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Short Paper

A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL

PROBLEMS

Chih-Hung Huang and Ching-Huan Tseng*

ABSTRACT

This paper focuses on the development of a solver for solving optimal control
problems.  A developed numerical optimal control module integrated with the Se-
quential Quadratic Programming method is introduced.  An optimal control problem
solver based on the proposed method is implemented to solve optimal control prob-
lems efficiently in engineering applications.  In addition, a systematic procedure for
solving optimal control problems by using the optimal control problem solver is also
proposed.  A time-optimal benchmark problem presented in the literature is used to
illustrate for the capability and facility of solving optimal control problems.  The
numerical results demonstrate the proposed method and the procedure suggested in
this paper are helpful to engineers in solving optimal control problems in a systematic
and efficient manner.

Key Words: nonlinear programming (NLP), optimal control problem (OCP), sequential
quadratic programming (SQP).
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I. INTRODUCTION

Two typical methods are usually used to solve
optimal control problems: the indirect and direct
approaches.  The indirect approach is based on the so-
lution of the first order necessary conditions for
optimality.  Pontryagin Minimum Principle (Pontryagin
et al., 1962) and the dynamic programming method
(Bellman 1957) are two common methods utilizing the
indirect approach.  The direct method (Jaddu and
Shimemura 1999; Hu et al., 2002) is based on nonlin-
ear programming (NLP) approaches that transcribe op-
timal control problems into NLP problems and apply
existing NLP techniques to solve them.  In most of prac-
tical applications, the control problems are described
by strongly nonlinear differential equations hard to be
solved by indirect methods.  For those cases, direct
methods can provide another choice to find the solutions.

In spite of extensive use of direct and indirect

methods to solve optimal control problems, engineers
still spend much effort on reformulating problems and
implementing corresponding programs for different
control problems.  For engineers, this routine job will
be tedious and time-consuming.   Therefore, a sys-
tematic computational procedure for various optimal
control problems has become an imperative for
engineers, particularly for those who are inexperi-
enced in optimal control theory or numerical
techniques.  Hence, the purpose of this paper is to
apply NLP techniques to implement an OCP solver
that assists engineers in solving optimal control prob-
lems with a systematic and efficient procedure.  To
illustrate the practicality and convenience of the pro-
posed solver, a benchmark problem presented in the
literature is chosen to illustrate the capability for solv-
ing optimal control problems.  The results demon-
strate the proposed solver can get the solution cor-
rectly and the procedure suggested in this paper can
help engineers to deal with their problems.

The paper is organized as follows.  In Section
II, a general formulation of optimal control problems
is given.  The proposed NLP method and computa-
tional architecture for solving OCP are discussed in
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Section III.  The systematic procedure by applying
proposed solver to solve the OCP is described in Sec-
tion IV.  A benchmark problem presented in the lit-
erature is described and the numerical results obtained
by applying the OCP solver are also demonstrated in
Section V.  Conclusions are drawn in Section VI.

II. GENERAL FORMULATION OF OPTIMAL
CONTROL PROBLEMS

The generalized Bolza problem formulation for
optimal control problems can be defined as follows:
Find the design variables b, the control functions
u(t) and terminal time tf which minimize the perfor-
mance index

J0 = ψ0(b, x(t f), t f) + F0(b, u(t), x(t), t)dt
t0

t f

     (1)

subject to the state (or system) equations

x = f (b, u(t), x(t), t), t0 ≤ t ≤ tf (2)

with initial conditions

x(t0) = x0(b) (3)

functional constraints

Ji = ψi(b, x(t f), t f)

+ Fi(b, u(t), x(t), t)dt
t0

t f = 0; i = 1, , r′
≤ 0; i = r′ + 1, r

(4)

and dynamic point-wise constraints

φj(b, u(t), x(t), t) ≤ 0; j = 1, ..., q (5)

where b ∈  Rk is a vector of the design variables, u(t)
∈  Rm is a vector of the control functions, and x(t) ∈
Rn is a vector of the state variables.  The functions f,
ψψ0, F0, ψψ i, Fi and φj are assumed to be at least twice
differentiable.

The preceding definition extends the original
Bolza problem to account for inequality constraints,
as the original Bolza formulation containing only
equality constraints is not general for the OCP.  It
also does not treat the design variables b, which may
serve a variety of useful purposes apart from obvious
design parameters; e.g., weight and velocity of a
vehicle.  Also, when the terminal time tf is uncon-
strained (for optimization), a free time problem is
obtained.  Otherwise a fixed time problem is given.
In addition, the initial conditions are separated from

the functional constraints in Eq. (4) for practical con-
siderations and the terminal conditions are treated as
equality constraints in the first term of Eq. (4).  The
differential equations for the system in Eq. (2) are
written in general first-order form.  Eq. (5) represents
the mixed state and control inequality dynamic
constraints.

