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Representing Images Using Points on Image Surfaces
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Abstract—This paper presents a new approach to represent
an image by “verge points,” which are defined as high-curvature
points on the image surface. This representation offers a compact
and reversible way to preserve the essence of the original image.
Various applications, such as compression, edge detection, image
enhancement, and image editing, can be achieved based on this
representation. In this paper, the whole procedure for verge point
representation is presented. Based on these verge points, image
reconstruction can be easily achieved via iterative linear interpo-
lation. These extracted verge points with compatible properties
are further linked into verge curves to offer more compact repre-
sentation. Progressive representation is also developed based on a
multiscale extraction scheme. Some potential applications are then
presented to demonstrate the versatility of this representation.

Index Terms—B-spline approximation, differential geometry,
edge detection, image compression, image editing, image enhance-
ment, image representation, image surface.

I. INTRODUCTION

T RADITIONALLY, the raw data of an image are often
recorded in array form, with each array element rep-

resenting the achromatic and/or chromatic information at a
corresponding image pixel. In many applications, a direct use
of this form may face two major drawbacks: bulkiness and
inefficiency. The first drawback comes from the large number of
pixels involved in an image, while the second drawback comes
from the fact that the spatial features, like boundaries and smooth
regions, are not explicitly specified. To find a more effective way
to represent images, plenty of methods have been proposed in
the literature. For example, boundary-based methods, like chain
code and signature [1]–[3], have been proposed to describe an
image in terms of object boundaries. Region-based methods, like
quadtree decomposition [4], [5], have been proposed to describe
an image in terms of smooth regions. Transform-based methods,
like discrete cosine transform (DCT) and discrete Fourier trans-
form (DFT) [6]–[8], have been used to describe an image in
terms of its transform coefficients. Multiresolution methods,
like Gaussian pyramid and wavelet decomposition, have been
proposed to describe an image in hierarchical forms [9]–[11].
Each representation has its strong points and its suitable appli-
cations. In recent years, new methods are still emerging, trying
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to offer new ways to effectively represent images. For example,
in [12], an image is represented in an edge-based approach by
parametrically modeling relevant image surface variations. An
approximation of the original image can be reconstructed under
the framework of regularization theory. In [13], singular fractal
components are used to represent images. In [14], an image
is represented by Gaussian Markov random field parameters
in a multiresolution way. In [15], the components obtained by
multiscale differential operators are used to represent images.
In [16], multiscale edges, accompanied with a suitable wavelet
model, are used to decompose an image. In [17], a set of block
pattern models that satisfy certain image variation constraints
are used to represent images.

In this paper, we propose a new image representation, which
is based on “verge points” on image surface. With this repre-
sentation, image data can be greatly reduced. A visually similar
approximation of the original image can be reconstructed from
these verge points via iterative linear interpolation. This repre-
sentation can also be applied to various applications, like image
compression, edge detection, image enhancement, and image
editing. In this paper, the basic concept of verge points is intro-
duced in Section II first. Then, the extraction of verge points is
described in Section III. In Section IV, we discuss the reconstruc-
tion of image using verge points. We also discuss the B-spline
representation that may further condense the data. In Section V,
we present a few potential applications of this representation,
like image compression, edge detection, image enhancement,
and image editing. Finally, in Section VI, we conclude this paper.

II. CONCEPT OF VERGE POINTS

We first discuss the concept of verge points from the view-
point of a one-dimensional (1-D) intensity profile. Fig. 1(a)
shows an intensity profile extracted from a real image. Fig. 1(b)
shows the edge points extracted from this profile. Traditionally,
these edge points are used as the major features of the profile.
Based merely on these edge points, however, the reconstruction
of the original image is not an easy task. In [12], several edge
parameters, like contrast, width, and edge center, are recorded
and the image reconstruction is achieved via a regularization
algorithm. In [16], a multiscale edge representation is adopted
and the image reconstruction is achieved via an iterative projec-
tion algorithm. In this paper, we propose the use of some other
features that can effectively represent an intensity profile. Here,
we imagine this intensity profile as an elastic string stretched
by a few pulleys, as shown in Fig. 1(c). Conceptually, these
pulleys locate at highly curved places, and the radius of each
pulley is inversely proportional to the local curvature of the
profile. The location and size of these pulleys offer sufficient
information to describe the outline of the profile. As shown in
Fig. 1(d), both step edges and ridges can be well represented in
this manner.

