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Abstract

In this paper, we present a Bayesian inference methodology for Box–Cox transformed linear mixed
model withARMA(p, q) errors using approximate Bayesian and Markov chain Monte Carlo methods.
Two priors are proposed and put into comparisons in parameter estimation and prediction of future
values. The advantages of Bayesian approach over maximum likelihood method are demonstrated by
both real and simulated data.
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1. Introduction

The main purpose of this paper is to address the problem of analyzing growth curve data
from a Bayesian point of view, using an unbalanced linear mixed model with ARMA(p, q)
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dependence, while applying the Box–Cox transformation (Box and Cox, 1964) on the
observations.

The normal linear mixed models proposed byLaird and Ware (1982)have been widely
applied in dealing with longitudinal data. They assumed the within-subject errors are inde-
pendent and provided EM algorithms for obtaining the maximum likelihood (ML) estimates
and the restricted maximum likelihood (RML) estimates of model parameters.Jennrich and
Schluchter (1986)discussed various types of covariance structures, including random ef-
fects models and the AR(1) dependence separately.Chi and Reinsel (1989)presented an
explicit ML estimation procedure using the scoring method for the model with both ran-
dom effects andAR(1) errors and remarked that it may be worthwhile to merge higher-order
ARMA(p, q) structures in the model. Bayesian analysis for ARMA(p, q) regression error
models using the Markov chain Monte Carlo (MCMC) methods has been considered by
Chib and Greenberg (1994). Rochon (1992)presented a fixed-effects model with ARMA
structures of time heteroscedasticity for analyzing repeated measures experiments. More
recently,Chib and Carlin (1999)constructed several partially and fully blocked MCMC
algorithms for hierarchical mixed models with white noise errors.

Some transformations on the observations could enhance the justification of assumptions
such as normality of the distribution or linearity of the growth function.Lee and Lu (1987)
andKeramidas and Lee (1990)showed tremendous improvement in predictive accuracy
using the Box–Cox transformation for technology substitutions. This is primarily due to the
fact that the linearity assumption for the growth function can be enhanced significantly with
the Box–Cox transformation, along with incorporating into the model the proper dependence
structure among the observations. Enhancement of normality and constancy of variance
could have relatively minor roles in the improvement of predictive accuracy.

The model considered here is

Y(�)
i = Xi� + Zibi + �i for i = 1,2, . . . , N, (1)

whereYi=(Yi1, . . . , Yiti )
′ is ati×1 vector of measurements and is independent ofYj for all

i �= j ,� is an unknownm1×1 vector of regression coefficients,Xi andZi are known design
matrices,bi is am2 ×1 random effects to be sampled from multivariate normal distribution
with mean0 and covariance matrix�2�, and�i is an independentti × 1 vector of within
subject errors whose components are assumed to follow the ARMA(p, q) model, i.e.,

εik =
p∑

j=1

�j εi,k−j −
q∑

j=1

�j ai,k−j + aik for k = 1, . . . , ti ,

where{aik} is a series of shocks or white noise, which are identically and independently
distributed as N(0,�2

a). In our study, we assume the observations for each subject are made
at equally spaced intervals. FollowingBox et al. (1994), we write�(B)εit =�(B)ait , where
�(B) = 1 − �1B − · · · − �pB

p and�(B) = 1 − �1B − · · · − �qBq are polynomials of
B, which is the backshift operator such thatBεik = εi,k−1. For the process to be station-
ary and invertible so that there will be a unique model corresponding to the likelihood
function, the roots of�(B) and�(B) must lie outside the unit circle, which constrains the
parameter vectors� = (�1, . . . ,�p) and� = (�1, . . . , �q) to lie in regionsCp andCq ,
respectively.
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For simplifying the estimating procedure, we shall denote�2Ci as the covariance matrix
of �i andCi = [�|r−s|], wherer, s = 1,2, . . . , ti . We found that

�2 = (1 − �1�1 − · · · − �q�q)�
2
a/(1 − �1�1 − · · · − �p�p),

where�j =∑p
k=1 �k�j−k − �j with �j = 0 for j > q and�j = 0 for j <0. It is noted that