III. NLP METHODS FOR SOLVING OCP

As mentioned in Section I ,  two common
methods, the indirect and direct approaches, used to
solve optimal control problems can be found in the
literature.  Each method has its fitness and difficul-
ties for solving OCP.  In this paper, a direct approach
based on nonlinear programming (NLP) is adopted
to develop an OCP solver.  According to the strate-
gies of discretization, NLP methods for solving OCP
can be separated into two groups: the simultaneous
and sequential strategies.  In the simultaneous
methods, the state and control variables are fully
discretized and led to large-scale NLP problems that
usually require special solution strategies (Cervantes
and Biegler 2000) to obtain the solutions.  In sequen-
tial NLP methods, only the control variables are
discretized.  Obviously, the sequential NLP method
has smaller design spaces and is more efficient than
simultaneous NLP methods.  Therefore, this paper is
focused on the sequential NLP method and applies it
to develop the OCP solver.

Sequential Quadratic Programming (SQP) is one
of the best NLP methods for solving large-scale non-
linear optimization and is frequently applied to solve
optimal control problems (see, e.g., Gill et al., 2002,
Betts 2000).  Before applying the SQP methods, op-
timal control problems in which the dynamics are de-
termined by a system of ordinary differential equa-
tions (ODEs) are usually transcribed into nonlinear
programming (NLP) problems by discretization
strategies.

1. Discretizing the Control Functions

The entire time interval [t0, tf] is subdivided into
N general unequal time intervals and the grid is des-
ignated as

t0, t1, t2, ..., tN – 1, tN = tf (6)

The time intervals between the grid points are defined
in a vector form as

T = [T1, T2, ..., TN]T (7)

where Ti = ti – ti – 1 and TiΣ
i = 1

N
 = tf – t0 which generate

the parameter set
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U = [u(1), u(2), ..., u(N)]T

= [u1(t0), ..., um(t0), u1(t1), ..., um(t1), ...,

u1(tN – 1), ..., um(tN – 1)]T

= [U1, ..., Um, Um + 1, ..., U2m, U2m + 1, ...,

U(N  – 1)m+1, ..., UmN]T (8)

where u(k) ∈ Rm is the vector of control variables at
the k-th time grid point.  The continuity of the u(k)

and their derivatives at the time grids are enforced
by means of appropriate linear equality constraints.
Any bounds on the u(k) at the nodes imply additional
linear inequalities on the coefficients of the polynomial.

2. Admissible Optimal Control Problem Formula-
tion

In this paper, the Admissible Optimal Control
Problem (AOCP) formulation, which is based on se-
quential NLP methods, is developed and implemented.
With AOCP, the system equation in Eq. (2) with
initial condition in Eq. (3) is formed as an initial value
problem (IVP) and the corresponding values of state

variables can be calculated by solving the problem
with the initial conditions x0 and the values of design
variables in each iteration.  As mentioned before, the
values of control can be approximated by a piecewise
polynomial function, in which the coefficients are treated
as design variables and determined in each iteration
of SQP. Hence, Eqs. (2) and (3) form an IVP of state
variables.  Some good first order differential equa-
tion methods having variable step size and error con-
trol are available to solve the IVP, e.g. Adam’s method
and the Runge-Kutta-Fehlberg method.  These solv-
ers can give accurate results with user-defined error
control.  The state trajectories are internally approxi-
mated using interpolation functions in the differen-
tial equation solvers.  Values of the state and control
variables between the grid points can be also obtained
with different kinds of interpolation schemes.

3. Computational Algorithm of AOCP

The architectural framework of the OCP solver,
illustrated in Fig. 1, is composed of SQP and AOCP
algorithms.  The AOCP algorithm contains three ma-
jor modules: discretization, CTRLMF and CTRLCF.
The discretization module, which is mentioned in Sec-
tion III.1, discretizes the control inputs according to

Fig. 1  Conceptual flow chart of the SQP method for solving OCP
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specified time intervals.  The computational algorithm
of the OCP solver which integrates AOCP with SQP
can be described as the following steps:
Given: Initial values of the design variables vector

P (0) = [b (0), U (0), T (0)] and Number of time
intervals, N.  Initialize iteration counter k: =
0 and Hessian Matrix H(0): = Identity I.
1. Current design variable vector, P(k), is passed

to CTRLMF module of AOCP.
2. Evaluate the values of state variable, x(k),

by solving the IVP by substituting P(k) into
the system equation.

x(k) = f(b(k), u(k), x(k), t), x(t0) = x0(b(k)) (9)

3. Compute the values of performance indexes,
J0

(k).

