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A Closed-Form Integral Model of Spiral Inductor
Using the Kramers–Kronig Relations

C. C. Chen, J. K. Huang, and Y. T. Cheng, Member, IEEE

Abstract—In this letter, a closed-form integral model is pre-
sented for the rectangular micromachined spiral inductor. The
Kramers–Kronig relations provide an elegant theory to describe
the inductor behavior without having complicated geometric
analysis. Simulation and measurement results validate that the
model can provide satisfactory prediction to the inductance of
on-chip freely-suspended spiral inductors. Meanwhile, unlike
conventional Greenhouse-based formulations, the self-resonant
frequency of inductor can be predicted using the integral model.

Index Terms—Kramers–Kronig relations, radio frequency inte-
grated circuit (RFIC), self-resonant frequency, spiral inductor.

I. INTRODUCTION

SPIRAL inductors have been developed and widely used for
radio frequency integrated circuit (RFIC) designs. Their re-

lated characteristics, including inductance, quality factor, self-
resonant frequency, and loss mechanism etc., have already been
investigated in detail. A variety of methodologies to calculate
the inductance of a spiral inductor, such as Greenhouse-based
formulations [1]–[3], empirical expressions [4], and analysis
and simulation of inductors and transformers in integrated cir-
cuits (ASITIC) [5], have been presented for the design applica-
tions. Nevertheless, in order to facilitate the implementation of
integrated inductors, a compact scalable physical model that can
accurately predict the behaviors of the inductors with different
technologies’ parameters is still an important research topic for
the RFIC design and optimization [4], [6]–[9].

Conventional inductor models [6]–[8] could calculate induc-
tance precisely. The applied method, however, is based on the
Greenhouse algorithm [1]. Though the algorithm is very accu-
rate, it still employs numerous summation steps that depend on
the number of interacting segments and overall combinations
of parallel segments. Meanwhile, there are nonphysical expres-
sions, obtained using a large number of fitting factors. Since the
factors are created to overcome the imperfect of the fitting func-
tion, it is essential to create an accurate mathematical expression
based on the physical sense for the inductance calculation. In
this letter, we will present a mathematical model based on the
Kramers–Kronig relations [10]–[12] to characterize a spiral in-
ductor in which RFIC designers could easily have the optimal
design using this analytical method.
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II. CONSTITUTIVE FORMULATION

A. Determination of the Kramers–Kronig Relations

The Kramers–Kronig relations compose one of the most
elegant and general theorems in physics because their validity
only depends on the principle of causality: the response cannot
come before the stimulation. Therefore, the relations are pow-
erful enough to analyze the mathematically and physically
conjugated phenomenon. Based on the Riemann–Lebesgue
lemma and the characteristic of a conducting medium, the
Kramers–Kronig relations could be built up as the form of the
susceptibility, , as the following [10]:

(1)

(2)

where is the dc conductivity of metal, is the frequency of
electromagnetic (EM) field in the system, and stands for prin-
ciple part. The concurrence relationship of the real and image
parts of a physical function are then built up to explain certain
characteristics.

For instance, preceded with the Lorentz–Drude Model (1900)
in a conducting medium [10], [11] a phenomenon called anoma-
lous dispersion occurring near a narrow absorption feature, i.e.,
resonant absorption in a metal vapor, can be well represented
in terms of the utilization of (1) and (2) to describe the re-
lation between resonant absorption and anomalous dispersion.
The dispersion and absorption are coupled and associated with
the real and imaginary parts of the susceptibility, respectively. If
a medium has an imaginary component of the susceptibility at
the self-resonant frequency, it must have a real component over
a broad range of frequencies around the self-resonant frequency.
While the resonance occurs, the energy of incident EM wave is
fully absorbed by the free electrons inside the medium and the
absorption is peaked strongly at the resonant frequency.

Similar physical behavior of the resonance is also applicable
for the case of a spiral inductor. The self-resonance occurrence
of the spiral inductor would result in complete energy transfor-
mation from stored magnetic energy into electrical energy, vice
versa. The occurrence of the energy exchange is similar to the
anomalous dispersion in which the incident EM wave is totally
absorbed by the conducting medium and transformed into the
kinetic energy of the free electrons. Therefore, we can construct
a physic-based inductor model using the Kramers–Kronig rela-
tions.

