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The ballistic transport through a one-dimensional two-lead ring at zero magnetic field is studied. We have
focused on the case in which the potential in the ring does not define closed cavities or dots. Even in the
absence of well-defined quasibound states, we find Fano profiles in the transmission probability. Those Fano
profiles appear at energies corresponding to the standing-wave states in the ring, but their occurrence depends
sensitively on the commensurability of the system parameters. When the system parameters are commensurate,
the widths of the profiles at some energies are infinitesimally small. These findings suggest that the conven-
tional understanding of the Fano profiles as a result of the interference effect of the transition through resonant
states and nonresonant continuum of states, might not account for all the Fano profiles seen in the transport
measurements. Moreover, the sensitivity and tunability of the resonance with respect to the system parameters
may be usable in the fabrication of electrical nanodevices.
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I. INTRODUCTION

The Fano resonance or profile is conventionally under-
stood as a result of the interference between resonant and
nonresonant processes. It was first observed and studied in
nuclear physics1 and atomic physics,2 and later the effect was
also observed in a wide variety of spectroscopy such as
atomic photoionization,3 optical absorption,4 Raman
scattering,5 and also the scanning tunneling through a surface
impurity atom.6,7 As recent progress in the fabrication tech-
nology of electrical nanodevices has achieved devices of the
size of the order of the various coherence lengths of the
conduction electron, quantum mechanical effect and hence
the Fano resonance has also been seen in mesoscopic sys-
tems. For instance, it is seen in the transport through systems
which contain quantum dots8–13 and carbon nanotubes.14

Moreover, it is proposed that the resonance can be used in
the probe of the phase coherency of the electrons in
transport15,16 and the design of mesoscopic spin filters.17

Most studies of the Fano resonance in the electronic trans-
port have been along the conventional line, i.e., Fano profiles
are attributed to well-defined quasibound states which are in
degenerate and mixed with a continuum of states. For in-
stance, an attractive impurity or a quantum dot �QD� is
coupled to a quasi-one-dimensional �quasi-1D� transport
channel,18–20 a QD is placed on a one-dimensional �1D� or
quasi-1D ring connected to two leads,12,21–29 etc. In the case
of a quasi-1D transport channel with an attractive impurity,
some of the quasibound levels are degenerate, with the con-
tinuums of states due to the subbands below �e.g., see Ref.
18�, and therefore an electron can either seep through the
impurity level or bypass it via the band continuums. It is
noted that no Fano resonance can be found in singly con-
nected 1D systems,18 since resonant and nonresonant pro-
cesses can never coexist in transport due to the topology. In
the above-mentioned cases, the problem is essentially the
problem of a single impurity that is embedded into a con-
tinuum of states, which was well studied by Fano.2 Never-
theless, similar asymmetric Fano profiles are also
theoretically30–32 and experimentally8,9 seen in the transport

in systems containing only open resonant cavities. Further-
more, in theoretical study, the width of the resonance can be
sensitive to the potential in the resonant cavity and can even
be tuned to approach zero. In those cases, the problem would
not be readily understandable in the conventional scheme
due to Fano.2 By this, we mean a closed cavity or dot by a
cell isolated by repulsive potential barriers or constrictions in
the channels, else it is an open resonant cavity.

In order to gain understanding of the Fano profile in a
transport that has unusual sharpness at no well-defined qua-
sibound state, we explore the resonance in a 1D, but doubly
connected system at zero magnetic field. The system has a
topology the same as that of the frequently studied
Aharonov-Bohm ring, with12,21–28 and without33 a QD on one
of the arms, but we have focused on the case in which the
potential defines only open resonant cavities in the ring. The
choice of this system for our study is based on the fact that
this is the simplest system that shows Fano resonance at no
well-defined quasibound state, and the resonance width can
also be sensitively tuned by the potential and can become
infinitely sharp or collapse. It is hoped that due to the sim-
plicity of this system more of the nature of the occurrence of
the resonance beyond the conventional Fano’s scheme2 can
be revealed. We have found that when the system parameters
are commensurate, the Fano profiles at some energies can
become infinitesimally sharp. We also have ventured to relate
the commensurability to the constructive interference along
the paths. The system parameters are, e.g., the location of the
impurity potential and the arm lengths of the ring. There are
also theoretical reports of the collapse of the Fano
resonance32,34,35 analogous to ours, but these reports are ei-
ther on more complicated systems32,35 or the collapsing be-
havior is not discussed.34

In Sec. II we present our formulation, and in Sec. III we
present and discuss the results in several cases. We focus on
systems with only repulsive and pointlike � potentials. The
idealized �-potential model makes sense at the long-
wavelength regime, and it also facilitates analytical analyses.
Two aspects of the systems, open resonant cavity and com-
mensurate system parameters, are highlighted, and the occur-
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rence and collapse of the Fano resonance are investigated. In
the last section, Sec. IV, we give some remarks on our find-
ings.

