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Abstract

A k-containerC (u, v) of a graphG is a set ok-disjoint paths joiningi to v. A k-containerC («, v)
of G is ak*-containerif it contains all the vertices oB. A graphG is k*-connectedf there exists a
k*-container between any two distinct vertices. k&) be the connectivity o6. A graphG is super
connectedf Gisi*-connected for all ¥i <« (G). A bipartite graptG is k*-laceabléf there exists a
k*-container between any two vertices from different partS.d& bipartite graphG is super laceable
if Gisi*-laceable for all Ki <x(G). In this paper, we prove that tmedimensional pancake graph
P, is super connected if and onlyif # 3 and then-dimensional star graphi, is super laceable if
and only ifn # 3.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An interconnection network connects the processors of parallel computers. Its architec-
ture can be represented as a graph in which the vertices correspond to processors and the
edges correspond to connections. Hence, we use graphs and networks interchangeably.
There are many mutually conflicting requirements in designing the topology for computer

* Corresponding author. Department of Computer and Information Science, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC. Tel.: +886 35720659; fax: +886 35721490.
E-mail addresslhhsu@cis.nctu.edu.t@.-H. Hsu).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.02.007


http://www.elsevier.com/locate/tcs
mailto:lhhsu@cis.nctu.edu.tw

258 C.-K. Lin et al. / Theoretical Computer Science 339 (2005) 257-271

networks. Then-cube is one of the most popular topologj&8]. The n-dimensional star
network S,, was proposed in [1] as “an attractive alternative to nhaube” topology for
interconnecting processors in parallel computers. Since its introduction, the network has
received considerable attention. Akers et al. [1] showed that the star graphs are vertex tran-
sitive and edge transitive. The diameter and fault diameters were computed in [1,17,22,23].
The hamiltonian and hamiltonian laceability of star graphs are studied in [12,15,19]. In par-
ticular, Fragopoulou and Akl [7,8] studied the embeddingof 1) directed edge-disjoint
spanning trees on the star netwdfk These spanning trees are used in communication
algorithms for star networks.

Akers et al. [1] also proposed another family of interesting graphsp-thenensional
pancake grapt?,. They also showed that the pancake graphs are vertex transitive. Hung
et al. [14] studied the hamiltonian connectivity on the faulty pancake graphs. The embed-
ding of cycles and trees into the pancake graphs where discussed in [6,14,16]. Gates and
Papadimitriou [10] studied the diameter of the pancake graphs. Until now, we do not know
the exact value of the diameter of the pancake graphs [11].

For the graph definition and notation, we follow [8}. = (V, E) is a graph ifV is a
finite set andE is a subset of(a, b) | (a, b) is an unordered pair of}. We say thatV
is thevertex selandE is theedge setA path of lengthk from x to y is a sequence of
distinct vertices(vg, v1, v2, ..., vk), wherex = vg, y = v, and(v;—1, v;) € E for all
1<i <k. We also write the patkwg, v1, ..., v) as(vo, ..., v, Q, v}, ..., v), whereQ
is a path fromw; to v;. Note that we allowQ to be a path of length zero. We also write
the path(vo, v1, va, ..., vg) as{vo, Q1, Vi, Vi41, - - -, vj, 02, v, ..., V), whereQ1 is the
path (v, v, ..., v;) and Qo is the path(v;, vji1, ..., v;). We used(u, v) to denote the
distancebetweeru andv, i.e., the length of the shortest path joiningndv.

A path of graphG from u to v is ahamiltonian pathif it contains all vertices ofc. A
graphG is hamiltonian connecteifithere exists a hamiltonian path joining any two distinct
vertices. Acycleis a path (except that the first vertex is the same as the last vertex) containing
at least three vertices. A cycle Gfis ahamiltonian cyclef it contains all vertices. A graph
is hamiltonianif it has a hamiltonian cycle.