�j ’s are implicit functions of� and�.
The Box–Cox transformation is defined as

Y
(�)
ij =

{
(Yij+�)�−1

� if � �= 0,
log(Yij + �) if � = 0,

(2)

whereYij is thejth component ofYi , � is a known constant such thatYij + �>0, and� is
an unknown parameter. Without loss of generality, we will assume� = 0 for the rest of the
paper. The covariance matrix ofY(�)

i can be written as

�i = �2(Zi�Z′
i + Ci ) = �2�i (�,�, �). (3)

For the choice of priors, there are two possibilities considered for our Bayesian analysis of
model (1). In addition to parameter estimation, we also derive two specific types of prediction
problems which is useful in practice. Furthermore, in recent years statisticians have been
increasingly drawn to MCMC methods, especially the M–H algorithm (Hastings, 1970;
Chib and Greenberg, 1995) and the Gibbs sampler (Geman and Geman, 1984). Therefore,
we also consider the problem for the prediction of future observations from a Bayesian
point of view.

In Section 2, two types of priors are introduced. Approximate Bayesian methods for
parameter estimation and prediction of future values are presented in Section 3. In Section
4, we considered the Bayesian inference by means of MCMC methodology. The results
developed in this paper are illustrated in Section 5 with real and simulated data. Some
concluding remarks are given in Section 6.

2. The priors

For the joint priors of the parameters�,�2,�,�, �, two categories of priors will be
considered in this paper. In practice, we might use a uniform prior distribution if we really
have no prior knowledge about the parameters. Following the consideration ofBox and Cox
(1964), the joint prior distribution is specified by

�(�, log �,�,�, �) = �(�, log � | �)�(�)�(�)�(�). (4)

In (4), for any specified�,

�(�, log � | �) ∝| l�|−m1,
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wherem1 is the dimension of�, l� denotes the geometric mean of the Jacobian

l� = J
1/n
� =


 N∏

i=1

ti∏
j=1

Y �−1
ij




1/n

andn =∑N
i=1ti denotes the size of observations.

For�, we apply the Durbin–Levinson recursion (seeMonahan, 1984) to reparameterize
� = (�, �) in terms of	� = (	�, 	�), which is confined withinRp+q

1 , R1 = (−1,1), as
discussed in Section 3.1. Thus, we allow for a uniform prior on	�. For�2, we choose�−2

as its prior (seeZellner and Tiao, 1964). As for�, two possibilities are considered. We may
utilize the “principle of stable estimation” suggested byEdwards et al. (1963), a uniform
prior is appropriate for�. Therefore, the joint prior density can be represented as

�(�,�2,�, 	�, �) ∝ �−2J
−m1/n

� �(�). (5)

Another prior for� is to construct an informative prior distribution such as the inverse
Wishart distribution IW(
−1, 	). The joint prior is then specified by

�(�,�2,�, 	�, �) ∝ �−2IW(
−1, 	)J−m1/n

� �(�). (6)

The hyperparameter	 is held fixed as small as possible, saym2 + 2. Meanwhile,
 could
be set as diagonal with diagonal elements being the sample variance of the corresponding
regression coefficients that eachY(�)

i regresses on the design matrixXi assuming white
noise errors.

We shall refer to the joint priors (5) and (6) as prior 1 and prior 2 for the rest of this
paper. In the following Bayesian inferences, we shall denote the prior of�, 	� and� as
�(�, 	�, �)J

−m1/n

� without specifying which prior being used.

3. Approximate Bayesian inference

A simple reparameterization is given that can implicitly restrict the autoregressive moving
average parameters to the stationary and invertible region. We can estimate the mode from
bounded constrained regions for the parameters by way of transformation.