1057-7149/$20.00 © 2005 IEEE
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Fig. 1. Concept of verge points. (a) Original profile. (b) Edge points on the profile (marked as “ ” signs). (c) Profile emulation using an elastic string and a few
pulleys (verge points). (d) Verge point representation for (left) step edges and (right) ridges.

Fig. 2. (a) Original pulleys. (b) Reconstructed profile with the sign of the right pulley being incorrectly recorded. (c) Reconstructed profile with the position of
the right pulley being incorrectly recorded. (d) Reconstructed profile with the radius of the right pulley being incorrectly recorded.

Intuitively, to describe a pulley, three parameters are needed:
pulley position, pulley radius, and pulley sign. The definition of
pulley sign is based on the sign of profile curvature at that pulley.
A positive pulley bends down the string to form a convex arc;
while a negative pulley bends up the string to form a concave arc.
To derive a more compact form to represent pulleys, an intuitive
analysis is illustrated in Fig. 2 to evaluate the impact of these three
parameters. In Fig. 2(a), a profile reconstructed from two pulleys
with opposite signs (a positive and a negative) is illustrated. Fig.
2(b)–(d) shows the reconstructed profiles when one parameter of
the right pulley is mistakenly recorded. It can be seen that both
pulley sign and pulley position are crucial for profile represen-
tation, while the size of pulley is less critical for profile recon-
struction as long as the position of the tangential point can be ac-
curately located. Based on this observation, we may shrink pul-
leys down to their tangential points. In this paper, these tangen-
tial points are called the “verge points” of the profile. With this re-
duction, the number of pulley parameters is reduced from three to
two. Actually, the sign of verge point is no longer needed in pro-
file reconstruction. However, for the sake of image analysis and
image enhancement, we still preserve this sign information.

Once the major verge points of a profile are extracted, these
points can be used to detect edges. An edge on the profile is
a place where the imaginary elastic string is heavily deformed.
The edge strength can be defined as the deformation per unit

length of the stretched string. In material mechanics, the defor-
mation per unit length is defined as strain. Assume the
distance between two adjacent verge points is and the in-
tensity difference between these two verge points is . Then,
the strain between two verge points can be estimated by

. This strain parameter can serve as a parameter to
perform edge detection.

III. EXTRACTING AND LINKING OF VERGE POINTS

A. Extraction of Verge Points

The concept of verge points can be extended to represent
two-dimemsional (2-D) images. Since the curvature informa-
tion on an image surface is orientation-dependent, we may not
simply extend the pulleys from 2-D circles to three-dimem-
sional (3-D) balls. Here, we treat the image surface as a plastic
cloth stretched by 3-D pipes. By placing pipes at high-curvature
points, the stretched rubber cloth emulates the image surface.

In differential geometry, these high-curvature points happen at
thepositionswhereat leastoneof the twoprincipal curvatureshas
a large enough magnitude [18]. For an image surface in the form
of , the directions of these two principal curvatures
can be deduced by calculating the eigenvalues and eigenvectors
of (1), shown at the bottom of the page [18]. In this paper, we de-
note as the eigenvalue with the larger magnitude and de-

(1)
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Fig. 3. Comparisons between A and H, in terms of SNR performance. (a) Step-edge image polluted by white Gaussian noise with � = 2. (b) A transversal profile
of (a). (c) Computed curvature profile based on Matrix A. (d) Computed curvature profile based on Hessian H. (e) Expected jkj profile without noise interference
(cyan) and the standard deviation of j�kj (pink and yellow), based on Matrix A. (f) Expected jk̂j profile without noise interference (red) and the standard deviation
of j�k̂j (green and blue), based on Hessian H (remark: � = 1 for this simulation).

note as the corresponding eigenvector of . On
the contrary, is the eigenvalue with the smaller magni-
tude and is the eigenvector for . Here, and
denote the first derivatives of , while and de-
note the second-order derivatives. To suppress noise, we incorpo-
rate the Gaussian smoothing operation into these differentiation
operators. That is, these derivatives are calculated as

and so on. Here, denotes the Gaussian smoothing
function

and the symbol “ ” denotes the convolution operation. In this
paper, we choose . A larger produces better
noise suppression but, at the same time, distorts the signal more,
and vice versa.