The connectivityof G, x(G), is the minimum number of vertices whose removal leaves
the remaining graph disconnected or trivial. It follows from Menger’'s Theorem [20] that
there arek internal vertex-disjoinfabbreviated adisjoinf) pathsjoining any two distinct
verticesu andv for any k <x(G). A k-containerC (u, v) of G is a set ofk disjoint paths
joining uto v. In this paper, we discuss another type of containdeodntainerC (u, v) is
a k*-containerif it contains all vertices ofs. A graphG is k*-connectedf there exists a
k*-container between any two distinct vertices. In particular, a g@aphl*-connected if
and only if it is hamiltonian connected, and a graplis 2*-connected if and only if it is
hamiltonian. All T*-connected graphs except tét andK 2 are Z-connected. The study of
k*-connected graphs is motivated by the globallyc®nnected graphs proposed by Albert
et al. [2]. A graphG is super connected it is i*-connected for all ¥i <x(G). In this
paper, we will prove that the pancake graphis super connected if and onlysif# 3.

A graphG is bipartiteif its vertex set can be partitioned into two subsétandV, such
that every edge joins vertices betwegnand V. Let G be ak-connected bipartite graph
with bipartition V1 and V, such thati V1| > | V>|. Suppose that there existsc&container
C(u,v) = {P1, P2, ..., Pt} in a bipartite graph joiningi to v with #, v € V3. Obviously,
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the number of vertices iR; is 2k; + 1 for some integek;. There are; — 1 vertices ofP; in
V1 other tharuandv, andk; vertices ofP; in V. As a consequencg/;| = Zle(ki —1+2
and|Vs| = Zle k;. Therefore, any bipartite grapgh with x(G) >3 is notk*-connected
for any 3<k <«x(G).

For this reason, a bipartite graplkislaceablef there exists &*-container between any
two vertices from different partite sets. Obviously, any bipaktitéaceable graph with > 2
has the equal size of bipartition. A-laceable graph is also known laamiltonian laceable
graph Moreover, a grapl® is 2*-laceable if and only if it is hamiltonian. All*tlaceable
graphs except that1 and K, are Z-laceable. A bipartite grapB is super laceabléf G is
i*-laceable for all Xi <x(G). In this paper, we will prove that the star grafhis super
laceable if and only if: # 3.

In the following section, we give the definition of the pancake graphs and discuss some of
their properties. In Section 3, we prove that the pancake gPajgsuper connected if and
only if n # 3. The definition of the star graphs and some of their properties are presented
in Section 4. In Section 5, we prove that the star gripls super laceable if and only if
n # 3. In the final section, we discuss further research.

2. The pancake graphs

Letn be a positive integer. We use) to denote the sdtl, 2, ..., n}. Then-dimensional
pancake graphdenoted byP,, is agraph with the vertex s€t(P,) = {uiuz...u, |u; € (n)
andu; # u; fori # j}. The adjacency is defined as followsuo . . . u; ... u, is adjacent
to v1vz...v; ... v, through an edge of dimensidrwith 2<i <n if v; = u;_;4 for all
1<j<iandv; = u; foralli < j<n.We will use bold face to denote a vertex Bf.
Henceys, Uy, ..., U, denote a sequence of verticedp In particulare denotes the vertex
12...n. By definition, P, is an(n — 1)-regular graph wittu! vertices.

Letu = wujus...u, be any vertex ofP,. We use(u); to denote thdath component
u; of u, and usePn{’} to denote theth subgraph ofP, induced by those verticas with
(u), = i. Obviously, P, can be decomposed intovertex disjoint subgraphS’,i’} for
everyi € (n) such that eachP,El} is isomorphic toP,_1. Thus, the pancake graph can be
constructed recursively. Le¥ C (n), we useP/ to denote the subgraph &, induced

by U,-eHV(Pn{’}). By definition, there is exactly one neighboof u such thau andv are
adjacent through airdimensional edge with2 i <n. For this reason, we uga)’ to denote
the unique-neighbor ofu. We have((u)’) = u and(u)" € P, For 1<i, j <n and
i # j, we useE"/ to denote the set of edges betwe and /. The pancake graphs
P>, P3, and P4 are shown in Figl for illustration.

The following theorem is proved by Hung et al. [14].

Theorem 1(Hung et al.[14]). P, is 1*-connected iflx # 3, and P, is 2*-connected if
n>3.

Lemma 1. Assume that >3. |E"/| = (n — 2)! forany1<i, j <n withi # j.
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Fig. 1. The pancake grapi#®, P3, andP4.