3.1. Reparameterization

In order to facilitate the estimating procedure and achieve the objective of ensuring admis-
sibility of (�, �), we need to perform reparameterization on these parameters.Barndorff-
Nielsen and Schou (1973)proposed the following one-to-one and onto transformation
which reparameterizes�= (�1, . . . ,�p) in terms of the partial autocorrelations	� = (
�1

,

. . . , 
�p
) for the AR(p) process:

�(k)
k = 
�k

, �(k)
i = �(k−1)

i − 
�k
�(k−1)
k−i , i = 1,2, . . . , k − 1 (7)
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and the condition that� ∈ Cp becomes| 
�k
| �1, k = 1, . . . , p. For the MA(q) process,

the reparameterization scheme is identical to the AR(p) process, with�k and
�k
in (7)

replaced by�k and
�k , as noted byMonahan (1984).
For the general ARMA(p, q) process, a reparameterization of(�, �) in terms of(	�, 	�)

can be obtained by applying (7) on both� and�. With this reparameterization, the condition
that� ∈ Cp × Cq will be simplified to the condition that	� ∈ R

p+q
1 , R1 = (−1,1). Thus,

the Bayesian estimation procedure and further Bayesian MCMC generation are done in the
space of	� before inverting back to� and�.

3.2. Parameter estimation

After transforming� to 	�, the covariance matrix ofY(�)
i as given in (3) can be rewritten

as�i = �2�i (�, 	�). Integrating the joint posterior density w.r.t.�2 and�, we have

p(�, 	�, � |Y) ∝�(�, 	�, �)
N∏
i=1

| �i |−1/2B−(n−m1)/2

×
∣∣∣∣∣
N∑
i=1

X′
i�

−1
i Xi

∣∣∣∣∣
−1/2

J
(n−m1)/n

� , (8)

where

B =
N∑
i=1

(Y(�)
i − Xi �̃)

′�−1
i (Y(�)

i − Xi �̃), (9)

with

�̃ =
(

N∑
i=1

X′
i�

−1
i Xi

)−1( N∑
i=1

X′
i�

−1
i Y(�)

i

)
. (10)

Let �̂ denote the mode of� and the mode for�2 beB̂/(n+ 2). Here�̂ andB̂ are�̃i and
B with parameters�, 	� and�, respectively, replaced by the modes�̂, 	̂� and �̂, which
maximize (8). The maximization can be solved by the “nlminb” function in S-PLUS with
bounded constraint of(−1,1) on 
�k

’s and
�k ’s.

3.3. Approximate Bayesian prediction

We consider the prediction ofyi , a futurew-dimensional values of measurementsYi . Let
xi andzi be, respectively, thew×m1 andw×m2 design matrices corresponding toyi and
letY∗

i = (Y′
i , y′

i )
′, X∗

i = (X′
i , x′

i )
′ andZ∗

i = (Z′
i , z′

i )
′.

We have

Var(Y∗
i ) = �2(Z∗

i �Z∗
i
′ + C∗

i ) = �2�∗
i (�, 	�),

where�∗
i = [�∗

i,jj ′ ](j, j ′ = 1,2) andC∗
i = [�|r−s|] for r, s = 1, . . . , ti + w.
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Combining the conditional density function ofy(�)i givenYi , �, �2, �, 	� and� with
the joint posterior density of�,�2,�, 	� and�, and integrating w.r.t.� and�2, we obtain,
after some algebraic manipulation, the following posterior density:

p(y(�)i ,�, 	�, � |Y)

∝�(�, 	�, �)|�∗
i,22·1|−1/2

N∏
i=1

|�i |−1/2|Q1+Q2|−1/2

∣∣∣∣∣
N∑
i=1

X′
i�

−1
i Xi

∣∣∣∣∣
−1/2

×
{
B1 + B2 + (y(�)i − �i )

′G22(y
(�)
i − �i )

}−(n+w−m1)/2
J
(n−m1)/n

� , (11)

where

Q1 =
∑
j �=i

X′
j�

−1
j Xj , Q2 = X∗

i
′
�∗−1
i X∗

i ,

�i = xi�∗
i − G−1

22 G21(Y
(�)
i − Xi�

∗
i ),

G=�∗−1
i X∗

i Q
−1
2 Q1(Q1 + Q2)

−1X∗
i
′
�∗−1
i

+ A∗
i (A

∗
i
′
�∗
i A

∗
i )