In practice, however, the calculation of principal curvatures
based on (1) has a poor SNR performance. Fig. 3 illustrates such
a phenomenon. Fig. 3(a) shows an image of step edge polluted



1046 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 8, AUGUST 2005

by white Gaussian noise with and Fig. 3(b) shows the
traversal profile of Fig. 3(a). Fig. 3(c) shows the estimated
profile based on Matrix . It appears that the curvature esti-
mation is so noisy that the detection of verge points becomes
extremely difficult.

In our approach, the Hessian matrix is used for the esti-
mation of principal curvatures. The Hessian ignores all the
first-order terms in and is expressed as

(2)

Similarly, the eigenvalues of are used as the estimation
of principal curvatures. Fig. 3(d) shows the estimated pro-
file based on . It can be seen that the use of , instead of

, offers a much improved signal-to-noise ratio (SNR) in es-
timating principal curvatures. To give a quantitative descrip-
tion of this phenomenon, we compare and in terms of
their SNR performance. Without loss of generality, we discuss
the case of a vertical step edge as shown in Fig. 3(a). Assume
the principal curvatures estimated from and are denoted
as and , respectively. As indicated in Appendix B,

and . Due to the existence of
in the denominator of , the peak value of is usually much

smaller than that of . On the other hand, due to image noise,
there are fluctuations in the estimations of and . It is proved
in Appendix B that

and around the edge region; while

around smooth regions. With and
, the Hessian does provide a

better SNR performance than . All these formulae have been
verified via computer simulations. Fig. 3(e) and (f) illustrates
the computed profile and profile, together with the
standard deviations of and , for this step image in
Fig. 3(a). These two figures verify that the SNR performance
of is superior to that of .

In addition to Matrix and Hessian , there exist some other
methods for curvature estimation. For example, in [19], a param-
eterized curvilinear model is used and curvatures are estimated
by minimizing the residual energy measured along the model
gradient. In [20], an -dimensional estimator is proposed to es-
timate curvatures in images of higher dimensions. Hence, the
curvature estimation method adopted in this paper can be con-
sidered as an independent module and can be replaced by alter-
native curvature estimators.

To obtain the verge points of an image , we check at
each pixel the value of . If is a local max-
imum, that pixel is marked as a candidate of verge points. Due
to image noise, plenty of candidates are actually false alarm and

we need a threshold to remove them. The use of a larger
suppresses false alarms but, at the same time, suppresses

the detection of many image details. On the contrary, the use
of a smaller allows more tiny features to be detected but, at
the same time, creates more false alarms. In our approach, we
choose this threshold based on the statistical distribution of false
alarms. Over smooth regions, is presumed to be zero.
Due to image noise, actually fluctuates around zero.
Once exceeds , a candidate of verge point is mis-
takenly detected. Based on the formulae deduced in Appendix
B, we have

(3)

and

(4)

Hence, once the noise power in the image can be esti-
mated, can be chosen to be . Here, is
to be determined by the user. A typical choice of is 2 or 3.
Moreover, to estimate , there exist several noise estimation
methods in the literature [21]–[23]. In this paper, we adopt the
method proposed in [21]. In [21], an image is assumed to con-
tain Gaussian distributed noise and has sufficient background
area. Under these assumptions, the fluctuations in the gradient
components and follow the Gaussian distribution and
are closely related to . Moreover, the pdf (probability den-
sity function) for the magnitude of the gradient fol-
lows a Rayleigh-like distribution. By detecting the peak of the
Rayleigh pdf, the fluctuations of gradient components can be es-
timated and can, thus, be deduced. For the 256 256 Lena
image used in this paper, is estimated to be 2.1. If we choose

, then the threshold is set to be if , or
if . Fig. 4(a) shows a 256 256 Lena image.