Lemma 2. Letuandv be any two distinct vertices &, withd (u, v) <2.Then(u)1 # (V)1.
Moreover {((U))1|2<i<n — 1} = (n) — {(U)1, (U),} if n>3.

Lemma 3. Letn>5and H = {i1, iz, ...,in} be any nonempty subset(af). There is a
hamiltonian path of?? joining any vertexu € P,E‘l} to any other vertex € P,E""}.

Proof. Note thatPn{i-"} is isomorphic toP,_; for every 1< j <m. We setx; = u and
Ym = V. By Theoremi, this theorem holds for = 1. Assume that: >2. By Lemma 1,
we choosgyj, Xj+1) € E''+t with yj # X andym # Xm for every 1< j<m — 1. By
Theorem 1, there is a hamiltonian padh of P,E”} joining x; toy; for every 1< j <m. The
path(xi, Q1, Y1, X2, 02.Y2, ..., Xm, Qm, Ym) forms a desired path. [J

3. The super connectivity of the pancake graphs

Lemma 4. Letn >5. Letu andv be any two distinct vertices iH,?} for somer € (n). If
P,_1 is k*-connectedthen there is gk + 1)*-container ofP, betweeru andv.

Proof. SinceP,ﬁ’} is isomorphic toP,_1, there is &*-containe{ Q1, Q», ..., Qi } of P,i”
joining u to v. We need to find & + 1)*-container ofP, joining u tov. We setp = (u);
andg = (V)1.

Casel: p = ¢. Thus,(u)" and(v)" are in P,f”}. By Lemmag3, there is a hamiltonian
pathQ of P,f”} joining (W)" to (v)". We write Q as ((u)"*, Q', vy, z, (v)"). By Lemma 2,
V)1 # @1, (¥)1 # t, and(2)1 # t. By Lemma 3, there is a hamiltonian pathof
PP joining (y)" to (2)". We setQi1 as(u, (W, 0.y, y)", R, "z, ()", V).
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Fig. 2. lllustration for Lemm&.

Then{Q1, Q>, ..., Q+1} forms a(k + 1)*-container ofP, joining u tov. See Fig2a for
illustration.

Case2: p # q. Thus, (u)" and (v)" are in different subgraphﬁn{p} and P17 By
Lemma 3, there is a hamiltonian paghof P,f”H’} joining (u)" to (v)". We setQy+1 as
(u, (W", 9, W",v). Then{Q1, Q2, ..., Qry1} forms a(k + 1)*-container ofP, joining
u tov. See Fig. 2b for illustration.

Thus, the theorem is proved]

Lemma 5. Letrn >5and k be any positive integer with< k <n — 1. Letu be any vertex in
Pn{” andv be any vertex irPn{’} such thats # ¢. Suppose thab,_1 is k*-connected. Then
there is ak*-container of P, betweeru andv not using the edgéu, v) if (u,v) € E(P,).

Proof. Since|E*'| = (n — 2)!>6, we can choose a vertgxin P,E‘Y} — {u} and a vertex
zin P — {v} with (y,2) € E*'. Note thatP,*’ and P"! are both isomorphic t®,_1.
Let{R1, R2, ..., Ri} be ak*-container ofP,iS} joiningutoy, and{Hi, Ho, ..., H} be a
k*-container oan{’} joining z to v. We write R; = (u, R, y;,y) andH; = (z,z, H/, V).
(Note thaty; = u if the length of R is zero andz = v if the length of H] is zero.)
Let 7 = {yi|1<i<k} andJ = {z|1<i<k}. Note that(yj)1 = (y); for some; e
(2,3,...,n =1}, and(y); # (Y)m if | # m. By Lemma2, {(yi)1|1<i <k} N {s,t} = @.
Similarly, {(z)1|1<i<k} N{s,r} = @. Let A = {y; |yi € I and there exists an element
z; € J such thatlyj)1 = (z)1}. Then we relabel the indices bfandJ such that(y;); =
(z)1 for 1<i <|A|. We setX as{(yi)1 | 1<i <k — 2} U {(z)1|1<i<k — 2} U {5, 1}. By
Lemma 3, there is a hamiltonian path of P{Y"*@1) joining (yi)" to ()" for every
1<i<k — 2, and there is a hamiltonian pafi_; of P,ﬁ")_x joining (Yk—1)" to (zx)".
(Note that{(yi)1, (z)1} = {(Ya} if (Yi)1 = (zi)1.) We set