−1A∗
i
′ = [Gjj ′ ] for j, j ′ = 1,2,

with A∗
i is an(ti + w) × (ti + w − m1) matrix such thatX∗′

i A∗
i = 0, and

B1=
∑
j �=i

(Y(�)
j − Xj�

∗
i )

′�−1
j (Y(�)

j − Xj�
∗
i ),

B2=(Y(�)
i − Xi�

∗
i )

′G11.2(Y
(�)
i − Xi�

∗
i ),

�∗
i =

∑

j �=i

X′
j�

−1
j Xj




−1
∑

j �=i

X′
j�

−1
j Y(�)

j


 ,

G11·2=G11 − G12G−1
22 G21.

Following the approximate method ofLjung and Box (1980), the approximate predictive
distribution ofy(�)i is

y(�)i | Y
·∼ Tw(�̂i , (B̂1 + B̂2)

(
(n − m1)Ĝ22

)−1
, n − m1), (12)

whereTn(�,�, 	) denotes then-variatet distribution with location vector� and scale matrix
� and

�̂i = xi �̂
∗
i − Ĝ

−1
22 Ĝ21(Y

(�̂)
i − Xi �̂

∗
i ).
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It is noted that the quantitieŝ�
∗
i , B̂1, B̂2 andĜ22 are�∗

i , B1, B2 andG22 with �, 	� and�
replaced, respectively, bŷ�, 	̂� and�̂ which maximize

p(�, 	�, � | Y) ∝�(�, 	�, �) | �∗
i,22·1|−1/2

N∏
i=1

| �i |−1/2|Q1 + Q2|−1/2

×|G22|−1/2(B1 + B2)
−(n−m1)/2J

(n−m1)/n

� . (13)

Also, we can predictyi by the following approximate predictor:

ŷih =
{
(1 + �̂�̂ih)

1/�̂ if �̂ �= 0,
exp(�̂ih) if �̂ = 0,

for h = 1,2, . . . , w, (14)

whereŷih and�̂ih denote thehth component of̂yi and�̂i , respectively.

4. Bayesian inference via MCMC sampling

4.1. The algorithm

The following sampling scheme is used to obtain the posterior distributions of�,�2,�, 	�

and�. Starting with some initial values of all the unknown parameters, the sampler succes-
sively generates a parameter or block of parameters conditional on the observations and the
other parameters as described below. The iterations of the sampler are divided into a burn-in
period and a sampling period. It is assumed that the sampler has converged to the correct
posterior distribution at the end of the burn-in period and estimates of the posterior moments
and densities are based on the iterations in the sampling period. The MCMC procedures are
outlined as follows:
Step1: Generate� given�2, �, 	�, �, andY from

Nm1


�̃,�2

(
N∑
i=1

X′
i�

−1
i (�, 	�)Xi

)−1 ,

where�̃ is given in (10).
Step2: Generate�2 given�, �, 	�, � andY from

IG

(
n

2
,
S(�,�, 	�, �)

2

)
,

whereS(�,�, 	�, �) =∑N
i=1(Y

(�)
i − Xi�)

′�−1
i (�, 	�)(Y

(�)
i − Xi�).

Step3: Generate� via the M–H algorithm from

f (�) ∝ �(�)
N∏
i=1

| �i (�, 	�)|−1/2 exp

{
−S(�,�, 	�, �)

2�2

}
.
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Step4: Generate	� via the M–H algorithm from

f (	�) ∝ �(	�)

N∏
i=1

| �i (�, 	�)|−1/2 exp

{
−S(�,�, 	�, �)

2�2

}
.

Step5: Generate� via M–H algorithm from

f (�) ∝ �(�)exp

{
−S(�,�, 	�, �)

2�2

}
J
(n−m1)/n

� .

