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Abstract

As we know, the performance of the mean–variance approach depends on the accu-

rate forecast of the return rate. However, the conventional method (e.g. arithmetic mean

or regression-based method) usually cannot obtain a satisfied solution especially under

the small sample situation. In this paper, the proposed method which incorporates the

grey and possibilistic regression models formulates the novel portfolio selection model.

In order to solve the multi-objective quadric programming problem, multi-objective

evolution algorithms (MOEA) is employed. A numerical example is also illustrated to

show the procedures of the proposed method. On the basis of the numerical results,

we can conclude that the proposed method can provide the more flexible and accurate

results.
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1. Introduction

The mean–variance approach was proposed by Markowitz to deal with the

portfolio selection problem [1]. A decision-maker can determine the optimal

investing rate to each security based on the sequent return rate. The formula-

tion of the mean–variance method can be described as follows [1–3]:

min
Xn

i¼1

Xn

j¼1

rijxixj ð1Þ

s:t:
Xn

i¼1

lixi P E;

Xn

i¼1

xi ¼ 1;

xi P 0 8i ¼ 1; . . . ; n:

where li denotes the expected return rate of security 1, rij denotes the covari-

ance coefficient between the ith security and the jth security, E denotes the

acceptable least rate of the expected return.
Although the mean–variance model has been widely used in various portfo-

lio selection problems, some issues should be highlighted to increase the accu-

racy of this model. It is clear that the accuracy of the mean–variance approach

depends on the accurate value of the expected return and the variance-

covariance matrix. Several methods have been proposed to forecast the ade-

quate excepted return and variance matrix such as arithmetic mean method

[1–3] and regression-based method [4]. Since these methods are based on the

theory of large sample, they usually can not obtain a satisfied solution in the
small sample situation [5].

In this paper, the grey prediction model is used to predict the further return

rate. In addition, we divide the portfolio risk into the uncertainty risk and the

relation risk. The uncertainty risk measures the possibilistic degree of the fu-

ture return rate and the relation risk measures the trending degrees of the se-

quences. These two risks can be calculated using the possibilistic regression

model and the grey relation degree. Next, we can formulate the three-objective

quadratic programming model (i.e. achieve the maximum return rate and the
minimum uncertainty risk and relation risk simultaneously) to obtain the effi-

cient frontier set using multi-objective evolutionary algorithms (MOEA). To

summarize the above descriptions, we can depict the proposed method as

shown in Fig. 1.

A numerical example is also illustrated to show the proposed method.

On this basis of the numerical results, we can conclude that the proposed

method can provide the more flexible and accurate portfolio selection alter-

natives.
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Fig. 1. The procedures of the proposed method.
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The remainder of this paper is organized as follows. The grey and possibi-

listic regression models are discussed in Section 2. Multi-objective evolutionary

algorithms is proposed in Section 3. A numerical example is used to illustrate

the proposed method in Section 4. The discussions of the numerical results are

presented in Section 5 and the conclusions are presented in the last section.
2. Grey and possibilistic regression models

The grey prediction model is proposed to fit the sequence curve under the

small sample [6–8] and this method has been recently used in various applica-

tions such as stock price [9], and control system [10]. In this paper, the GM

(1,1) model, which is most commonly used, is employed to predict the future
return rate.

Assume a sequence can be represented as x(0) = (x(0)(1),x(0)(2), . . . ,x(0)(n)),
then the corresponding first order accumulated generating operation (AGO)

series and mean generating operation can be represented as x(1) = (x(1)(1),

x(1)(2), . . . ,x(1)(n)) and z(1)(k) = 0.5(x(1)(k) + x(1)(k � 1)). Therefore, the grey

differential equation of GM (1,1) can be described as

xð0ÞðkÞ þ azð1ÞðkÞ ¼ b; 8k 2 f2; 3; . . . ; kg:
Using the ordinal least square (OLS) method, we can obtain the grey para-

meter matrix
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â¼ðB0BÞ�1
B0Y n where Y n ¼

xð0Þð2Þ
xð0Þð3Þ

..