Fig. 4(b) shows the calculated from , with positive
values in red and negative values in green. Fig. 4(c) shows the di-
rections of . Fig. 4(d) shows the extracted verge points
after thresholding. In this simulation, we choose and

.

B. Linking of Verge Points

Once verge points are extracted from a 2-D image, these verge
points can be further linked into “verge curves.” These verge
curves not only reflect the shapes of objects in an image, but also
allow an easier manipulation of the image surface. In addition,
it costs less to represent a linked curve than to represent a whole
set of verge points.

To link verge points into verge curves, a two-phase linking
scheme similar to the hysteresis approach used in the Canny
Operator [24] is adopted. In the first phase, verge points with

larger than are to be linked first. Adjacent verge points
at and are linked into curves if they satisfy the
constraints on curvature sign and angle difference ; that is,
we test whether

and

(5)
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Fig. 4. (a) Original image (256 by 256). (b) k̂ (x; y) calculated from H, with positive curvatures in red and negative curvatures in green. (c) Eigenvectors
� (x; y) around Lena’s shoulder. (d) Extracted verge points. (e) Verge curves represented in terms of intensity values.

The first constraint means these two verge points need to have
the same sign of curvature. The second constraint reflects the
requirement for curve shape. The use of a larger generates
long, but sometimes curvy, verge curves. The use of a smaller

generates smooth, but sometimes short, verge curves. The se-
lection of influences the shape of linked curves, but has little
impact on reconstruction quality. In our approach, we prefer
smooth linking and set to be empirically. In the second
phase of linking process, we extend the endpoints of linked
curves to further link these candidates with smaller than

. Similar to the first phase, we still apply the constraints of
(5) for curve linking.

The verge curves finally extracted are shown in Fig. 4(e). In
Fig. 4(e), these linked verge curves are represented in terms of
their intensity values. It can be seen that Fig. 4(e) offers a com-
pact way to represent the original image. As will be shown in
the next section, a reconstruction of Fig. 4(a) based on 4(e) can
be achieved via simple iterative linear interpolation.

IV. IMAGE RECONSTRUCTION AND DATA REPRESENTATION

A. Image Reconstruction

After extracting verge curves, these linked curves can be
imagined as 3-D pipes in the space. These 3-D
pipes record the critical positions of the image surface, while
the nonverge-curve parts of the image surface can be imagined
as smooth patches stretched by these 3-D pipes. Although
there may exist several ways to interpolate the nonverge-curve
parts of the image surface, we aim for a simple interpolation
approach for the reconstruction of image surface based on these
extracted verge points. In Fig. 5(a), we show the reconstructed
image by linearly interpolating the intensity values of the verge

points in Fig. 4(e) to fill in the nonverge-curve parts of the
image. Here, the interpolated intensity value at a target pixel is
computed as

where (6)

In (6), denotes the interpolated intensity value at the target
pixel, denotes the intensity value at , which is the nearest
verge point searched along one of the four directions (up, down,
left, and right), and s denote the weightings that are inversely
proportional to the distance between and the target pixel. This
linear interpolation is fast in computation but may generate a
less smooth image.

To achieve a smooth reconstruction, the iterative interpolation
scheme proposed by Itoh is adopted [25]. With Itoh’s approach,
the pixels next to these verge points are linearly interpolated
first, using the same equation in (6). These newly interpolated
pixels are then used as reference pixels to interpolate their neigh-
boring pixels. The same procedure continues until no further
pixel needs to be processed. The interpolation results of the first
few iterations are shown in Fig. 5(b)–(f), and the final result is
shown in Fig. 5(g). Compared with the straightforward linear in-
terpolation method, the iterative linear method offers smoother
reconstruction and is less sensitive to the missing or adding of
verge points. The difference between the original image and the
iteratively reconstructed image is shown in Fig. 5(h). Most dif-
ferences appear around edges or lines. Moreover, even though
there is a large difference over the upper arm of Lena, the pro-
duced distortion is not visually apparent as long as the original
image is not to be placed side by side with the reconstructed
image.
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Fig. 5. (a) Reconstructed image using direct linear interpolation. (b)–(f) Reconstructed images in the first few iterations of the iterative linear interpolation.
(g) Final result using iterative linear interpolation. (h) The difference image between the original image and the reconstructed image in (g).