For implementing the M–H algorithm at thekth iteration in Step 3, we choose Wishart
distribution,W(�(k)/(N − 1), N − 1), as the proposal distributionq(�(k+1)|�(k)). As
regards	� = (	�, 	�), we can transform	� to �∗ = (�∗

1, . . . ,�
∗
p, �

∗
1, . . . , �

∗
q) ∈ Rp+q ,

whereR= (−∞,∞), �∗
i = log((1+
�i

)/(1−
�i
)) (i=1, . . . , p) and�∗

j = log((1+
�j )/

(1 − 
�j )) (j = 1, . . . , q). We then apply the M–H algorithm to the following conditional
distribution:

g(�∗ | �,�2,�, �,Y) ∝�(�, 	�(�
∗), �)

(
N∏
i=1

| �ij (�, 	�(�
∗))|−1/2

)

×exp

{
−S(�,�, 	�(�

∗), �)
2�2

}
J (	�(�

∗)),

where	�(�
∗) = (e�∗ − 1)/(e�∗ + 1), and

J (	�(�
∗)) =

p∏
i=1

q∏
j=1

(2e�∗
i /(1 + e�∗

i )2)(2e�∗
j /(1 + e�∗

j )2).

Thep + q dimensional multivariate normal distribution with mean�∗(k) and covariance
matrix c2��∗ are chosen as the proposed distribution,q(�∗(k+1) | �∗(k)), where the scale

c ≈ 2.4/
√
d andd is the dimension of the parameters, as suggested inGelman et al.

(1995). The value of��∗ is usually chosen to reflect the conditional covariance of�∗
given�, �2, �, � andY. Thus, we can estimate the covariance matrix��∗ by the follow-
ing method. At the(k + 1)th iteration, the preliminary covariance matrix estimate of�∗,
��∗ , would be the inverted sample information matrix of�∗ given �∗(k) in the MCMC
algorithm. Having obtained�∗ from the M–H algorithm, we transform�∗ back to�. The
same operation can also be applied to� with the prior on� being uniform over some
finite interval, for example, (−4, 4). Repeat Steps 1–5 until the sequences become stable.
After sufficiently long burn-in iterations, we can use the remaining samples to estimate the
function of the parameters in which we are interested.

4.2. Convergence diagnostics

Before conducting inference using MCMC samples, the output should be analyzed to de-
termine a time point at which the sample has converged to the proper limiting distribution.
Our recommended general approach to monitoring convergence is based on comparing
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several sequences drawn from different starting points and checking that they are indis-
tinguishable. The approach ofGelman and Rubin (1992)requires runningI �2 parallel
chains with over-dispersed starting values. It provides a basis for an estimate of how close
the process is to stationarity. However, their approach can only be applied in univariate
problems. An alternative method is provided byBrooks and Gelman (1998), which extends
the method ofGelman and Rubin (1992)to consider several parameters simultaneously.

Suppose there areI independent parallel chains and the length of each chain is 2T . Let
� denote a vector of parameters and�

(t)
i denote the parameter vector inith chain at timet

(i = 1, ..., I ). Then the posterior variance–covariance matrix of� is estimated by

�̂�|Y = T − 1

T
W +

(
1 + 1

I

)
B/T , (15)

where

W = 1

I (T − 1)

I∑
i=1

2T∑
t=T+1

(�
(t)
i − �̄i·)(�(t)i − �̄i·)′,

B/T = 1

I − 1

I∑
i=1

(�̄i· − �̄··)(�̄i· − �̄··)′

and

�̄i· = 1

T

2T∑
t=T+1

�
(t)
i , �̄·· = 1

I

I∑
i=1

�i·.

Brooks and Gelman (1998)provided the multivariate potential scale reduction factor
(MPSRF),R̂

p
, which is defined by

R̂
p = T − 1

T
+
(

1 + 1

I

)
�1, (16)

where�1 is the largest eigenvalue ofW−1B/T .
Under the assumption thatI chains are equal,̂R

p
will tend to 1 for reasonably largeT. The

advantage of̂R
p

is inherent in the fact that it reliably summarizes each of the univariate
measures in a single value. As the simulation converges, theR̂

p
will decline to 1 and

the determinants should stabilize, meaning that the parallel Markov chains are essentially
overlapping.