.

xð0ÞðnÞ

2
66664

3
77775; B¼

�zð1Þð2Þ 1

�zð1Þð3Þ 1

..

. ..
.

�zð1ÞðnÞ 1

2
66664

3
77775; â¼

a

b

� 	
:

ð2Þ
Last, the solution of the prediction value can be derived as

xð0ÞðkÞ ¼ 1� 0:5

1þ 0:5


 �k�2 b� axð0Þð1Þ
1þ 0:5a

: ð3Þ

Using the grey prediction model, we can predict the future return rate more

accurately under the restriction of the small sample.

Next, we use the possibilistic regression [11] to obtain the uncertainty risk of

the future return rate. The form of a possibilistic regression can be expressed as

y ¼ A0 þ A1x1 þ � � � þ Anxn ¼ A0x ð4Þ
where Ai is a symmetrical fuzzy number denoted as (ai,ci)L, and the form of the

membership function [12] of Eq. (4) can be obtained for x 5 0 as

lY ðyÞ ¼ Lððy � x0aÞ=c0jxjÞ ð5Þ
for x = 0 and y = 0, lY(y) = 1, and for x = 0 and y5 0, lY(y) = 0. The h-level

set of y denoted as [y]h can be obtained as following setting:

Lððy � x0aÞ=c0jxjÞ ¼ h ð6Þ
Then, [y]h can be obtained as

½y�h ¼ x0a� jL�1ðhÞjc0jxj
� 


; x0aþ jL�1ðhÞjc0jxj
� 
� �

¼ x�; xþ½ � ð7Þ

On the basis of the above conditions, we can obtain the formulation of a pos-

sibilistic regression model as follows:

min
a;c

J ¼
X

j¼1;...;m

hjc0jxjj ð8Þ

s:t: yj P x0
ja� jL�1ðhjÞjc0jxjj;

yj 6 x0
jaþ jL�1ðhjÞjc0jxjj; j ¼ 1; . . . ;m

c P 0:

Solving the above mathematical programming model, we can calculate the

uncertainty risk of the future return rate. Additionally, in order to obtain

the relation risk of the security, the grey relational grade [6,7] is employed in

this paper. Let two sequences xi and xj can be represented as

xi ¼ ðxið1Þ; xið2Þ; . . . ; xiðkÞ; . . . ; xiðnÞÞ
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and

xj ¼ ðxjð1Þ; xjð2Þ; . . . ; xjðkÞ; . . . ; xjðnÞÞ:
Then, the grey relational coefficient can be obtained using the following

formulation

cðxiðkÞ; xjðkÞÞ ¼
min

j
min

k
jxiðkÞ � xjðkÞj þ fmin

j
min

k
jxiðkÞ � xjðkÞj

jxiðkÞ � xjðkÞj þ fmin
j

min
k

jxiðkÞ � xjðkÞj
; ð9Þ

where f is the grey relation recognition coefficient with numerical value be-

tween [0,1]. The f can be adjusted for the requirement. In this paper, f is set

at 0.1 to enlarge the scope of the grey relational coefficient. Finally, the grey

relation grade can be expressed as follows

cðxi; xjÞ ¼
1

n

Xn

k¼1

cðxiðkÞ; xjðkÞÞ: ð10Þ

After obtaining the results of the grey and possibilistic regression models, then,

the proposed method can be formulated in the following mathematical pro-

gramming equations

max
Xn

i¼1

lixi ðExcepted ReturnÞ ð11Þ

min
Xn

i¼1

xþi � x�i
� 


� xi ðUncertainty RiskÞ

min
Xn

i¼1

Xn

j¼1

rijxixj ðRelation RiskÞ

Xn

i¼1

xi ¼ 1

xi P 0 8i ¼ 1; . . . ; n:

After solving the mathematical programming model, we can obtain the optimal

portfolio selection alternative. However, it is clear that the above equations be-

long to the three-objective quadratic programming problem and it is hard to

obtain the optimal portfolio selection using the conventional methods. In addi-

tion, the conventional method provides only one optimal portfolio selection

rather than an efficient frontier set. Since the individual investor chooses the

optimal portfolio selection based on his preference, the Pareto set should also
be provided for various alternatives. In this paper, multi-objective evolutionary

algorithms is employed to overcome the above problems.
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3. Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEA) has been widely used

since the 1990�s to resolve the combinational problem in various domains such

as scheduling [13], engineering [14] and finance [15]. The concept of MOEA is

based on the method of genetic algorithms (GA). GA was pioneered in 1975 by
Holland, and its concept is to mimic the natural evolution of a population by

allowing solutions to reproduce, create new solutions, and compete for surviv-

ing in the next iteration [16–20]. Then, the fitness is improved over generations

and the best solution is finally achieved.

The procedures of MOEA are similar to GA. The initial population, P(0), is

encoded randomly by strings. In each generation, t, the more fit elements are

selected for the mating pool. Then, three basic genetic operators, reproduction,

crossover, and mutation, are processed to generate new offspring. On the basis
of the principle of survival of the fittest, the best chromosome of a candidate

solution is obtained. The pseudo codes and the corresponding procedure graph

of MOEA can be represented as shown in Figs. 2 and 3.

The power of evolution algorithms lies in its simultaneously searching a

population of points in parallel, not a single point. Therefore, evolution algo-

rithms can find the approximate optimum quickly without falling into a local

optimum. In the conventional mathematical programming techniques, these

methods generally assume small and enumerable search spaces [21]. However,
MOEA can handle various function problems such as discontinuous or con-
Fig. 2. The pseudo code of MOEA.
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Fig. 3. The procedure graph of MOEA.
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cave form and scaling problems [21–23]. In addition, we can obtain the Pareto

optimal set rather than a special solution using the method of MOEA.

Next, we describe the three basic genetic operators used in MOEA as

follows:
Crossover. The goal of crossover is to exchange information between two

parent chromosomes in order to produce two new offspring for the next pop-

ulation. In this study, we use uniform crossover to generate the new offspring.

The procedures of uniform crossover can be described as follows. Assume that

two parents and a random template are selected by

Template ¼ 0 1 0 0 1 1 0 1

Parent1 ¼ 1 1 0 1 0 0 1 1

Parent2 ¼ 0 0 1 0 1 1 0 0

then, two offspring will be generated as
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Offspring1 ¼ 0 1 1 0 0 0 0 1

Offspring2 ¼ 1 0 0 1 1 1 1 0

Mutation. Mutation is a random process where one genotype is replaced by

another to generate a new chromosome. Each genotype has the probability of

mutation, Pm, changing from 0 to 1, and vice versa.

Selection. The selection operator selects chromosomes from the mating pool

using the ‘‘survival of the fittest’’ concept, as in natural genetic systems. Thus,

the best chromosomes receive more copies, while the worst die off. The prob-

ability of variable selection is proportional to its fitness value in the population,
according to the formula given by

P ðxiÞ ¼
f ðxiÞPN

j¼1

f ðxjÞ
ð12Þ

where f(xi) represents the fitness value of the ith chromosome, and N is the

population size.

In addition, one of the crucial procedures of MOEA is to determine the fit-
ness function. In this paper, the crowding distance [24,25] is used to sort the

chromosomes and determine the Pareto set. In next section, we use a numerical

example to illustrate the proposed method.
4. Numerical example

In this section, a numerical example is used to compare between the mean–
variance approach and the proposed method. Let the sequent return rates of