Qi = <u7 Rllﬂ yl’ (yl)na ’Tia (Zl)na Zi’ Hi’» V> for lglék - 25
Qk—1=(u, Ry _1, Yk—-1, (Yk-1)", Tx—1, (z)", 2, H, V), and
Or = (U, Ry, Yk. Y. Z, Zk—1, Hy_1, V).

It is easy to check thdtQ1, Q», ..., Qk} forms ak*-container ofP, joining u to v not
using the edgéu, v) if (u,v) € E(P,). See Fig. 3 for illustration. [
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Fig. 3. lllustration for Lemm&.

Theorem 2. P, is (n — 1)*-connected ifi > 2.

Proof. It is easy to see thab, is 1*-connected andP; is 2*-connected. Since thg, is
vertex transitive, we claim thak, is 3*-connected by listing all*3containers from 1234
to any vertex as follows:

(1234, (2134, (4312)
(1234, (3214, (4123, (2143, (3412, (4312)
(1234, (4321), (2341, (1432, (4132, (2314, (1324), (3124, (4213, (1243, (3421, (2431, (4231, (3241, (1423, (2413, (3142, (1342, (4312)

(1234), (2134, (3124, (1324, (4231, (243)), (1342)
(1234), (3214, (2314, (4132, (1432, (234D, (3241, (1423, (4123, (2143, (3412, (4312, (1342)
(1234), (4321), (3421, (1243, (4213, (2413, (3142, (1342)

(1234), (2134, (3124, (4213, (2413, (1423, (3241, (2341, (1432, (3412, (4312, (1342, (3142, (4132. (2314, (1324, (4231, (243D), (342D)
(1234, (3214, (4123, (2143, (1243, (342D))
(1234, (432)), (342D))

(1234, (2134, (3124, (1324, (4231), (243D, (3421, (432D)
(1234, (3214, (2314, (4132, (1432, (3412, (4312, (1342, (3142, (2413, (4213, (1243, (2143, (4123, (1423, (3241, (234D), (432D))
(1234, (432D)

(1234, (2134, (3124, (1324, (4231, (243D)

(1234, (4321), (3421), (243D)

(1234, (2134, (3124), (4213, (1243, (2143, (3412, (4312, (1342, (3142, (2413, (1423)
(1234, (3214, (4123, (1423)
(1234, (4321), (3421), (2431), (4231), (1324, (2314, (4132, (1432, (2341, (324D, (1423)

(1234), (2134, (3124, (4213, (2413, (3142. (1342, (4312, (3412, (1432, (4132, (2314, (1324, (4231). (243D, (342D, (1243, (2143, (4123)
(1234, (3214, (4123)
(1234, (4321), (2341), (3241, (1423, (4123)

(1234, (2134, (3124, (4213, (2413, (1423, (3241, (423D)
(1234, (3214, (4123, (2143, (1243, (3421), (243D, (423D)
(1234, (4321), (2341), (1432, (3412, (4312, (1342, (3142, (4132, (2314, (1324, (423)))

(1234), (2134, (3124, (1324, (2314, (4132, (3142, (1342, (4312, (3412, (1432, (2341, (324D)
(1234), (3214, (4123, (2143, (1243, (4213, (2413, (1423, (324D)

(
(
(
(
(
(
(
(
(
(
(
(
(
((1234). (3214, (2314, (4132, (3142, (2413 (4213. (1243, (2143, (4123, (1423, (324D). (2341). (1432, (3412, (4312, (1342, (243D)
(
(
(
(
(
(
(
(
(
(
(
(
((1234), (4321, (3421, (243D, (4231, (324D)
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(1235, (2134, (4312, (1342, (243D, (342D, (1243, (4213, (3124, (1324, (4230, (3241, (234D)
(1234, (3214, (2314, (4132, (3142, (2413, (1423, (4123, (2143, (3412, (1432, (234D)
(1234, (4321, (2341)