4.3. Forecast using MCMC samples

We havey(�)i | �,Y ∼ Nw(�i ,�2�∗
i,22·1), where� = (�,�,�2, 	�, �), �i = xi� − �∗

i,21

�∗−1
i,11(Y

(�)
i − Xi�) and�∗

i,22·1 = �∗
i,22 − �∗

i,21�
∗−1

i,11�
∗
i,12. Hence, we can generatey(�)(s,t)i

from f (y(�)i | �(s,t),Y), where�(s,t) is the values of thesth chain and thetth iteration of the
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MCMC sampler of�. We can transformy(�)(s,t)i to y(s,t)i by inverting formula of (2). For
each chain, we can predictyi from the MCMC runs by

ŷi = 1

IT

I∑
s=1

2T∑
t=T+1

y(s,t)i . (17)

Prediction interval and quantiles of the functionalyi can be computed from the trans-
formed simulation sample. Theoretically, the posterior probability of the case�= 0 is zero.
However, we had to program the two cases (�=0 and� �= 0) of the forecast rule separately
to avoid the overflow program.

5. Numerical illustration

We present examples with one real data and a simulation study to illustrate our method-
ology in this section.

5.1. A real example

We apply the results obtained in sections 2–4 to the fatigue crack growth data from
Bogdanoff and Kozin (1985)as plotted inFig. 1(a). The data set was also analyzed byLu
and Meeker (1993), Robinson and Crowder (2000), Lee and Lien (2001)andLin and Lee
(2003). This data set is balanced for the first 10 time points.Fig. 1(b) is the plot of the data
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Fig. 1. Fatigue crack growth data over 21 subjects: (a) Original data; (b) data after taking Box–Cox transformation
with � = −1.58.
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Table 1
Comparison of parameter estimations

Time points 
1 
2 �2(×10−5) � � � �

MLE −0.1507 0.03735 3.3617 1.1204 0.5982 0.2113−1.4421
t = 10 Prior 1 −0.1507 0.03736 3.3820 1.1500 0.6196 0.2243−1.4400

Prior 2 −0.1508 0.03737 3.5958 0.9207 0.6569 0.2446−1.4389

MLE −0.1506 0.03737 3.7376 1.0616 0.7341 0.3183−1.4074
t = 11 Prior 1 −0.1507 0.03738 3.8024 1.0810 0.7523 0.3293−1.4049

Prior 2 −0.1507 0.03390 4.1487 0.8497 0.7872 0.3487−1.4020

MLE −0.1506 0.03718 3.7282 1.0310 0.7072 0.2758−1.5043
t = 12 Prior 1 −0.1506 0.03719 3.7722 1.0550 0.7220 0.2838−1.5027

Prior 2 −0.1507 0.03720 4.0381 0.8413 0.7495 0.2962−1.5011

MLE −0.1506 0.03704 4.2433 0.8713 0.7071 0.2185−1.5777
t = 13 Prior 1 −0.1506 0.03705 4.2907 0.8925 0.7191 0.2242−1.5768

Prior 2 −0.1507 0.03706 4.5938 0.7100 0.7435 0.2331−1.5760

after taking the Box–Cox transformation with� being−1.58, and it reveals that the linearity
assumption is satisfied after applying the adequate Box–Cox transformation on observa-
tions.

The fitted model is considered by

Y(�)
i = Xi� + Zibi + �i , bi ∼ N(0,�2�), �i ∼ Nti (0,�

2Ci ), (18)

where the design matrices forXi andZi have the forms

Xi =
[

1 1 · · · 1
1 2 · · · ti

]
, Zi = [ 1 2 · · · ti ]′, i = 1,2, . . . ,21.

In our preliminary analysis, we fitted Model (18) with selected ARMA(p, q) covariance
structures for whichp+q�3 based on the ML approach. We found thatARMA(1,1) model
has the best predictive accuracy and is far better than AR(1). The detailed results are not
shown in the paper. To further compare the ML approach with the approximate Bayesian and
MCMC methods, we will focus on the ARMA(1,1) model only. It would not be necessary
to transform(�, �).