Conceptually, the selections of neighboring verge points for
interpolation should depend on the direction of verge curve. A
more reasonable way is to perform the interpolation process
along the direction perpendicular to the verge curve. However,
this type of interpolation will be cumbersome and technically
difficult. Fortunately, according to our observations, neigh-
boring verge points with the same curvature sign tend to have
similar intensity values. With the property, different selections
of neighboring verge pairs have less impact over the quality
of the reconstruction results. Moreover, with the use of the
iterative scheme, the reconstruction quality becomes even less
sensitive to the selection of verge pairs. Hence, in our approach,
we simply choose the vertical direction and horizontal direction
as the directions for the interpolation process.

The intensity values of these verge points can be further quan-
tized without producing significant impact on the quality of re-
constructed images. In Fig. 6, we quantize the intensity values
at these verge points into 2, 4, 8, 16, 32, 64, 128, and 256
levels, respectively. The eight reconstructed images based on the
quantized intensity values are shown in Fig. 6(a). The relation
between the quantization level and peak signal-to-noise ratio
(PSNR) of these reconstructed images are shown in Fig. 6(b).
Here, PSNR is defined as

PSNR
MSE

(7)

with denoting the maximally allowed intensity value and
MSE denoting the mean square error between the original
image and the reconstructed image. For an 8-bit gray-level
image, . In Fig. 6(b), it appears the PSNR remains
steady if the quantization levels are larger than 16. Moreover,
even though the 2-level quantization produces a fairly poor
PSNR, the reconstructed Lena image still offers a rich descrip-
tion of the original image.

B. Reconstruction for Color Images

The concept of verge points is also applicable to color images.
To extract verge points and verge curves from a color image,
the original color image is first decomposed into three compo-
nent images. Then, the image surface of each component image
is processed separately. Oppositely, to reconstruct the original
image from image verges, the image surface of each compo-
nent image is reconstructed first and then all three reconstructed
image surfaces are combined together to obtain the final color
image.

In this paper, we choose CIE as the color space to
demonstrate the feasibility of color image reconstruction. In this
color space, represents the achromatic component, while
and represent the chromatic components. The conversion
between RGB and CIEL can be found in color related
books, like [26]. Fig. 7(a) shows the original color image. This
color image is decomposed into , and component im-
ages first. Then, verge points are extracted for each component
image. Fig. 7(b) shows the reconstructed color image using all
the verge curves extracted from these three component images.
It can be seen that a visually similar reconstruction of the orig-
inal color image is achievable.

C. B-Spline Curve Representation

As mentioned above, these extracted verge curves offer an
effective way to represent images. Since the linked verge curves
are usually smooth, we can further compress these verge curves
by using B-spline approximation [27], [28]. With the B-spline
approximation, each verge curve can be represented by a small
number of control points.

In our approach, each verge curve is decomposed into
the shape component and intensity component, as shown in
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Fig. 6. (a) Comparison of reconstructed images. The intensity values at the verge points are quantized into 2, 4, 8, 16, 32, 64, 128, and 256 levels, respectively
(from upper left to lower right). (b) The PSNR value of these reconstructed images.

Fig. 7. (a) Original color image (256� 256). (b) Reconstructed color image under CIE L a b color space, using 16 812 verge points for L , 12 537 verge
points for a , and 14 416 verge points for b .

Fig. 8(a) and (b). For the shape component, we adopt the shape
coding algorithm proposed in [29]. In [29], a third-order uniform

B-spline curve approximation is adopted, and the positions of
control points are calculated using a weighted directed acyclic
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Fig. 8. B-spline approximation. (a) Shape component (C: shape control points; k: knots). (b) Intensity component (I: intensity control points; k: knots).