II. FORMULATION

We consider the ballistic transport through a two-lead ring
as shown in Fig. 1. Both the ring and leads are considered as
1D, an approximation that is valid when the transverse di-
mension of the channel is narrow enough to allow only the
lowest subband to be involved in the transport process. On
each arm of the ring we include a scattering potential that is
described by a transfer matrix Mi, where i=1,2 labels the
arm, and the wave functions on the opposite sides of a scat-
terer are connected by Mi. At the three-leg junctions or Y
junctions, the wave functions on the branches are connected
via the Griffith’s boundary condition36 which we will de-
scribe shortly. The overall wave function can thus be found
and the transmission probability be obtained.

At a given energy E��0�, the wave function on each line
segment in Fig. 1 can be expanded by the forward and back-
ward traveling waves34,37–43 as

�i = Aie
ikxi + Bie

−ikxi, i = 0,1,2,and 3,

�i� = Ai�e
ikxi + Bi�e

−ikxi, i = 1 and 2, �1�

where �1�,2� are the wave functions before the scatterers and
�1,2 are after the scatterers, k��2mE /�, and m is the effec-
tive mass of the traveling particle. The lengths of the arms of
the ring are chosen as L1,2 and the coordinate systems are as
defined in Fig. 1. Across the scatterers, the continuity of the
wave functions and their derivatives can be written as

�A1

B1
� = M1�A1�

B1�
� �2�

and

�A2

B2
� = M2�A2�

B2�
� . �3�

At the Y junctions the wave function continuity
requirement44 and Griffith’s unitarity boundary condition45

demand that the wave functions are jointed at the left Y
junction by

A0 + B0 = A1eikL1 + B1e−ikL1, �4�

A0 + B0 = A2eikL2 + B2e−ikL2, �5�

�A0 − B0� + �A1eikL1 − B1e−ikL1� + �A2eikL2 − B2e−ikL2� = 0,

�6�

and at the right Y junction by

A3 + B3 = A1� + B1�, �7�

A3 + B3 = A2� + B2�, �8�

�A3 − B3� + �A1� − B1�� + �A2� − B2�� = 0. �9�

The Griffith’s boundary condition guarantees the net current
flowing into a junction is zero. Since we consider particles
incident from the left, we set A0=1 and B3=0. Equations
�2�–�9� then constitute an equation set with ten linear equa-
tions and ten unknowns. It can then be solved, and the trans-
mission probability T= �A3�2 be found. The transmission am-
plitude A3 is found to be

A3 =
C

D
,

C � eikL1�M1
11 − M1

12� + e−ikL1�M1
21 − M1

22�

+ �L1 ↔ L2 and M1 ↔ M2� ,

D � 1 −
1

8
eik�L1+L2��M1

11M2
11 − 3M1

12M2
12 + 2M1

11M2
12�

+
3

8
e−ik�L1+L2��M1

21M2
21 − 3M1

22M2
22 + 2M1

21M2
22�

+
1

4
eik�L1−L2���M1

11 + M1
12��M2

21 + M2
22� − 4M1

12M2
22	

+ �L1 ↔ L2 and M1 ↔ M2� , �10�

where we have used the fact that det Mi=1 �see, e.g., the
discussion in Ref. 46�. As the analytic expressions are cum-
bersome, most of the time we will proceed with our discus-
sion by plotting out the numerical values only.

III. NUMERICAL RESULT

The behaviors of the transmission probability in some
representative cases are studied in the following sections. We
will focus on the dip and peak-dip profiles in the spectra,
particularly, how they can occur or collapse when the system

FIG. 1. The system we consider is a ring �with arms labeled by
1 and 2� connected to two leads �labeled by 0 and 3�. The boxes on
the ring labeled by M1,2 represent the scatterers on the arms. A
coodinate system xi is defined for the line segment labeled by i �i
=0, 1, 2, and 3�. While the arrows denote the positive direction of
the coordinates, the right Y junction is defined at x1=x2=x3=0, and
the left Y junction is at x0=0, x1=L1, and x2=L2.
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parameters are tuned. Mathematically, we will see that the
occurrence and collapse are related to the zeroes in the nu-
merator C and denominator D in the transmission amplitude
A3 in Eq. �10�. In turn, these zeroes are seen to be related to
the standing-wave resonance �SWR� and two-path interfer-
ence �2PI� in the arms of the ring.