Table 1 lists the estimates of parameters obtained via the ML and the approximate
Bayesian methods for the fatigue crack data using the firstt measurements of each sub-
ject as the sample (t = 10,11,12,13). We run seven parallel chains and choose the starting
values dispersed around the posterior modes of the parameters.

The convergence of MCMC samplers is monitored by examining theR̂
p

as discussed in
Section 4.2. The monitored values ofR̂

p
and the determinants of̂��|Y andW are plotted

in Figs. 2(a) and (b), respectively. The convergence occurs around 2000 iterations, so the
determination of burn-in is about 2000.Table 2gives the 2.5%, 25%, 50%, 75%, and 97.5%
posterior quantiles together with the mean and standard deviation using 5000 converged
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Fig. 2. (a) Plot of MPRSF,̂R
p

; (b) plot of the determinants (×1027) of �̂�|Y (solid) andW (dotted).

Table 2
Summaries of MCMC posterior distributions for the whole sample

Parameter Prior 2.5% 25% median 75% 97.5% mean s.d.


1 1 −0.1530 −0.1511 −0.1503 −0.1494 −0.1478 −0.1503 0.0013
2 −0.1532 −0.1512 −0.1503 −0.1494 −0.1477 −0.1503 0.0014


2 1 0.0340 0.0360 0.0369 0.0380 0.0397 0.0370 0.0015
2 0.0342 0.0360 0.0370 0.0378 0.0396 0.0370 0.0013

�2(×10−5) 1 2.8900 3.3777 3.6778 4.0813 5.1269 3.7600 0.5742
2 2.9393 3.5183 3.8588 4.2781 5.6619 3.9638 0.6755

� 1 0.6208 0.9510 1.2051 1.5327 2.4299 1.2904 0.4883
2 0.4930 0.7556 0.9306 1.1760 1.9093 0.9979 0.3515

� 1 0.3940 0.5471 0.6306 0.7049 0.8167 0.6228 0.1106
2 0.4143 0.5738 0.6461 0.7121 0.8361 0.6339 0.1062

� 1 −0.0569 0.0918 0.1825 0.2602 0.4101 0.1782 0.1150
2 −0.0424 0.0914 0.1766 0.2531 0.4028 0.1741 0.1173

� 1 −1.6622 −1.6111 −1.5817 −1.5526 −1.4972 −1.5821 0.0430
2 −1.6641 −1.6124 −1.5830 −1.5513 −1.4959 −1.5822 0.0436

MCMC simulated samples. It can be seen that all the methods considered here give similar
estimates for�= (
1,
2) and� but estimates using different priors are somewhat different
for the components of the covariance structure.
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Fig. 3. (a) Marginal posterior distribution of� = (
1,
2); (b) marginal posterior distribution of� = (�, �).

By the simulated MCMC samples, we can also obtain the marginal posterior densities of
parameters of interest using the well-known Rao-Blackwellization approximation.Fig. 3(a)
exhibits the marginal density of�= (
1,
2), which indicates that an approximate bivariate
normal distribution for� is quite reasonable. In particular, the marginal posterior density
of � = (�, �) plotted inFig. 3(b) is well concentrated and nearly symmetric. For the first
subject in the last measurement given the entire data,Fig. 4shows the approximate Bayesian
predictive density (dashed curve) of (12), Rao-Blackwellization approximation (solid curve)
and MCMC samples (histogram) using the prior 1. In the figure, Rao-Blackwellization
provides a good approximation of MCMC samples.

Now we compare the prediction ability among the ML method (similar in form as (B.1)
of Lee and Lien, 2001), approximate Bayesian prediction for (14) and MCMC prediction
for (17) using both priors. We consider the extended prediction, which is usually of practical
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Fig. 4. Comparison of predictive densitiesf (y | Y) using the prior 1.