the six stocks from time t � 6 to t can be represented as in Table 1. As men-

tioned previously, in order to obtain the optimal portfolio selection, a deci-

sion-maker should forecast the expected return in the t + 1 period as

accurately as possible.
Table 1

The sequences of the six stocks

Period t � 6 t � 5 t � 4 t � 3 t � 2 t � 1 t

Stock 1 0.07 0.06 0.10 0.08 0.09 0.12 0.14

Stock 2 0.03 0.05 0.11 0.05 0.13 0.14 0.09

Stock 3 0.07 0.11 0.07 0.07 0.05 0.10 0.09

Stock 4 0.06 0.12 0.16 0.08 0.05 0.10 0.12

Stock 5 0.06 0.10 0.09 0.06 0.15 0.07 0.13

Stock 6 0.04 0.01 0.07 0.10 0.11 0.07 0.12



Table 2

Arithmetic mean of the excepted return

Stock 1 2 3 4 5 6

Forecast value 0.09 0.09 0.08 0.10 0.09 0.07

Table 3

Variance-covariance matrix of the excepted return

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6

Stock 1 0.00027 0.00045 0 0.00004 �0.00036 �0.00008

Stock 2 0.00179 0.00062 �0.00028 �0.00080 �0.00002

Stock 3 0.00112 �0.00008 �0.00040 0.00032

Stock 4 0.000307 �0.000270 �0.00024

Stock 5 0.001707 �0.00016

Stock 6 0.00076
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Using the conventional arithmetic mean, we can obtain the further return

rates and the variance-covariance matrix of the six stocks as shown in Tables

2 and 3.

Then, we can use the weighted sum method and assume the weights are

equal to resolve the mean–variance model to obtain the conventional optimal

portfolio selection as shown in Table 4.

Now, we illustrate the proposed method as follows. First, according to the

information in Table 1, we can use the grey prediction method, shown in Eqs.
(2) and (3), to calculate the future return rate of the six stocks in the t + 1 as

shown in Table 5.

Next, we can obtain the possibilistic interval (PI) of each stock in the t + 1

period using the possibilistic regression model (i.e. Eq. (8)) and also derive the

uncertainty risk as shown in Table 6. In order to obtain the relation risk, we

can calculate the grey relation matrix using Eqs. (9) and (10) and the corre-

sponding results can be shown as in Table 7.
Table 4

Optimal portfolio selection using the conventional method

Stock 1 2 3 4 5 6 Return Rate Portfoliorisk

Portfolio 0 0 0 1 0 0 0.10 0.0003

Table 5

The future return rate using the grey prediction model

Stock 1 2 3 4 5 6

Forecast value 0.16 0.13 0.08 0.08 0.12 0.14



Table 7

The grey relation matrix

c(xi,xj) Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6

Stock 1 1 0.289 0.471 0.567 0.561 0.438

Stock 2 1 0.341 0.360 0.399 0.408

Stock 3 1 0.557 0.563 0.335

Stock 4 1 0.483 0.379

Stock 5 1 0.396

Stock 6 1

Table 6

The possibilistic interval and the uncertainty risk

Stock 1 2 3 4 5 6

PI (0.10,0.18) (0.055,0.195) (0.02,0.14) (�0.005,0.205) (0.019,0.263) (0.09,0.19)

Uncertainty

risk

0.08 0.14 0.12 0.231 0.244 0.10
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Now, we can formulate the multi-objective mathematical programming

based on the above information as the following equations:

max 0:16x1 þ 0:13x2 þ � � � þ 0:14x6
min 0:8x1 þ 0:14x2 þ � � � þ 0:1x6

min x21 þ 0:289x1x2 þ � � � þ x26
x1 þ x2 þ x3 þ x4 þ x5 þ x6 ¼ 1

xi P 0 8i ¼ 1; . . . ; 6:

In order to deal with this three-objective quadratic programming problem,

multi-objective evolutionary algorithms is employed in this paper and the cor-

responding parameter value can also be shown as in Table 8.