Fig. 9. (a) Reconstructed gray-level image using B-spline approximation (2957 control points). (b) Reconstructed color image using B-spline approximation
under the CIE L a b color space. (L : 3173 control points, a : 2783 control points, and b : 2974 control points).

graph. To reconstruct the intensity value in a given verge curve,
we use the same knot vectors used for shape coding and calculate
the arc length of each knots. For the approximation of intensity
component, the horizontal positions of the control points are set
as the arc length of each knot. The vertical position of control
points are then calculated using least square fitting.

In the B-spline representation, these control points are used
to represent verge curves. That is, the original list of verge
points is replaced by the list of control points. Since is
usually much less than , this representation provides an even
more compact form for the original image. On the other hand,
since the B-spline representation is only an approximation to
the original verge curve, larger distortion is expected in the re-
constructed image. However, this distortion can be properly re-
stricted by setting an upper bound over approximation errors.
Fig. 9(a) and (b) shows the reconstructed images based on the
B-spline representation. These two images are still visually sim-
ilar to the original images. In addition, due to the affine invariant

property of B-spline curve, this B-spline representation is ex-
pected to be very suitable for spatial image scaling.

As mentioned above, both verge curve representation and
B-spline representation offer effective ways to represent images.
A straightforward approach to record verge curves is a hierar-
chical data structure as illustrated in Fig. 10. At the top layer,
the verge curves for the component image, component
image, and component image are stored separately. Take the
set of verge curves as an example; the total number of verge
curves is recorded first, followed by the sequence of verge curves.
For each verge curve, the curvature sign and the total number
of linked verge points are recorded first. Then, for each verge
point, its coordinates are recorded as , , and ,
respectively. To achieve better compactness, only the first verge
point of each verge curve is coded with the original value, while
the remaining verge points are coded in a differential manner.
For B-spline curve representation, a similar data structure can be
adopted, with these verge points being replaced by control points.
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Fig. 10. Data structure for the storage of verge curves.

Fig. 11. Progressive image reconstruction. (a) Using “top-layer” verge curves only; totally, 8219 verge points. (b) Using “top-layer” and “middle-layer” verge
curves; totally, 11 523 verge points. (c) Using all verge curves; totally, 15 926 verge points.

D. Progressive Image Representation

To represent verge curves in a progressive way, a multiscale
approach proposed in [30] is adopted. Here, we further modified
that method to support progressive transmission. In the modi-
fied approach, the original image is decomposed into a three-
layer Gaussian pyramid, with pixels in the top layer,

pixels in the middle layer, and pixels in the
bottom layer. The feature extraction and linking processes are
first performed over all three layers separately. Then, the inter-
layer mappings between every pair of adjacent layers are exam-
ined in a top-down order, based on a curve-based strategy. Take
the interlayer mapping between the top layer and the middle
layer as an example. Given a verge curve on the top layer,
all its 8-connection neighboring pixels are labeled with the cur-
vature sign of that verge curve. These labeled pixels are upsam-
pled by a factor of two to form corresponding areas in
the middle layer. Then, in the middle layer, all these verge points
locating within are examined to see whether they pos-
sess the same curvature sign as . Those verge points with
the same sign are considered to be mapped from . If half
verge points of a curve in the middle layer are mapped from ,
that curve is considered to be mapped from and is tagged
as a “top-layer” curve. On the other hand, if no verge curve is
identified within , the feature detection and linking pro-

cedures are applied over again with a larger mask sigma
(e.g., ). Once new verge curves are extracted within ,
the procedure mentioned above is repeated again to tag these
newly generated curves. After having identified all “top-layer”
curves in the middle layer, the remaining curves are tagged as
“middle-layer” curves. That is, all the curves in the middle layer
are classified into “top-layer” curves and “middle-layer” curves.