A. Unequal arm lengths

In this section we investigate the case in which the arms
and the leads are all at equipotential, but the arms have dif-
ferent lengths of L1 and L2. This setup is described by M1
=M2=1 and the transmission amplitude A3 in Eq. �10�
becomes

A3 =
i�sin kL1 + sin kL2�

1 − exp�− ik�L1 + L2�	 −
1

4
�cos k�L1 + L2� − cos k�L1 − L2�	

. �11�

Total reflection may occur when the numerator in Eq. �11�
vanishes. This requires k�L1−L2�= �odd integer��� or
k�L1+L2�= �even integer���. The former equation is easily
seen to correspond to a perfectly destructive 2PI between the
arms. The latter equation is also easily seen to correspond to
a standing wave on an isolated ring with circumference L1
+L2. Thus it is seen that though the ring is coupled to the
leads, the standing-wave states in the ring may still play a
role in the transport through the ring. Note also that the SWR
occurs without a red shift, in contrary to what one might
expect in an open system. For a wave number k which cor-
responds to a perfectly destructive 2PI, the denominator in
Eq. �11� is always found to be nonvanishing, and therefore
there is always a total reflection under this condition. For a k
in the SWR condition, the denominator in Eq. �11� vanishes
if it happens that k�L1−L2�= �even integer���, which is the
condition for a perfectly constructive 2PI between the two
arms, and this can happen when L2 /L1 is a rational number.
When a k meets the perfectly constructive 2PI condition, the
first order zeroes in the numerator and denominator in Eq.
�11� cancel each other and give a nonvanishing transmission
probability, which is unity. In short, when a k meets the SWR
condition in the ring, a total reflection occurs when the k
does not simultaneously meet a perfectly constructive 2PI
condition. Otherwise, there is a perfect transmission. On the
other hand, a total reflection always occurs at perfectly de-
structive 2PI. The above findings can be summarized into the
following mathematical statements. Given a L2 /L1, a total
reflection must occur at kL1= �odd integer����1−L2 /L1�−1

�which corresponds to a perfectly destructive 2PI�. A total
reflection can also occur at kL1=2n��1+L2 /L1�−1, where n
is an integer �which corresponds to a SWR in the ring�, if
2n�1+L2 /L1�−1 is not an integer. Otherwise, there is a perfect
transmission. Note that 2n�1+L2 /L1�−1 is always an integer
when L1=L2 or L2=0.

The above findings can be illustrated by concrete ex-
amples. Figure 2 shows the wave number dependence of the
transmission probability for the case of almost equal arm
lengths. It is seen that at equal arm lengths, though the trans-
mission probability varies with the wave number, only total
transmission is possible and there is no total reflection. This
is because in any case there is no phase difference between

the two paths and hence there is always a perfectly construc-
tive 2PI. But at unequal arm lengths, total reflection is also
seen to occur. The dips in the transmission probability47 can
be very sharp. At the limit L1=L2, the dips vanish by becom-
ing infinitely sharp but not by recovering the transmission
from zero. The spectrum does not progressively turn compli-
cated when L2 /L1 is detuned from 1. It becomes relatively
neat when L1 and L2 are commensurate, i.e., when L2 /L1 is a
simple rational number and some of the resonance dips col-
lapse. For instance, the case of L2 /L1
2/3 is depicted in
Fig. 3. In Fig. 3 we see equally spaced sharper dips at kL1
=2n��1+L2 /L1�−1 �provided that 2n�1+L2 /L1�−1 is not an
integer	 due to the SWR in the ring. In addition, we also see
equally spaced but smoother dips at kL1= �odd integer�
���1−L2 /L1�−1 due to the destructive 2PI. The 2PI effect
has also resulted in a pronounced envelope in the transmis-
sion probability. The dips due to the SWR at kL1�2��−1
3
and 6 collapse when L2 /L1 is exactly equal to 2/3, i.e., when
kL1 /�=2n�1+L2 /L1�−1 is exactly an integer. Interestingly,
though the SWR results in transmission dips, around the dips
the transmission is actually enhanced by the local minima of
�D� �see Fig. 2�d�	. The behaviors of the transmission prob-
ability is thus seen to be related to the interplay between the
SWR and 2PI.