(1234, (3214, (4123, (2143, (1243, (342)), (2431), (4231, (1324, (2314, (4132, (1432, (3412, (4312, (1342, (3142, (2413)

(1234, (2134, (3124, (4213, (2413)
(1234, (4321), (234D, (3241, (1423, (2413)

(1234, (2134, (3124, (1324, (4231, (243D, (342D, (1243)
(1234, (3214, (2314, (4132, (1432, (3412, (4312, (1342, (3142, (2413, (4213, (1243)
(1234, (4321, (2341, (324D, (1423, (4123, (2143, (1243)

(1238, (2134, (3124, (1324, (2314, (3214)
(1234, (3214)
(1234, (4321), (3421), (2431, (4231, (3241, (2341), (1432, (4132, (3142, (1342, (4312, (3412, (2143, (1243, (4213, (2413, (1423, (4123, (3214)

(1234, (2134, (3128, (4213, (2413, (3142, (4132, (2314)
(1234, (3214, (2314)
(1234, (432)), (3421, (1243, (2143, (4123, (1423, (3241, (2341, (1432, (3412, (4312, (1342, (2431, (423D, (1324, (2314)

(1234, (3214, (2314, (1324)
(1234, (4321), (2341, (3241, (4231), (1324)

(1234, (2134, (3124)
(1234, (3214, (4123, (1423, (3241), (4231), (243D, (3421), (1243, (2143, (3412, (4312, (1342, (3142, (2413, (4213, (3124)

(1234, (2134, (4312, (3412, (1432, (4132, (3142, (1342, (243D, (3421), (1243, (2143, (4123, (1423, (2413, (4213, (3124, (1324) {
(1234, (4321), (2341, (1432, (4132, (2314, (1324, (3124) ‘

(1238, (2134)
(1234, (3214, (2314, (1324, (3124, (2134)
(1234, (4321, (2341), (3241, (4231, (2431, (3421), (1243, (4213, (2413, (1423, (4123, (2143, (3412, (1432, (4132, (3142, (1342, (4312, (2134)

(1234, (2134, (4312, (1342, (3142)
(1234, (3214, (4123, (1423, (2413, (3142)

(1234, (2134, (3124, (1324, (2314, (4132)
(1234, (3214, (4123, (1423, (2413, (4213, (1243, (2143. (3412, (4312, (1342, (3142, (4132)
(1234, (432D, (3421, (243D, (4231, (3241, (234D, (1432, (4132)

(1234, (2134, (4312, (1342, (3142, (2413, (1423, (3241, (423)), (243D, (342D, (1243, (4213, (3124, (1324, (2314, (4132, (1432)
(1234, (3214, (4123, (2143, (3412, (1432)

(1234, (4321), (3421), (2431), (4231, (3241, (2341, (1432, (3412, (2143, (1243, (4213, (3124, (1324, (2314, (4132, (3142) \
(1234, (4321), (2341), (1432) {

(1234, (2134, (3124, (1324, (2314, (4132, (3142, (1342, (4312, (3412)
(1234, (3214, (4123, (1423, (2413, (4213, (1243, (2143, (3412)
(1234, (4321, (3412. (243D, (4231), (3241, (234D, (1432, (3412)

(1234, (2134, (4312, (1342, (3142, (4132, (2314, (1324, (3124, (4213)
(1234, (3214, (4123, (1423, (2413, (4213)
(1234, (4321), (3421), (243D, (423D, (3241), (2341), (1432, (3412, (2143, (1243, (4213)

(1234, (2134, (4312, (1342, (3142, (4132, (1432, (3412, (2143)
(1234, (3214, (2314, (1324, (3124, (4213, (2413, (1423, (4123, (2143)
(1234, (4321), (2341, (3241, (4231), (2431), (3421), (1243, (2143)

Assume thatP; is (k — 1)*-connected for every 4k <n — 1. Letu andv be any two
distinct vertices ofP, with u € PH{S} andv € P,f‘}. We need to find ai — 1)*-container
betweeru andv of P,. Suppose that = 7. By Lemma4, there is arfn — 1)*-container of
P, joining u to v. Thus, we assume that# . We setp = (u)1 andg = (V)1.