Similarly, the mapping process is applied between the
middle layer and the bottom layer to classify verge curves
in the bottom layer into “top-layer” curves, “middle-layer”
curves, and “bottom-layer” curves. After having classified all
verge curves into these three different classes, different levels
of image quality can be achieved by arranging the order of
transmission, with “top-layer” curves first while “bottom-layer”
curves last. With this arrangement, the capability of progres-
sive reconstruction can be achieved as shown in Fig. 11. In
Fig. 11(a), only “top-layer” verge curves are used to recon-
struct the Lena image. This reconstructed image catches a
gross outline of Lena, but lacks plenty of details. As the verge
curves tagged to “middle-layer” curves and “bottom-layer”
curves are transmitted, more and more details are revealed,
as shown in Fig. 11(b) and (c), respectively. Furthermore, for
verge curves of the same class, curve contrast may also be used
as an indicator to determine the order of transmission, with
large-contrast curves first while small-contrast curves last. With
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Fig. 12. (a) Relation between storage requirement and PSNR for different Tks, based on the verge curve representation (test image: 512� 512 Lena image).
(b) Relation between storage requirement and PSNR for different Tks, based on the B-spline curve representation (test image: 512� 512 Lena image).

Fig. 13. Illustrations of two different compression algorithms. (a) Reconstructed image using the proposed method; compression rate = 31:12; PSNR = 28:67.
(b) Reconstructed image using JPEG compression, compression rate = 31:08; PSNR = 30:65.

curve tag and curve contrast as the indicators, different levels
of image quality can be achieved at different bitstream sizes. In
Fig. 12(a), we show the PSNR of the reconstructed image with
respect to the required bitstream size at different selections
of curvature threshold . In Fig. 12(b), we further show the
relation between PSNR and the required bitstream size for the
case of B-spline curve representation.

V. POTENTIAL APPLICATIONS

As mentioned in previous sections, the verge curves extracted
from an image, or the B-spline control points computed from the
verge curves, offer a new way for image representation. The fact
of being able to reconstruct a visually similar image indicates
that these verge curves must have kept the essence of the original
image. Hence, these verge curves may not only be used for image
representation, but also be used to manipulate or analyze the
shape of image surface directly. In this section, we mention some
potential usages of verge points/curves in various applications.

A. Feature-Based Image Compression

As mentioned in Section IV, 3-D verge pipes are decomposed
into shape components and intensity components. The control
points of the shape components can be differentially encoded
using a modified chain code and a run-length coding [29]. In
addition, as mentioned in Section IV, the image visual quality
only drops slightly when the intensity values at the verge points
are quantized down to 5 bits. After quantization, the dynamic
range of differential coding is greatly reduced. Hence, based
on B-spline representation, we have further developed an ef-
ficient compression algorithm. The reconstructed image using
this compression scheme is shown in Fig. 13(a) with PSNR of
28.67 dB and compression rate of 31.12. As a comparison, the
image compressed by JPEG is shown in Fig. 13(b) with PSNR
of 30.65 dB and compression rate of 31.08. Even though there
is a 2-dB difference in PSNR, the visual quality of Fig. 13(a) is
quite similar to that of Fig. 13(b).
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Fig. 14. (a) Edge detection based on verge points. (b) Edge detection based on the Canny Operator, where � is set as 1 and the low- and high-hysteresis thresholds
are set as 0.0375 and 0.0938, respectively. (c) Edge detection based on the Canny Operator, where � is set as 2 and the low- and high-hysteresis thresholds are set
as 0.0375 and 0.0938, respectively. The gray-level value represents the edge strength. The averaged edge strengths of these three figures are adjusted to be equal.

Fig. 15. Illustrations of image manipulations using verge points. (a) Reconstructed image with the original contrast. (b) Edge-enhanced image. (c) Image edited
by changing the gray level of a region at the lower right corner. (d) Image edited by changing the shape of mouth and the shape of a region at the lower right corner.

B. Edge Detection

As mentioned in Section II, we can use the intensity slope
(strain ) between adjacent verge points to detect edges on a
1-D profile. Similarly, for a 2-D image, we can also use verge
points to detect edges. For example, for a verge point with
sign on an image, we search along eight different directions

for adjacent verge points with opposite sign. We measure the
strain for each possible pairs and select the pair with the max-
imum strain. If the intensity slope of the selected pair is above a
preselected threshold, an edge is detected and the middle point
of that pair is marked as an edge point. Fig. 14(a) shows the sim-
ulation result of this primitive edge detector, where and

. As a comparison, edges detected by the well-known
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Canny Operator are shown in Fig. 14(b) and Fig. 14(c), with the
scale parameter being set as 1 and 2, respectively. These results
are obtained using the Canny detector tool offered in Matlab 6.0.
In this simulation, the low- and high-hysteresis thresholds of the
Canny Operator are automatically set as 0.0375 and 0.0938, re-
spectively. It can be seen that, even with such a primitive oper-
ator, the performance of edge detection is comparable to that of
Canny Operator.