Table 3
Comparison of predictive accuracy in terms of MAD and MARD (values×10−2)

Time being Approximate Bayesian MCMC
forecast(T ) Prior 1 Prior 2 MLE Prior 1 Prior 2

10 0.7814 0.7844 0.7831 0.7735 0.7646
11 0.7992 0.7948 0.8146 0.7899 0.7937
12 MAD 1.6929 1.6850 1.7020 1.6774 1.6541
13 2.0604 2.0403 2.0740 2.0460 2.0336

Average 1.3335 1.3261 1.3434 1.3217 1.3115

10 0.5830 0.5847 0.5841 0.5752 0.5707
11 0.5955 0.5922 0.6071 0.5903 0.5919
12 MARD 1.0793 1.0736 1.0851 1.0703 1.0546
13 1.2919 1.2786 1.3004 1.2818 1.2844

Average 0.8874 0.8823 0.8942 0.8794 0.8754

interest. The extended prediction is addressed by using all the observations from all subjects
before the point being forecastT in our sample.Table 3gives the prediction comparisons
for the various methods in terms of mean absolute deviation (MAD) and mean absolute
relative deviation (MARD) of the predictions from the actual observations. Among theN
subjects, the most recentT − 1 observations were used to predictyiT for T= 10,11,12,13.
In the table, the approximate Bayesian method using both priors perform better than the
ML method. However, the best among the methods are MCMC using the prior 2, followed
by MCMC using prior 1. Thus, MCMC method is quite encouraging for this model.
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Table 4
Comparison of predictive accuracy for simulated samples (values× 10−2)

N Approximate Bayesian MCMC

Prior 1 Prior 2 MLE Prior 1 Prior 2

10 1.0094 1.0083 1.0170 1.0056 1.0044
20 MAD 0.9810 0.9799 0.9871 0.9758 0.9697
30 0.9684 0.9673 0.9733 0.9645 0.9627

10 0.7521 0.7502 0.7568 0.7482 0.7471
20 MARD 0.7309 0.7302 0.7354 0.7274 0.7236
30 0.7224 0.7215 0.7260 0.7190 0.7176

Table 5
Comparison of coverage probabilities for� = (
1,
2) (1 − � = 0.95)

N Approximate Bayesian MCMC

Prior 1 Prior 2 MLE Prior 1 Prior 2

10 0.9031 0.9107 0.8886 0.9226 0.9264
20 0.9207 0.9244 0.9110 0.9310 0.9356
30 0.9330 0.9336 0.9302 0.9450 0.9462

5.2. A simulation study

In this section, a simulation study was conducted to compare the predictive ability and
the coverage probability of the ML method and those obtained by the approximate Bayesian
methods and MCMC methods using priors 1 and 2. The presumed simulation settings are
given as the MLE’s att = 10 in Table 1. We generate 2000 replicates for sample size
N = 10,20,30. Among theN subjects, the firstt − 1 measurements were used as the
sample to predictyit . Given the values ofN and t, each data set containsN subjects and
for each subjectt measurements were made. For eachN, 2000 independent data sets were
generated. Hence there wereN × 2000 predicted values to be compared withN × 2000
true values.Table 4gives the prediction comparisons for the various methods in terms of
MAD and MARD, respectively. Better results are obtained by using MCMC samples. As
for the comparison of coverage probabilities for the fixed effects�, the results are given in
Table 5. It is clear that both approximate Bayesian and MCMC methods yield much better
coverage probabilities than the ML method. The best is still the MCMC among the three
methods compared.

6. Concluding remarks

The Bayesian methods presented in this paper, including simple approximate Bayesian
and Bayesian via MCMC sampling, provide alternative ways of dealing with the general
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growth curve data when the ARMA(p, q) dependence covariance structure with random
effects holds, while applying the Box–Cox transformation on the observations. The situation
in which no transformation is needed and no random effect exists can be treated as special
cases of model (1).

It is worth noting that the Bayesian approach is quite useful and easy to implement in
analyzing the growth data when the prior is properly chosen. The forecast accuracy for
future values via the simple approximate Bayesian method is better than the ML method.
More accurate approximation can be obtained from MCMC samples.

Finally, in the modeling of fatigue crack growth data we favor consideration and inclu-
sion of the time series specification, in addition to possible random effects and Box–Cox
transformation, because it may lead to a more parsimonious correlated model and has the
potential to provide more accurate representation for the dependence structure among re-
peated measurements.
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