. 

The equation of lateral motion is" 

O*X 0 2 X  OX 
EIs ~ + Ps As - ~ -  + C ~ = 0 (39) 

with B.C.'s 
dX 

s = 0 ,  X -  - 0  
Os 

~2X  03X 
s = l, t3s2 - ~ = 0. 

MS 3E:5-B 
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Table 3. The natural frequencies of lateral vibration 
of the shaft of BTA drill (both ends clamped horizon- 

tally with no fluid) 

Mode 
Theoretical Experimental 
values (Hz) values (Hz) 

1 44.488 44.178 
2 122.634 115.958 
3 240.411 230.559 
4 397.412 368.149 

Let 
X(s, t) = X~b(s) q(t). 

The mode shape function q~j(s) can be obtained from the boundary conditions: 

~bj(s) - cosh fijs - cos flis - ~j(sinh fljs - sin fljs) 

and 

(40) 

The theoretical natural frequency is equal to 

1 . ~ _ ~  EI~ 
f" = ~ ~/ psA-~ " (42) 

The frequency response function is 

M 

14(s,, s ,  w) = y~ 4~/s,) 4~j(s,) haw) .  
j = l  

a. Natural  frequency 
In this experiment, the tool head is fixed with two bolts and an oil seal ring is present 

which makes the practical boundary condition complex and not ideal. The comparisons 
between the theoretical and the experimental values of natural frequencies of modes 1-4 are 
listed in Table 3 in which the agreement can be seen, but the discrepancies are somewhat 
larger than that in Tables 1 and 2. 

b. Mode  shape 
The mode shape function of the shaft is 

q~j(s) = cosh fi~s - cos fljs cosh f i r  - cos f i r  
- sinh fljl sin f ir  (sinh fljs - sin fljs). 

cosh fir - cos fl)l 

~tj = sinh f i r  -- sin fir  

cosh f i r .cos  f i r  = O. 

Giving an impulse to the shaft yields 

~4X ~2X ~X  
El~-~s4 + P s A ~ - - ~  + C ~ - [ =  h(t). 

By doing the Fourier Transform of the above equation and solving for the closed form, 
the solution yields 

1 (41) 
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Fig. 8. The shape of mode 1 for lateral vibration (shaft without fluid, fixed-fixed). 
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Fig. 9. The shape of mode 2 for lateral vibration (shaft without fluid, fixed-fixed). 
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Fig. 10. The shape of mode 3 for lateral vibration (shaft with fluid flow, fixed-fixed). 

The mode shape of modes 1-3 according to the above equation are compared with the 
experimental result in Figs 8-10. We find all the theoretical mode shapes are in agreement 
with the experimental counterparts. 

Although some discrepancies due to the practical clamping and sealing are seen, the 
experiments conducted in this section have confirmed the general agreement between the 
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~ BTA drill Toot Hea( 
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Fig. 11. The arrangements of experiment (shaft conveying fluid). 

practical fixture effects and the ideal boundary conditions. This is very encouraging for 
future research since mathematical tools are obtained for this conventionally empirical area. 

7. THE SHAFT BEHAVIOR OF THE BTA DRILL WITH CUTTING FLUID 

In this section, the behavior of the shaft conveying fluid is investigated. The arrangements 
of this experiment are shown in Fig. 11. 

The fluid pressure on the tool head Pt is read from a pressure gauge to be: 

Pt = 3.92 x 106 N/m 2. 

Due to the limit of the available hydraulic system the flow rate cannot be changed. We 
have 

Flow rate = 1.2 x 10 -4 ma/s 

Flow velocity = 1.155 m/s. 

The equation of motion is: 

d4X dX 02X 
EI~ (N - PAy) - U ~  X + C = 0 (43) 

with B.C.'s 

OX 
s = 0 ,  X -  - 0  

Os 

OX 
s = l ,  X = - - = 0 .  

Os 

In this experiment, the axial force N is zero. Rearranging the above equation yields 

(~4X ~2X (~2X O2X C t~X 
El , -~ s ,  + ( P t A I +  pyAIU2)-~s2 - 2 p f A f U  ~s& + ( p , A ,  + pyAy)-~-fi-s2 + - ~ - = 0 .  