We have interpreted the behaviors of the numerator C and
denominator D in Eq. �10� by the notions of SWR and 2PI. A
closer look into the mathematical structures of them is also
interesting. The very different natures of C and D can ac-
count for the abrupt occurrence and collapse of the transmis-
sion dips. Owing to the symmetry in the transfer matrices
Mi

11= �Mi
22�* and Mi

12= �Mi
21�*, i=1,2 �see, e.g., Ref. 46�, C

has always a constant phase regardless of the wave number
and potential on the ring. Therefore, this phase can be peeled
off and C will behave like a real-valued number; whereas D
has a phase that depends on the wave number and potential,
and it is genuinely a complex-valued number. Therefore,
when a system parameter is slightly changed, the zeroes in C
will only be slightly shifted and will remain, whereas zeroes
in D can be abruptly lifted since they require both the real
and imaginary parts to vanish simultaneously, which is a
much more stringent condition. A nonzero transmission at
delicately matched zeroes of C and D, e.g., the nonzero
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transmission at kL1=n� in the case of L1=L2, is kind of
“accidental.” It is at a point of delicately matched SWR and
perfectly constructive 2PI. It is very fragile and a slight de-
tuning of an arm length can create a transmission zero �see
Fig. 2�. In later sections we will see that such behaviors of C
and D are rather general and can abruptly create a Fano
profile with a peak-dip pair when, e.g., the location of an
impurity on the ring is shifted.

The above observation of the detuned zeroes in the nu-
merator C and denominator D immediately implies that the
numerical results can be casted into the Fano profile expres-
sion, and the dip’s width can be explicitly related to the
detuning from perfectly constructive 2PI. To be self-
contained, we first give a very brief review of the Fano reso-
nance. Consider a physical process which simultaneously in-
volves a nonresonant part and a resonant part at energy �
=0. Let the nonresonant part be energy independent and de-
scribed by a complex-valued amplitude t0, and the resonant
part be described by a complex-valued amplitude tr=za / ��
+ ia�, where z is a complex-valued number, and a is a real-
valued number characterizing the width of the resonant pro-
cess. The total transition amplitude ttot= t0+ tr= t0��+qa� / ��
+ ia�, where q�z / t0+ i is the Fano parameter, results in a
total transition probability

Ttot = �t0�2
�� + qa�2

�2 + a2 . �12�

Roughly speaking, in the case of a�0 and q�0, Ttot gives a
dip �peak� when the numerator �denominator� in Eq. �12� is
close to or equal to zero. When a�0 and q=0, Ttot has only
a dip at �=0. The case of a�0 and Im q=0 is discussed
comprehensively in Fano’s original paper.2 In the case of a
→0, the numerator and denominator in ttot become exact
zeroes at �=0, but they are first order zeroes and cancel each
other to give a finite transition probability. This is actually
the case of commensurate arm lengths we have discussed.
Since we know that a SWR dip can occur at k=km, where km
is defined by km�L1+L2��2m�, and m is an integer, we
expand the transmission amplitude A3 around a dip by letting
���k−km��L1+L2�. Since we also know that a dip appears
when km�L1−L2��2n�, where n is an integer, we define a
detuning � from a perfectly constructive 2PI by km�L1−L2�
�2n�+�, where � is within �−� , +�	 �note that given an
m, n is determined�. Then we expand A3 at the vicinity of a
dip when both the dimensionless parameters � and � are
small. We have expanded Eq. �11� for the case of max�����

��� and ���	�. We expand the numerator to the third or-
der and the denominator to the second order, and we obtain
an approximate transmission amplitude

FIG. 2. �Color online� This figure shows that dips appear in the
transmission probability T when L1 and L2 are slightly unequal. We
have plotted T versus the dimensionless wave number kL1 / �2��, for
the case of no potential on the ring, and arm-length ratios L2 /L1

=1, 0.9, and 0.8 �from �a� to �c�	. To illustrate the mathematical
reason behind the formation of the transmission zeroes, the square
roots of the magnitudes of the numerator C and denominator D �see
Eq. �10�	 of the transmission amplitude are plotted �in �d�	 for the
case of L2 /L1=0.8. The zeroes in C are seen to remain but the
zeroes in D �exist when L1=L2� are lifted, and hence give rise to
T=0.

FIG. 3. For the case of no potential on the ring, the dips in the
transmission probability T at some wave numbers are seen to be-
come infinitely sharp or collapse when the arm lengths are com-
mensurate. This figure shows T versus the dimensionless wave
number kL1 / �2��, for the case of no potential on the ring, and
arm-length ratios L2 /L1=0.65, 2 /3, and 0.68 �from �a� to �c�	. The
transmission dips at kL1 / �2��
 3 and 6 are seen to close at the
limit L2 /L1=2/3. Note also the transmission zeroes at kL1 / �2��

1.5 and 4.5, and the overall envelope due to the two-path
interference.
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A3 � �− 1�m+n�1 −
1