Using MOEA, we can obtain the efficient frontier set and the 55 portfolio

alternatives as shown in Table 9 or Appendix A.
Table 8

Parameter setting in MOEA

Parameter Value

Chromosome Binary

Population size 100

Number of generations 2000

Selection strategy Tournament

Crossover type Uniform

Crossover probability 0.8

Mutation probability 0.02



Table 9

Portfolio alternatives of the efficient frontier set

Stock 1 2 3 4 5 6 Return rate Uncertainty risk Relation risk

Alternative 1 0.279570 0.116325 0.077224 0.099707 0.203324 0.223851 0.1297 0.1429 0.3762

Alternative 2 0.310850 0.115347 0.077224 0.100684 0.203324 0.192571 0.1303 0.1424 0.3821

Alternative 3 0.371457 0.116325 0.030303 0.099707 0.187683 0.194526 0.1347 0.1379 0.4060

Alternative 4 0.371457 0.124145 0.022483 0.100684 0.187683 0.193548 0.1350 0.1382 0.4063

Alternative 5 0.373412 0.108504 0.053763 0.085044 0.125122 0.254154 0.1356 0.1271 0.4073

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Alternative 52 0.621701 0.124145 0.022483 0.037146 0 0.194526 0.1476 0.0978 0.5537

Alternative 53 0.623656 0.124145 0.022483 0.037146 0 0.192571 0.1477 0.0978 0.5550

Alternative 54 0.624633 0.107527 0.022483 0.037146 0 0.208211 0.1478 0.0971 0.5595

Alternative 55 0.623656 0.108504 0.022483 0.022483 0 0.222874 0.1487 0.0953 0.5618
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On the basis of Table 9, a decision-maker can determine the optimal port-

folio alternative based on his preference. Next, we provide the discussion about

our numerical example in next section.
5. Discussions

Mean–variance is widely used in the finance area to deal with the portfolio

selection problem. However, the conventional method usually fails under the

small sample situation. We can describe the shortcomings of the conventional

method from its purpose and its theory, respectively, as follows.

The purpose of the mean–variance approach is to determine the t + 1 period

optimal investing rate to each security based on the sequent return rate. The

key is to forecast the t + 1 period return rate as accurately as possible. How-
ever, it is clear that the arithmetic mean only reflects the average states of

the past return rate instead of forecasting. Although many regression-based

methods have been proposed to overcome the problem, these methods must

obey the assumption of the large sample theory and cannot be used in the small

sample situation theoretically. In this paper, we propose the grey and possibi-

listic regression models to deal with the previously mentioned problem

completely.

In order to highlight the shortcoming of the conventional method and to
compare it to the proposed method, a numerical example is used. We can de-

pict the sequence of the Stock 4 to describe the irrational results using the arith-

metic mean as shown in Fig. 4.

First, it is clear that the sequence shows the dramatically decreasing trend

when the sequence rises to the peak. Second, the possibilistic interval is very

large in Stock 4. This characteristic shows the large uncertainty risk in Stock
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Table 10

Portfolio alternatives using MOEA

Stock 1 2 3 4 5 6 Return

rate

Uncertainty

risk

Relation

risk

Alternative 1 0.27957 0.116325 0.077224 0.099707 0.203324 0.223851 0.1297 0.1429 0.3762

Alternative 2 0.31085 0.115347 0.077224 0.100684 0.203324 0.192571 0.1303 0.1424 0.3821

Alternative 3 0.371457 0.116325 0.030303 0.099707 0.187683 0.194526 0.1347 0.1379 0.406

Alternative 4 0.371457 0.124145 0.022483 0.100684 0.187683 0.193548 0.135 0.1382 0.4063

Alternative 5 0.373412 0.108504 0.053763 0.085044 0.125122 0.254154 0.1356 0.1271 0.4073

Alternative 6 0.31085 0.233627 0.049853 0.085044 0.00391 0.316716 0.1357 0.1158 0.4086

Alternative 7 0.373412 0.108504 0.053763 0.069404 0.140762 0.254154 0.1362 0.1273 0.4088

Alternative 8 0.357771 0.233627 0.053763 0.085044 0 0.269795 0.1365 0.1144 0.4115