Casel: p =t andg = s. Thus,(u)" € P\ and(v)" € P\*.

Subcaséd.l:u = (v)".Thus,u, Vv) € E(P,). By Lemma5, there is afn — 2)*-container
{01, 02, ..., Q,_2} of P, joining u to v not using the edga, v). We setQ,,_1 as{u, v).
Then{Q1, Q>, ..., 0,1} forms an(n — 1)*-container ofP, joining u to v.

Subcasd.2:u # (v)". We sety = (V)" andz = (u)". Let{R1, Ro, ..., R,_2} be an
(n — 2)*-container oan{‘} joining u to y, and let{Hy, H>, ..., H,_2} be an(n — 2)*-
containerofP,E’} joiningztov. We writeR; = (u, R}, y;,y) andH; = (z, z, H/, v). We set
I'={(y)1l1<i<n —2}andJ = {(z)1]1<i <n — 2}. Note that(yj)1 = (y), for some
je{2,3,...,n—1},and(y)x # (y) if k #1.By Lemma 2,/ = {(y); |2<i<n —1} =
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Fig. 4. lllustration for Theorerg.

(ny — {s, t}. Similarly, J = (n) — {s, t}. We havel = J. Without loss of generality, we

assume thatyj)1 = (zj)1 for every 1<i <n — 2. By Lemma3, there is a hamiltonian path
T; of P,E(y‘)l} joining (yi)" to ()" for every 1<i <n — 4, and there is a hamiltonian path
T,_3 of plUn-3)1:0n-2)1) joining (yn_3)" to (zn_2)". We set

Qi =(u, R.,Yi, (y)". T;, (z))", zi, H], v) for 1<i<n — 4,
Qn73 = (u7 R;,g, Yn—3, (Yn—3)n, Trl*?n (Zn—2)n, Zn—27 HI;—Z’ V>7
On—2=1(U,2,2y_3, H,_3,V), and

(

n

Qn—l = U, R;l_27 yn—27 y3 V>

Then{Q1, 02, ..., 0,_1} forms an(n — 1)*-container ofP, joining u to v. See Fig. 4a
for illustration.

Case2: p = t andg € (n) — {s,t}. Since|E*Y| = (n — 2)! >6, we can choose a
vertexy in P} — {u} with (y)" € P/, We setz = (u)" € P"). Let{R1, Ry, ..., Rn_2)
be an(n — 2)*-container oan{S} joiningutoy, and{H1, Ho, ..., H,_»2} be an(n — 2)*-
container ofPf} joining z to v. We write R; = (u, R;,yi, y)andH; = (z, z, Hl./, v). We
have{(yi)1|1<i<n — 2} = {(y); | 2<i<n — 1}. By Lemma 2,{(y)1|1<i<n — 2} =
(ny —{s, q}. Similarly, {(zi)1 | 1<i <n — 2} = (n) — {s, t}. Without loss of generality, we
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assume thatyij)1 = (zj)1 forevery 1<i <n—3,(Yn—2)1 = t, and(z,_»2)1 = ¢. By Lemma
3, there is a hamiltonian paffy of Pj(yi)l} joining (y;)" to ()" for every 1<i <n — 3, and

there is a hamiltonian pathj,_» of Pn{q} joining (y)" to (v)". We set
Qi = (ua Rl/v ylv (yl)nv Y}a (Zi)n7 Zia Hi/a V) for 1<l<n - 3a
On—2=(U,R,_5 ¥Yn-2.Y. V", T,—2, (V)",v), and
anl = <u7 Z, Zn—2, Hy/1727 V)'
Then{Q1, O>, ..., 0,—1} forms an(n — 1)*-container ofP, joining u to v. See Fig. 4b
for illustration.

Case3: p, g € (n)—{s,t}. Since|ES'| = (n —2)! > 6, there exists an eddg, z) in E*’
withy € P,E” —{u}andz Pn{’} —{v}. Let{R1, Ro, ..., R,_2} be an(n — 2)*-container of
P,f” joiningutoy, and let{H1, Ho, ..., H,_2} be an(n — 2)*-container ofP,f’} joiningzto
v.WewriteR; = (u, R, y;,y)andH; = (z, z, H},v).We setl = {(yj)1]|1<i<n—2}and
J={(zZ)1]11<i<n—2}.Wehave = {(y); |2<i<n—1}.ByLemma2] = (n)—{s, t}.
Similarly, J = (n) — {s, t}. We havel = J. Without loss of generality, we assume that
(Yi)1 = (zj)1 for every 1<i <n — 2 with (yn_2)1 = p.