J0
(k) = ψ0(b (k), x(b (k), U (k), T (k), t f), t f)

+ F0(b (k), U (k), x (k), t)dt
t0

t f

(10)

4. Substitute x(k) into Eqs. (4) and (5) to evalu-
ate the values of functional and dynamic
constraints.

5. Evaluate ∇ J0
(k), ∇ Jj

(k), and ∇φ j
(k) by using

the finite difference method.
6. Find the descent direction, d(k), by solving

the QP subproblem.
7. Check convergence criteria, d (k) ≤ ε.  If

satisfied, stop and show the results.
8. Compute the step size, α (k).
9. Update Hessian Matrix H (k) by applying

BFGS method.
10. Update design variables

P(k + 1) = P(k) + α  . d(k) (11)

11. Increase iteration counter, k ← k + 1, go
back to step 1.

IV. SYSTEMATIC PROCEDURE FOR OCP

In this paper, the OCP is converted into an NLP
problem by a discretization process and an admissible
optimal control formulation mentioned in Section III.
Then the optimizer based on the SQP method is used
to solve the NLP problem numerically.  In this paper
the discretization process and the numerical schemes
discussed in the previous section are implemented in
the OCP solver.  All of the complicated details of the
transformation and numerical algorithms have been
implemented in the OCP solver.  The optimal control
and state trajectories will be obtained and recorded
in the output files.  With the proposed OCP solver,

engineers can focus their efforts on formulating their
problems and then follow an efficient and systematic
procedure to solve their optimal control problems.
The following steps describe a systematic procedure
for solving the OCP with the proposed OCP solver:
1. Program formulation: The original optimal control

problem must be formulated according to the ex-
tended Bolza formulation.

2. Preparing two parameter files: One of the parameter
files describes the numerical schemes used to solve
the OCP and also the relationships between perfor-
mance index, constraint functions, dynamic functions,
state variables and control variables.  The other pa-
rameter file includes the information on SQP
parameters, such as convergence parameter, upper/
lower bound and initial guess of design variables, etc.

3. Implementing user-defined subroutines.
4. Execute the optimization: The user-defined sub-

routines are compiled and then linked with the SQP
solver, MOST (Tseng et al., 1996).  Then, execute
the optimization.

Obviously, the proposed OCP solver simplifies
the computational procedure for solving OCP and aids
engineers and students in solving optimal control
problems.

V.  NUMERICAL EXAMPLES

Time-Optimal Rest-to-Rest Maneuvering Problem

A single-axis, rest-to-rest maneuvering problem
of flexible spacecraft used as a benchmark problem
in many studies (Driessen 2000, Pao 1996, Liu and
Wie 1992, Wie et al., 1993) is chosen as an example
of the time-optimal control problem in this section.
The system model, shown in Fig. 2(a), only with a
scalar control input u1(t) is considered here.  Follow-
ing the NLP formulation described in Section III, the
optimal control can be defined as follows.

Minimize  J0 = dt
0

t f

= t f (12)

Subject to

x1 = x3

x2 = x4

x3 =
u1
m1

– k
m1

(x1 – x2)

x4 = k
m2

(x1 – x2) (13)

with initial states

xT(0) = [0, 0, 0, 0]T (14)

where x1 and x2 are the positions of body 1 and body
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2, respectively, the nominal parameters are m1 = m2

= k = 1 with appropriate units, and time is in seconds.
The terminal state constraints and saturation con-
straints on control are described as:

ψ1 = x1(tf) – 1 = 0 (15)

ψ2 = x2(tf) – 1 = 0 (16)

ψ3 = x3(tf) = 0 (17)

ψ4 = x4(tf) = 0  (18)

ψ5 = |u1| – 1 ≤ 0 (19)

Time-optimal control problems often occur in
many practical control problems.  In this case, the
derivation of the PMP is complex and thus the de-
tails are skipped.  Following the procedure described
in Section IV, users only need prepare two parameter
files and user routines.  Table 1 shows the user rou-
tines of this problem.  By applying the proposed method
and suggested procedure, a solution as tf = 4.2178746
is obtained and the trajectories of the states and con-
trol input are shown in Fig. 2(b).  In this problem, the
proposed solver also obtains three switching times
of input control as 1.00266823, 2.10892571 and

3.21518969.  Those results agree with the results ob-
tained by Liu and Wie (1992).

As the numerical results show, OCP is success-
fully converted into an NLP problem with the admis-
sible control formulation and solved with the pro-
posed method.  The results show that the proposed
method is applicable.  According to the procedure
suggested in this paper, users need not spend a vast
amount of effort on programming in order to obtain
solutions to problems.  After formulating the prob-
lems and writing the user-defined routines, the pro-
posed solver can solve the problems easily.

VI. CONCLUSIONS

An optimal control problem solver, the OCP
solver, based on the Sequential Quadratic Program-
ming (SQP) method and integrated with many well-
developed numerical routines is implemented in this
paper.  A systematic procedure for solving optimal
control problems is also offered in this paper.  A high-
order nonlinear time-optimal control problem is used
to demonstrate the capability of the OCP solver.  The
results show that the OCP solver can help engineers
in solving optimal control problems with a system-
atic and efficient procedure.

Fig. 2  Time-optimal rest-to-rest maneuvering problem
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NOMENCLATURE

b design variables
d(k) descent direction defined in SQP algorithm
t0 start time
tf terminal time

u control variable vector
x state variable vector
H Hessian Matrix
N number of time intervals
P extended design variable vector
Ti the i-th time grid point
α step size of SQP algorithm
ε convergence parameter of SQP algorithm
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