C. Feature-Based Image Enhancement and Editing

These verge points can also be used for contrast enhance-
ment and sharpness enhancement. For an intensity boundary
in an image, two verge curves with opposite sign are detected
along the boundary curve. For these two verge curves, their in-
tensity difference determines the contrast of the boundary, while
their intensity slope determines the sharpness. Hence, to en-
hance contrast, we may simply enlarge the intensity difference
between these two verge curves. To soften contrast, we may
shorten the intensity difference between these two verge curves.
To enhance sharpness, we may shorten the spatial distance be-
tween adjacent verge curves of opposite sign. In Fig. 15(a) and
(b), we show the reconstructed Lena image and the edge-en-
hanced image, respectively.

Since verge curves preserve the shapes and contrast of ob-
jects, an interactive image editing can also be performed by ma-
nipulating the positions and altitudes of verge curves. For ex-
ample, the removal of an object in an image can be done by
simply removing the verge curves of that object. To adjust the
gray level or color of an object, we can adjust the altitudes of the
corresponding verge curves. In addition, image warping can be
performed by adjusting the positions of B-spline control points.
In Fig. 15(c) and (d), we demonstrate gray-level adjustment and
shape editing over the Lena image, respectively.

VI. CONCLUSION

This paper proposes a new approach to represent images. This
representation is inspired by emulating an image surface with a
rubber cloth stretched by 3-D pipes. The whole procedure is de-
veloped with the aid of differential geometry to extract verge
points from image surfaces. The extracted verge points with
compatible properties are linked into verge curves. These ex-
tracted verge points offer an effective way to extract spatial fea-
tures, like edges, of the original image. In addition, the extracted
verge curves can be further compressed using B-spline approx-
imation. Based on the extracted verge curves or the computed
B-spline control vertices, the original image can be well recon-
structed. Potential applications, such as compression, edge de-
tection, image enhancement, and image editing, are also briefly
presented. These simulation results have demonstrated the ver-
satility of this proposed representation.

APPENDIX A

Due to image noise, there are fluctuations in the estimations
of and . In this paper, we denote these fluc-
tuations as and . This section is
to calculate the means and variances of these fluctuations.

If we denote the signal part of an image as while the
noise part as the estimation of can be expressed as

Assume the noise is additive white Gaussian noise with
variance . Then, we have

(8)

and

(9)

In this paper, we choose . Hence,
.

Similarly, we can deduce that

(10)

(11)

and

(12)
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(17)

APPENDIX B

To give a quantitative comparison between the SNR perfor-
mance of A and H, we assume the input image to be a vertical
step edge as shown in Fig. 3(a), without the loss of generality.
This step edge is modeled as

(13)

After calculating all the derivatives, we have
. Hence,

and .
Case A: In the Neighborhood of the Edge: In the neighbor-

hood of the edge, and do not vanish. In this case, we may
approximate A and H as

and

After calculating the eigenvalues of and , we have
and .

Assume and . Then the fluctuations
of and can be approximated as

and

The variance of can, thus, be calculated as

(14)

It can be proved that . Thus, we have

(15)

On the other hand, we can deduce that

(16)

Case B: Over Smooth Regions: Around smooth regions,
and . In that case, we have

and

If and , then the curvature values estimated
from H and A would be approximately the same.

Let and be the principal curvature estimated

from and . We have (17), shown

at the top of the page. Define and

. After a long deduc-
tion, it can be proved that the pdf (probability distribution func-
tion) of follows

with

(18)

while the pdf of follows

with

(19)

After combining (17) –(19), we finally have

(20)

and

(21)
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