First, we assume that the inductor is perfect for EM wave
signal propagation without having any energy loss. Thus, the
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Fig. 1. Schematic diagram of the spiral inductor. L , s, and $ are the
maximum edge, line spacing, and line-width of the inductor, respectively.

imaginary part, (2), could be rationalized as a very narrow ab-
sorption of the EM wave at self-resonant frequency, , due to
the energy transformation and it can be modified as

(3)

which accompanied with the real part as the following:

(4)

where

(5)

In (5), , , , and are Planck’s constant, Bohr magneton,
the electron density, and mass in material, respectively. For a
spiral inductor with the geometry as shown in Fig. 1, the first and
second terms in (5) are the paramagnetism and diamagnetism
factors [12], [13] of the inductor material. The symbol 1
represents the Gaussian symbol where is the number of turns.
The parameters, and , represent the maximum edge and
line spacing of the inductor, respectively.

B. Determination of the Self-Resonant Frequency

In metal, the kinetic energy of free electrons can be described
by the dispersion relation [10]

(6)

where is the wave number of free electrons. According to
Jackson’s theory [11], there will be electric fields built up in
the neighborhood of corners while an external electric field is
applied on a conducting material. Thus, for a polygon spiral in-
ductor, the electric field built up in each corner has the form as
the following that is calculated by the variation principle [14]:

(7)

where , , , and are elementary charge ( 1.6 10 C),
the corner angle, and the width and height of the spiral inductor,
respectively. The field center is assumed at the outer apex of
each corner. By considering the Compton Effect [15], [16], free
electrons moving near the corner would be scattered by the elec-
tric field to change their trajectories. Thus, the energy loss of the
scattered electron is calculated as the following:

(8)

where , , and are the number of corners, the volume of
polygon spiral inductor, and the effective cross section of the in-
ductor, respectively. Here, the effective cross sections are equal
to 0.101 and 0.281 times the cross section, , of rectangular and
octagonal inductors, respectively.

Since the built-up electric field would alter the forward direc-
tion of the free electrons and possibly make the electrons move
straight to the end of the inductor, the concept of standing wave
in a cavity can be safely implemented in this model. We as-
sume that, while resonating, the electrons could absorb the mag-
netic energy of the EM wave to form electric energy by forming
standing waves inside the inductor and the corresponding is
equal to where represents the total length of the in-
ductor. Thus, the self-resonant frequency of the inductor would
be the same as the frequency of the resonating electron and be
calculated by energy conservation as the following:

(9)

The electron energy is equal to the kinetic energy plus the total
energy lost in the corner field scattering.

C. Determination of the Inductance

The inductance can be derived from the associated magnetic
energy of EM field in the inductor [10]

(10)

where

(11)

where and are the Boltzmann’s constant and absolute tem-
perature, respectively.

III. MODEL VALIDATION AND DISCUSSIONS

The model is examined by comparing with the contempo-
rary calculations [2], [17] including the results derived from
the Greenhouse-based model and Ansoft-HFSS simulator, re-
spectively. Meanwhile, the accuracy of HFSS analysis in this
letter is experimentally validated. Fig. 2 shows good -param-
eter match between the measurement and HFSS simulation in
a Smith chart. The measured device is an on-chip 3.5 turns,
5- m-thick micromachined copper spiral inductor with
300 m, 5 m, and 15 m as shown in Fig. 2(b).
Since the substrate coupling effect is not included in this model
at this moment, the micromachined type inductor is the best test
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Fig. 2. Comparison between the HFSS simulation and measurement results of
the 3.5 turns, 5�m thick suspended spiral inductor. A SEM micrograph on lower
left hand side shows the measured on-chip micromachined spiral inductor. The
silicon substrate underneath the inductor is removed.

TABLE I
COMPARISON RESULTS

vehicle to examine this model. In comparison with the other
calculations as listed in Table I, this closed-form integral can
provide a very closely prediction with less than 4% relative de-
viation while the number of turns is larger than 2.5. Besides,
the integral also reveals the relations between the inductor char-
acteristics and the geometric factors and material properties of
inductor. These physical parameters will allow us to optimize
the inductor design.

At present, the integral can only well simulate the behaviors
of micromachined inductor and has its potential applications for
the design of high performance RFICs due to the high char-

acteristic of the inductor [18], [19]. However, we think that the
integral can be further modified for general on-chip inductors
by considering the affectations of the diamagnetism factor and
self-resonant frequency resulted from the substrate coupling ef-
fect.

IV. CONCLUSION

Our analytical method creates a closed-form integral which
could predict the inductance and self resonant frequency of a
micromachined spiral inductor. The inductance expression is
closely fitted with the simulation and experimental data for the
structure of the spiral inductor with substrate removal. The ana-
lytical method based on the Kramers–Kronig relations and EM
field theory could provide mathematical convenience for the in-
ductor design in a physical sense.
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