(44) 

Let 

X(s,  t) = X dp(s)q(t) 

the mode shape function ~bj(s) is 

tpj(s) = cosh fljs - cos fljs - aj(sinh fljs - sin fljs) (45) 
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Table 4. The natural frequencies of lateral vibration 
of the shaft of BTA drill (both ends clamped horizon- 

tally, conveying fluid) 

Theoretical Experimental 
Mode values(Hz) values(Hz) 

1 43.424 43.015 
2 119.689 112.382 
3 234.634 220.889 

and 

cosh fl jl - cos tiff 
% - sinh fljl - sin tiff 

cosh fljl. cos tiff = 1. 

Giving an impulse to the shaft, the equation of motion becomes 

c~4X c~2X c~2X t32X c~X 
EIs ~S-dS , + (Pt AI + Ps As U2) ~ - 2Ps Af U ~sOt + ( P2 As + Ps As) ~ -  + C --~ = h(t). 

By doing the Fourier Transform of the above equation and solving for the closed form 
solution, we can obtain 

Hi(w) = 1 

1 
w 2 

p A U2) O2A'' EI~fl~(o + (PtAr + y y vs w 
(psA~ + pfAy)(o 

) - i ( -E ls f l~P+(PJA?+pfAfU2) f l2$")  " \ -  cTc~---2--pfA ~ 

The theoretical natural frequency is equal to 

X/ g2) R%" 1 EIs l~jq~ + (PrAy + py Af ,'J 
f" = ~ (p,A, + pyAf)c~ 

The frequency response function is 

a. 

(46) 

(47) 

M 
H(s~, s,, w) = ~ ckj(s~) (pj(s,) H~(w). 

j = l  

Natural frequency 
Comparing the theoretical values of natural frequencies of modes 1-3 with those of 

experiment in Table 4, we can find the theoretical values of natural frequencies being close 
to the experimental values. 

b. Mode shape 
The mode shape function of the shaft is 

4aj(s) = coshfljs - cosfljs cosh fljl - cos fljl 
- sinh fljl sin tiff (sinh f l j s -  fljs). 

The theoretical and experimental mode shapes are compared in Figs 12-14. It is seen that 
the agreements are satisfactory, but the fluid has caused even larger discrepencies. 



480 Jih-Hua Chin et  al. 

Normalized displacement 

0.8 
0.6 

0.4 
0.2 

0 

-0.2 
-0.4 

-0.6 

-0.8 
I I I I I I I 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Length of the shaft (m) 

- -  Theory ~ Experiment 

Fig. 12. The shape of mode 1 for lateral vibration (shaft with fluid flow, fixed-fixed). 
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Fig. 13. The shape of mode 2 for lateral vibration (shaft with fluid flow, fixed fixed). 
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Fig. 14. The shape of mode 3 for lateral vibration (shaft with fluid flow, fixed-fixed). 

8. C O N C L U S I O N  

The shaft behavior of deep hole drilling is important in the cutting process but rarely 
studied. This paper studied the tool shaft of deep hole drilling by treating the shaft as a pipe 
and using the Bernoulli-Eulerian theory. The general equations of motion for the BTA drill 
shaft are rigorously derived which can be reduced to different specific equations of former 
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works. The constructed general equations govern the lateral, longitudinal and torsional 
motion of a tool shaft conveying pressurized fluid. 

The solutions for lateral and longitudinal motion are obtained by combined analytical 
and Galerkin methods. 

A preliminary comparison between theoretical and experimental results shows that the 
I ~4x rotatory inertia effect is negligible and the term p ex2~ in the shaft dynamics can be deleted. 

The shaft can be treated as an Euler Beam. 
Two series of experiments are performed to verify the lateral shaft dynamics for an 

installed tool with and without cutting fluid. Although the boundary conditions of fixture 
damping are not ideal, the comparisons of natural frequencies and shaft mode shapes 
between theoretical and experimental results are satisfactory. Since the natural frequencies 
are lower than those of usual cutting tools, and the rotating workpiece might worsen these 
values, it can be predicted that the shaft dynamics are not negligible in the cutting process. 

The constructed general equations of motion for a tool shaft build a foundation of 
knowledge about it and pave the way for future studies concerning correlation between 
cutting process and shaft behavior. 
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