Subcas@.1: p = ¢. By Lemma 3, there is a hamiltonian pathof 2.%"Y joining (y;)"
to (z)" for everyi € (n — 3), and there is a hamiltonian palh_ in P,f”} joining ()" to
(V)". We set

Qi =(u, R.Yi, Y)". Ty, (@)", zi, Hj, v) for 1<i<n -3,
On—2={(U, R, _5,Yn-2,Y,Z Zn-2, H,_5,V), and
Qn—l - (uv (u)nﬂ Tn—2s (V)nv V>
Then{Q1, Q>, ..., 0,1} forms an(n — 1)*-container ofP, joining u andv. See Fig. 4c
for illustration.

Subcas8.2:p #£ g.Without loss of generality, we assume that_3)1 = ¢. By Theorem
1, there is a hamiltonian path of P,E(y‘)” joining (yi)" to (z)" for every 1<i <n — 4,
there is a hamiltonian path,_3 of Pn{’” joining (yn_3)" to (v)", and there is a hamiltonian
pathT,,_, of P!”! joining (u)" to (zn_2)". We set

Qi=(u, R}, yi, Y)", T;, )", H],v) for 1<i<n — 4,
Qn—3 = (ua R;_Ss yn—31 (yn—3)n1 Tn—3’ (V)ns V)»
On—2= (U, (W", T2, (Zn-2)". Zn—2. H,_,.V), and
Qn—l = (uv R;l_z, Yn-2,Y,2Z,Zn_3, Hy/I—S’ V)

Itis easy to check thdtQ1, Qo, ..., O,—1} is an(n — 1)*-container ofP, fromu tov.
See Fig. 4d for illustration.
Thus, the theorem is proved[]

Theorem 3. P, is super connected if and onlyrif# 3.

Proof. We prove this theorem by induction. Obviously, this theorem is truéfand P-.
Since P3 is isomorphic to a cycle with six vertice®s is not I*-connected. ThusPs is
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not super connected. By Theorethand 2, this theorem holds dPy. Assume that?; is
super connected for everydk <n — 1. By Theorems 1 and &, is k*-connected for any
k € {1,2,n — 1}. Thus, we still need to constructk&-container ofP, between any two
distinct verticesu Pn{S} andv e Pn{’} for every 3<k<n — 2.

Suppose that = ¢. By induction,P,_1 is (k — 1)*-connected. By Lemma 4, there is a
k*-container ofP, joining u to v. Suppose that # ¢. By induction, P, _1 is k*-connected.
By Lemma 5, there is &*-container ofP, joining u tov.

Hence, the theorem is provedl]

4. The star graphs

The n-dimensional star graphdenoted bys,,, is a graph with the vertex sét(S,) =
{ugup...u,lu; € (n) andu; # u; fori # j}. The adjacency is defined as follows:
uiuz . ..u; ...u, is adjacent toviva...v;...v, through an edge of dimensianwith
2<ignif v; = uj for j ¢ {1,i}, vi = u;, andv; = uy. Again, we use bold face to
denote a vertex of,,. Hence,us, U, ..., Uy denote a sequence of vertices$f In par-
ticular, e denotes the vertex 12. n. By definition, S, is an(n — 1)-regular graph withs!
vertices.

Itis known thats,, is a bipartite graph with one partite set containing all odd permutations
and the other partite set containing all even permutations. For convenience, we refer an
even permutation as a white vertex, and refer an odd permutation as a black vertex. Let
U =uiuz...u, be any vertex ofs,. We use(u); to denote théth component; of u and
S,{J} to denote théth subgraph of,, induced by those verticaswith (u),, = i. Obviously,

S, can be decomposed intovertex disjoint subgraphs{f} for 1<i <n, such that eacﬁ,{,”
is isomorphic toS,_1. Thus, the star graph can be constructed recursivelyHL et (n).
We useS! to denote the subgraph 6f induced byJ;c V(S,{,i}). By the definition ofS,,,
there is exactly one neighbwiof u such thati andv are adjacent through ardimensional
edge with 2<i <n. For this reason, we use)’ to denote the uniqueneighbor ofu. We
have((u)))' = u and(u)” e St™Y. For 1<i, j<n andi # j, we useE"/ to denote the
set of edges betwee‘j’ii} and S,{,j}. The star graphsy, S3, andSs are shown in Fig. 5 for
illustration.