8
�2 −

1

4

L1 − L2

L1 + L2

�� −
1

6

L1
3 + L2

3

�L1 + L2�3
�2� �

� + i� 1

8
�2 +

1

4

L1 − L2

L1 + L2

�� −
1

8
�5 − 
L1 − L2

L1 + L2

�2��2� . �13�

The fraction part can be roughly viewed as a q=0 Fano
profile with a �-dependent width, and the other part can be
viewed as a slow-varying envelope function. It is seen that
within this range of � the line shape is not in the usual Fano
profile. But if we further restrict the range of � to an order of
magnitude smaller than �, i.e., max�����
�2, Eq. �13� can
be simplified to

A3 � �− 1�m+n
1 −
�2

8
� �

� + i
�2

8

, �14�

i.e., near the minimum of a dip due to a SWR, the transmis-
sion probability profile is in the form of the q=0 Fano pro-
file. Note that the parameter � is a dimensionless wave num-
ber but not energy. When the SWR approaches a perfectly
constructive 2PI �i.e., � approaches zero�, the width of the
dip �
�2� approaches zero and the dip vanishes. There are a
few noteworthy points here. If one adopts the conventional
understanding of the Fano profile with the notions of quasi-
bound states and their lifetimes, the “lifetimes” of the “qua-
sibound states” in our case might seem can be dramatically
tuned by a slight tuning of an arm length. Moreover, the two
arms of the ring are all the same except for their lengths, the
SWR at k�L1+L2�=2m� also occurs in the entire ring, and
there is no obvious distinction between the “resonant” and
“nonresonant” transition paths in our case.

On the other hand, we also have investigated the trans-
mission amplitude A3 for the case of L1=L2=L, in the com-

plex wave number k̃ plane. This is a common way to inves-
tigate the nature of the quasibound states on the transition
paths. In this special case of L1=L2=L, we can readily find

poles at k̃L=n�− i ln 3, where n is an integer. Though the

Re k̃ does correspond to a standing wave in an isolated ring

with circumference 2L, the Im k̃ is large and comparable to

the spacing in the Re k̃. This indicates that these “quasi-
bound” states are vaguely defined and this is in congruence
with the fact that the ring is strongly coupled to the leads. It
is therefore inappropriate to view these states as the quasi-
bound states in Fano’s original formulation.2 But in contrary,
transmission dips are seen and can be very sharp as soon as
L1�L2. As we will see in the later sections, these standing-
wave states are also related to the formation of the peak-dip
pairs in the transmission probability when an impurity poten-
tial is added. It is thus seen that the conventional Fano reso-
nance scheme with the notions of nonresonant and resonant
transition paths, and lifetimes of the quasibound states, might
be hard to provide a consistent understanding basis of the

above results of equal arm lengths and slightly unequal arm
lengths. This reveals the following logic. Though it is true
that when there are resonant and nonresonant paths in a tran-
sition process there will be a Fano profile; the converse,
when there is a Fano profile there are resonant and nonreso-
nant transition paths in the transition process, may not be
always true. In other words, though the mathematical form of
the resulting transition probabilities can be unanimously in
the Fano profile form as in Eq. �12�, the underlying physical
contents could be quite different.

B. With impurities

This section considers the case with a presence of point
impurities on the ring. An impurity is described by a Dirac-�
function potential, and this model should apply to the case in
which the extensions of the potentials are small compared
with the wavelengths of the incident particles and the arm
lengths of the ring. We first consider the case in which an
impurity is embedded into arm 1, by adding the potential
V1��x1−X1�, where V1 is the strength of the impurity poten-
tial and X1 is the location of the impurity in coordinate x1 on
arm 1. The corresponding transfer matrix is

M1 = � 1 −
imV1

�2k
− e−i2kX1

imV1

�2k

ei2kX1
imV1

�2k
1 +

imV1

�2k
� . �15�

Henceforth we will use the dimensionless parameter v1
�mL1V1 / �2��2� to characterize the impurity strength. It is
noted that the transfer matrix has the symmetry M1

11

= �M1
22�* and M1

12= �M1
21�*. Arm 2 has no potential added and

hence M2=1. A few more words on how to relate the dimen-
sionless impurity strength v1 to the experiments are worth-
while. A potential with a small spatial extension a and a

magnitude of V̄1 can be approximated by a � potential with

V1=aV̄1, and hence v1=mL1V̄1a / �2��2�. For instance, if we
have m=mGaAs�0.067 mbare, L1=3 
m, and a=0.03 
m,

v1=1 corresponds to V̄1�0.08 meV.
Figure 4 shows how the asymmetric Fano profile arises

when the strength of a repulsive impurity on arm 1 grows. In
Fig. 4 we have chosen L1=L2 and X1 /L1=0.3. The peak-dip
profile is in contrast with the mere dip profile in the no-
impurity case in Sec. III A, but both of them are seen to
develop from zero widths. Mathematically the dips are also
due to the lift of zeroes in the denominator D �see Fig. 4�d�	.
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It is noted that the dips are not necessarily at the eigenener-
gies of an isolated ring with a point impurity, since all the
locations of the impurity and Y junctions have substantial
effects on the standing waves in the ring. At the strong im-
purity limit �Fig. 4�c�	, the zero transmission dips are wide
and can also be analytically found to locate at kX1=integer
�� or k�L1−X1�=integer��. This agrees with the result of
the transport through a 1D wire with a stub.34 An arm is
essentially cut off when the impurity on it is very strong, and
the arrangement of our system for Fig. 4�c� is equivalent to a
1D wire with two stubs of lengths X1 and L1−X1. There will
be zero transmission when the length of any one of the stubs
just matches an integral number of half-wavelengths.