Alternative 9 0.365591 0.233627 0.053763 0.085044 0 0.261975 0.1366 0.1142 0.4126

Alternative 10 0.373412 0.233627 0.053763 0.085044 0 0.254154 0.1368 0.1141 0.414

Alternative 11 0.343109 0.108504 0.053763 0.052786 0.125122 0.316716 0.1369 0.1235 0.4123

Alternative 12 0.373412 0.249267 0.053763 0.069404 0 0.254154 0.1376 0.1127 0.4165

Alternative 13 0.342131 0.233627 0.053763 0.053763 0 0.316716 0.1381 0.1106 0.4201

Alternative 14 0.342131 0.233627 0.049853 0.053763 0.00391 0.316716 0.1382 0.1111 0.4201

Alternative 15 0.373412 0.077224 0.116325 0.022483 0 0.410557 0.1384 0.1009 0.4663

Alternative 16 0.342131 0.233627 0.038123 0.053763 0.01564 0.316716 0.1387 0.1126 0.4202

Alternative 17 0.342131 0.249267 0.049853 0.038123 0.00391 0.316716 0.139 0.1097 0.4236

Alternative 18 0.343109 0.107527 0.053763 0.053763 0 0.441838 0.1393 0.1056 0.4685

Alternative 19 0.374389 0.108504 0.022483 0.052786 0.125122 0.316716 0.1394 0.1222 0.4285

Alternative 20 0.342131 0.108504 0.049853 0.053763 0.00391 0.441838 0.1395 0.1061 0.468

Alternative 21 0.342131 0.233627 0.049853 0.022483 0.00391 0.347996 0.1401 0.107 0.4336

Alternative 22 0.357771 0.233627 0.053763 0.022483 0 0.332356 0.1402 0.1062 0.4336

Alternative 23 0.373412 0.233627 0.049853 0.022483 0.00391 0.316716 0.1407 0.1064 0.4344

Alternative 24 0.373412 0.077224 0.053763 0.022483 0.062561 0.410557 0.1409 0.1087 0.4653

Alternative 25 0.623656 0.108504 0.147605 0.022483 0 0.097752 0.1412 0.0978 0.5483

Alternative 26 0.373412 0.12219 0.022483 0.037146 0.062561 0.382209 0.1414 0.1117 0.4517

Alternative 27 0.373412 0.100684 0.053763 0.022483 0.00782 0.441838 0.1417 0.1017 0.4824

Alternative 28 0.373412 0.108504 0.053763 0.022483 0 0.441838 0.1418 0.1009 0.4828

(continued on next page)

C
.-S
.
O
n
g
et
a
l.
/
A
p
p
l.
M
a
th
.
C
o
m
p
u
t.
1
6
9
(
2
0
0
5
)
1
1
9
5
–
1
2
1
0

1
2
0
7



Table 10 (continued)

Stock 1 2 3 4 5 6 Return

rate

Uncertainty

risk

Relation

risk

Alternative 29 0.373412 0.108504 0.018573 0.053763 0.00391 0.441838 0.142 0.1048 0.4848

Alternative 30 0.373412 0.077224 0.053763 0.022483 0 0.473118 0.1421 0.0996 0.5027

Alternative 31 0.373412 0.124145 0.022483 0.037146 0 0.442815 0.1426 0.1028 0.4855

Alternative 32 0.373412 0.12219 0.022483 0.037146 0 0.44477 0.1427 0.1027 0.4866

Alternative 33 0.373412 0.124145 0.016618 0.038123 0.005865 0.441838 0.1428 0.1037 0.4852

Alternative 34 0.55914 0.092864 0.085044 0.037146 0 0.225806 0.1429 0.0991 0.5092

Alternative 35 0.622678 0.053763 0.092864 0.037146 0 0.193548 0.1441 0.0964 0.5582

Alternative 36 0.498534 0.100684 0.049853 0.022483 0.01173 0.316716 0.1444 0.0997 0.4937