Similar to the collapse of the dip profile in Sec. III A, the
peak-dip profile here can also collapse. In Fig. 5 we have
illustrated the phenomenon by showing the transmission
probability for the case in which the impurity is on a special
location on an arm. We have chosen L1=L2 and X1 /L1

1/3, and the resonant profiles at kL1 / �2��=1.5 and 3 are
seen to collapse when X1 /L1=1/3. Though the formidable
expressions of C and D forbid a detailed analytical analysis,
it can be readily verified that at a k that simultaneously sat-

isfies kL1=n1�, kL2=n2�, kX1=n1��, where n1, n2, and n1�
are integers, and n1+n2 is even �i.e., k�L1+L2�=integer
�2�	, both C and D vanish but they give a nonzero trans-
mission amplitude A3=C /D= �−1�n1�1+ imV1 / ��2k�	−1. The
above situation can arise when X1 /L1 and L2 /L1 are simple
rational numbers. At such a mathematically “accidental”
nonzero transmission, it is expected that a slight detuning of
X1 can generate a transmission zero such as in those cases
discussed in Sec. III A. Note that the above-mentioned con-
ditions for k imply that k�L1−L2�=integer�2�. Thus these
conditions are seen to be similar to those in Sec. III A, and as
we will see, the conditions for the collapse of the profiles in
the two impurity case is also similar.

We can also obtain an approximate analytical expression
for the transmission amplitude at the vicinity of a peak-dip
profile when the impurity is at a location such that the profile
is very sharp and about to collapse. The relationship between
the resonance width and the detuning of the impurity loca-
tion will then be more explicit. In our previous discussion,
we have seen that if the ratios L2 /L1 and X1 /L1 are rational,
the peak-dip profile at the wave number k0 has a zero width,
where k0 is defined by k0L1=n1�, k0L2=n2�, n1+n2 is even,
and k0X1=n1��. We therefore can make an expansion around
k0 for the case of a small detuning of the impurity location
and the resonance has a very small width. As before, we let
k0L1=n1�, k0L2=n2�, and n1+n2 is even, but now we let
k0X1=n1��+�. Defining a dimensionless wave number �
��k−k0��L1+L2�, considering the regime of max�����
�2

FIG. 4. �Color online� Asymmetric Fano profiles are seen in the
transmission probability T when there is an impurity potential on
the ring. We have plotted T versus the dimensionless wave number
kL1 / �2�� for the cases of L1=L2, an arbitrarily chosen impurity
location X1 /L1=0.3, and increasing potential strengths v1=0.2, 0.8,
and 10 �cutoff limit� �from �a� to �c�	. The Fano profiles are seen to
evolve from the v1=0 limit by increasing width. The square roots of
the magnitudes of the numerator C and denominator D �see Eq.
�10�	 of the transmission amplitude are also plotted �in �d�	 for the
case of v1=0.8 to illustrate how the Fano profiles are formed.

FIG. 5. Even at appreciable impurity strength, the Fano profiles
in the transmission probability T at some wave numbers can col-
lapse when the impurity is located commensurately. To illustrate
this, we have plotted T versus the dimensionless wave number
kL1 / �2�� for the case of L1=L2, impurity strength v1=2, and im-
purity locations X1 /L1=0.32, 1 /3, and 0.35 �from �a� to �c�	. The
Fano profiles at kL1 / �2��
1.5 and 3 are seen to collapse when the
impurity is located at X1 /L1=1/3.
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and ���	�, and also assumming that ṽ1�v1 / ��n1+n2��	 is
at most of the order of 1, we can expand the numerator C and
denominator D to obtain an approximate transmission ampli-
tude A3. To the lowest nonvanishing order,

A3 �
�− 1�n1

1 + iṽ1

� − 2ṽ1�2

�� −
2ṽ1�2

1 + ṽ1
2� + i

2ṽ1
2�2

1 + ṽ1
2

. �16�

The zero of the numerator is seen to occur at �=2ṽ1�2, while
the zero of the real part of the denominator is seen to occur at
�=2ṽ1�2 / �1+ ṽ1

2�. The locations of the two zeroes do not
coincide as long as ṽ1 and � are nonzero, and such situation
of detuned zero locations corresponds to the case of a non-
zero Fano parameter q. Since �1+ ṽ1

2��1, when ṽ1�0 �the
impurity is repulsive�, the peak appears to precede the dip; if
ṽ1�0 �the impurity is attractive�, the order of appearance of
the peak and dip is swapped. This property is probably us-
able in the design of mesoscopic spin filters. For instance, if
the impurity potential is spin dependent, e.g., it is provided
by a magnetic impurity or magnetic scanning tunneling mi-
croscopic tip, the transmission dip of the spin up �down�
electrons may coincide with the transmission peak of the
spin down �up� electrons. Therefore, at this incident energy,
the device is a spin filter. The overall width of the resonance
depends neither on the sign of the impurity potential �ṽ1� nor
the detuning ���.

What we have learnt up to now is that the existence of
SWR in the ring provides only the possibility of dip or peak-
dip resonance in the transmission. Eventually, whether the
resonance will occur or not is contingent on the commensu-
rability of the system parameters. In the case of commensu-
rate system parameters, some would-be dips which meet the
condition of perfectly constructive 2PI will have infinitely
small widths, and the resonances are removed. In contrast,
the conventional Fano resonance2 and Breit-Wigner �BW�48

resonance are robust against slight tuning of the system pa-
rameters.

The case of two impurities on the ring resembles very
much the cases of no impurity and one impurity. The Fano
profile also collapses when it meets the perfectly construc-
tive 2PI condition. We will consider the case of each arm
with one impurity embedded. The impurity scatterings are
described by M1 and M2, where M1 is the same as that in
Eq. �15�, and M2 is obtained from M1 by the substitution
X1→X2 and V1→V2. Vi�i=1,2� is the strength of an impu-
rity, and Xi is the location of an impurity in the coordinate xi
on arm i. In such an arrangement, the two leads are always
separated by the impurities. When both impurities are away
from the Y junctions, the potential defines an open resonant
cavity in the ring but not a closed dot. We will use the di-
mensionless parameter vi�mL1Vi�2��2�−1 to characterize
the strengths of the impurity potentials �note that we have
used L1 in the definitions of both v1 and v2�.

Figure 6 shows the transmission probability for the cases
of symmetric and asymmetric potentials on the arms. For a
symmetric arrangement of the arms, i.e., v1=v2, X1=X2, and
L1=L2, only broad structures are seen. But when the poten-
tials on the arms are asymmetric, e.g., either X1�X2 or v1

�v2, Fano profiles are seen. The almost-perfect transmission
peaks in the Fano profiles at low energies are rather surpris-
ing since the two leads are separated by the � potentials on
both arms. In a 1D system, there is no perfect transmission
through a single �-potential barrier at finite energy, whereas
perfect transmission through a double �-potential barrier at
finite energy is possible, since the barriers create quasibound
states in between them and BW resonant tunneling can take
place. In our cases for Fig. 6, no region between the leads is
enclosed by the repulsive potentials and therefore one usu-
ally does not expect any perfect transmission at finite energy.
It is thus seen that the doubly connected 1D system behaves
differently from the singly connected 1D system. The fact
that the Fano profile appears only at asymmetric potentials
on the arms indicates that the profiles are intimately related
to the constructive 2PI between the arms. This is similar to
the case in which L1�L2 but no potential is added onto the
arms studied in Fig. 2.

The collapse of the Fano profile also occurs in other
cases, particularly in cases where the system parameters are
commensurate. Figure 7 illustrates the collapse at a particular
wave number using a system with L2 /L1=2/3, X1 /L1=1/3,
and X2 /L2
1/2. To work out rigorously all the wave num-
bers at which the collapse can occur would be difficult due to
the complexity of C and D �see Eq. �10�	, but an ansatz

FIG. 6. Fano profiles are seen in the transmission probability T
when the symmetricity of the two arms are disturbed. To illustrate
this, we have plotted T versus the dimensionless wave number
kL1 / �2�� for the case of L1=L2�L, and two impurities with
strengths v1,2 at X1,2. The case of symmetric arms are illustrated by
�a� X1 /L=X2 /L=0.3 and v1=v2=1; whereas the case of asymmetric
impurity strengths are illustrated by �b� X1 /L=X2 /L=0.3, v1=1,
and v2=2; and the case of asymmetric impurity locations are illus-
trated by �c� v1=v2=1, X1 /L=0.3, and X2 /L=0.35.
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similar to that in Sec. III B is seen to work well. It can be
verified by direct substitution that at a k which simulta-
neously meets the conditions kLi=ni�, kXi=ni��, where ni
and ni� are integers �i=1,2�, and n1+n2 is even �i.e., k�L1