Alternative 37 0.621701 0.124145 0.069404 0.037146 0.01564 0.131965 0.1445 0.101 0.543

Alternative 38 0.561095 0.124145 0.022483 0.068426 0 0.223851 0.1445 0.1032 0.5121

Alternative 39 0.55914 0.116325 0.030303 0.037146 0.062561 0.194526 0.1447 0.108 0.5033

Alternative 40 0.621701 0.053763 0.077224 0.037146 0 0.210166 0.145 0.0961 0.5602

Alternative 41 0.623656 0.053763 0.077224 0.037146 0 0.208211 0.1451 0.0961 0.5615

Alternative 42 0.623656 0.092864 0.069404 0.037146 0 0.176931 0.1452 0.0975 0.5518

Alternative 43 0.621701 0.059629 0.069404 0.037146 0.00391 0.208211 0.1454 0.0968 0.5589

Alternative 44 0.623656 0.108504 0.053763 0.022483 0.062561 0.129032 0.1456 0.1049 0.5463

Alternative 45 0.621701 0.115347 0.030303 0.037146 0.065494 0.13001 0.1459 0.1071 0.5456

Alternative 46 0.622678 0.092864 0.053763 0.037146 0 0.193548 0.1461 0.0972 0.5541

Alternative 47 0.624633 0.100684 0.030303 0.037146 0.062561 0.144673 0.1462 0.106 0.5499

Alternative 48 0.621701 0.124145 0.022483 0.037146 0.064516 0.13001 0.1463 0.1071 0.5457

Alternative 49 0.623656 0.124145 0.022483 0.037146 0.062561 0.13001 0.1464 0.1068 0.5473

Alternative 50 0.623656 0.092864 0.022483 0.037146 0.062561 0.16129 0.1467 0.1056 0.5521

Alternative 51 0.621701 0.116325 0.030303 0.037146 0 0.194526 0.1472 0.0977 0.5533

Alternative 52 0.621701 0.124145 0.022483 0.037146 0 0.194526 0.1476 0.0978 0.5537

Alternative 53 0.623656 0.124145 0.022483 0.037146 0 0.192571 0.1477 0.0978 0.555

Alternative 54 0.624633 0.107527 0.022483 0.037146 0 0.208211 0.1478 0.0971 0.5595

Alternative 55 0.623656 0.108504 0.022483 0.022483 0 0.222874 0.1487 0.0953 0.5618

1
2
0
8

C
.-S
.
O
n
g
et
a
l.
/
A
p
p
l.
M
a
th
.
C
o
m
p
u
t.
1
6
9
(
2
0
0
5
)
1
1
9
5
–
1
2
1
0



C.-S. Ong et al. / Appl. Math. Comput. 169 (2005) 1195–1210 1209
4. To summarize the above finding, it is risky to invest too much money in

Stock 4 over the next period. On the other hand, the proposed method can

accurately reflect this characteristic of Stock 4. On the basis of Table 9 or

Appendix A, we can conclude that the portfolio selection of Stock 4 should

not exceed 10 percent.

In addition, the proposed method can provide the more flexible portfolio
alternatives. A decision-maker can select his optimal alternative based on the

results of the Pareto set. For example, a risk averse may choose the alternative

1 to obtain the excepted return rate 0.1297. However, a risk lover may choose

the alternative 55 to obtain the excepted return rate 0.1487 but a higher risk

than a risk averse.
6. Conclusions

Portfolio selection problem has been a popular issue in the finance area since

the 1950�s. However, the conventional mean–variance method can not provide

the satisfied solution under the small sample situation. In this paper, we pro-

pose a hybrid method which incorporates the grey and possibisitic regression

models to deal with this situation. In order to resolve the three-objective quad-

ric programming, MOEA is employed here. In addition, a numerical example is

illustrated to show the procedures of the proposed method. On the basis of the
numerical results, the proposed method can provide the more flexible and accu-

rate results.
Appendix A. The full portfolio alternatives can be shown as in Table 10.
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