+L2�= �even integer���	, both C and D vanish, but the
transmission amplitude A3=C /D= �−1�n1�1+ im�V1+V2� /
��2k�	−1 is nonzero. Due to this mathematical structure, a
zero transmission is anticipated at this k when any one of the
system parameters, the impurity locations or arm lengths, is
detuned. An illustration of the above mathematics is given in
Fig. 7, and the resonance is seen to be a peak-dip pair. Since
the above conditions for k also imply k�L1−L2�=integer
�2�, which is a perfectly constructive 2PI, this again sug-
gests that the phenomenon is related to the SWR and 2PI on
the arms.

IV. CONCLUDING REMARKS

We have studied in this paper the ballistic transport
through a 1D ring in the regime of a comparable particle’s
wavelength and a ring’s dimension. In all cases, repulsive �
potentials are used, and no two � potentials are placed on the
same arm so that they do not create quasibound states. Nev-
ertheless, a Fano profile can still be found and is shown to be

related to the standing-wave states in the ring. The Fano
profiles encountered in this paper grow or collapse by chang-
ing their widths, but not by changing their dips’ depths or
peaks’ heights. We also have checked the case of attractive
impurity potentials, and we have found that the results are
qualitatively the same.49

In our study, several aspects of the Fano resonance are
examined. Firstly, well-defined quasibound states which are
weakly coupled to a continuum of states may not be neces-
sary for the observation of the resonance. In other words,
though the simultaneous presence of resonant and nonreso-
nant processes in a physical process results in a Fano
profile,2 it might not be true to say that the observation of a
Fano profile always implies the simultaneous presence of
resonant and nonresonant processes in the underlying mecha-
nism. Moreover, in our study the resonances are identified as
the standing waves on the entire ring but not on only one of
the arms �paths�. Hence there is no clear distinction between
the “resonant” and “nonresonant” paths. Secondly, commen-
surability is an important factor in the occurrence of the Fano
profile. When the system parameters are commensurate, the
Fano profiles at some energies can disappear by collapsing
their widths to zero. Hence the presence of standing-wave
resonance in the ring does not guarantee the occurrence of
the Fano profile. Since the commensurability is found to be
related to the constructive 2PI between the two arms, the
width of the profile is seen to be controlled by the 2PI. While
collapse of the Fano profile is also seen in the theoretical
investigations of more complicated systems,32,35 in the study
of our exceedingly simple system, the collapse can be further
seen as a result of the constructive 2PI. The abrupt occurence
or collapse of the profile also indicates that the problem
might not be equivalent to the conventional one discussed by
Fano,2 since a slight change in the system should not create
or remove any quasibound states, or change their lifetimes
dramatically. In our case, the prominent behaviors of the
transmission probability are seen to be related to the SWR
and 2PI. How the understanding of this simple system can be
related or extended to the case of more complicated systems
will be an interesting subject.

The sensitivity of the Fano profile to the device geometry
and spatial details of the potential may imply that a naive
tight-binding formulation of the quantum coherent device is
not always viable. For instance, if a potential barrier is sim-
ply modeled by a hopping integral, or a resonance state is
simply modeled by a zero-dimensional state, the spatial in-
formation of the device will be lost, and the consequences of
the commensurability of the system parameters will be gone.
We point out that such sensitivity of the resonance might be
useful in the design of mesoscopic electrical switches, with
the impurity potential provided by, e.g., a movable scanning
tunneling microscopic tip.

We have left out some issues. For instance, the finite
width of the transport channel has not been considered. We
believe the Fano profile will be still present �e.g., see a re-
lated study in Ref. 50�, and the question is just how it will be
reshaped. Another issue is how the Fano profile will be af-
fected by the inelastic dephasing process along the transport
channel. These issues will be deferred to a later project.

FIG. 7. Collapse of the Fano profile can also occur at more
complicated system arrangements, as long as the system parameters
are commensurate. For instance, we have plotted the transmission
probability T versus the dimensionless wave number kL1 / �2�� for
the case in which L2 /L1=2/3 and an impurity is placed on each
arm. The strengths of the impurities on arms 1 and 2 are arbitrarily
chosen as v1=1 and v2=1.3 respectively. The location of the impu-
rity on arm 1 is chosen as X1 /L1=1/3, while the location of the
impurity on arm 2 is chosen as X2 /L2=0.48, 1 /2, and 0.52 �from �a�
to �c�	. We note that the Fano profile at kL1 / �2��
3 collapses at
approaching the commensurate location X2 /L2=1/2.
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