The following theorem is proved by Hsieh et al. [12].

Theorem 4(Hsieh et al[12]). S, is 1*-laceable ifr» # 3,ands,, is 2*-connected ifi > 3.

Lemma 6. Assume that >3.|E/ | = (n —2)!foranyl<i # j<n. Moreover there are
=21 edges joining black vertices 6f to white vertices of}/’.

Lemma 7. Letu andv be any two distinct vertices §f withd (u, v) <2.Then(u)1 # (V)1.
Moreover {((1))1]2<i<n — 1} = (n) — {(u)1, (U),} if n>3.

Lemma 8. Letn>5and H = {i1,i2, ..., i} be any nonempty subset @f. There is a
hamiltonian path of5/ joining any white vertex e S,{l’l} to any black vertex e S,{l’m}.
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12 21

o 123

321
S 5 231

132

Fig. 5. The star graph$, S3, andSg.

Proof. Note thatSf,if} isisomorphic tas,_1 forevery 1< j <m.We sek; = uandym, = V.
By Theorem, this theorem holds for = 1. Assume that: >2. By Lemma 6, we choose
(¥j. Xj+1) € E'/"li+1 with y; is a black vertex o5/ andx; 1 is a white vertex ofsl/ Y

for every 1< j <m — 1. By Theorem 4, there is a hamiltonian paih of S,{fj} joining X;
toyj. The path{xy, Q1, Y1, X2, 02,¥2, ..., Xm, Om, Ym) forms a desired path.[]

5. The super laceability of the star graphs

In this section, we are going to prove thtis super laceable if and only if # 3. As
you will observe, the proof is very similar to the proof that is super connected if and
only if n # 3.

Lemma 9. Letrn>5 and k be any positive integer wih<k <n — 1. Letu be any white
vertex andv be any black vertex df,,. Suppose thas,_1 is k*-laceable. Then there is a
k*-container ofS, betweeru andv not using the edgéu, v) if (u,v) € E(S,).

Proof. SincesS, is edge transitive, we may assume that S,{[l} andv e S,{l”_l}. By
Lemmasb, there are("_zi>3 edges joining black vertices oﬁ"} to white vertices of

si"~1 We can choose an edgg, z) € E"~1" wherey is a black vertex ins" andz
is a white vertex inS,ﬂ”_l}. By induction, there is &*-container{R1, Ry, ..., Ry} of S,i”}
joining u to y, and there is &*-container{Hy, H», ..., Hy} of S,{l"’l} joining z to v. We
write R; = (u, R],y;,y) andH; = (z,z, H/,v). Note thaty; is a white vertex and; is
a black vertex for every £i <k. LetI = {y;|(yi,y) € E(R;) and 1<i <k}, andJ =
{zi| (z,x) € E(H;) and 1<i <k}. Note that(yj)1 = (y); for somej € {2,3,...,n — 1},
and(y); # (Y)m if I # m. By Lemma 7,{(yi)1|1<i<k} N {n — 1,n} = @. Similarly,
{(Z)111<i<k}n{n—1,n} =0.LetA = {y;j|y; € I and there exists an elememte J
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such that(yj)1 = (z)1}. Then we relabel the indices bndJ such thatlyj); = (z)1 for
1<i<|Al.We setXas{(yi)1 | 1<i <k—2}U{(z)1]1<i <k—2}U{n—1, n}. ByLemma
8, there is a hamiltonian path of s @ joining the black vertexy;)" to the white
vertex(z;)" for every 1<i <k — 2, and there is a hamiltonian pafj_; of S,i")’x joining
the black vertexyk_1)" to the white vertexzx)". (Note that{(yi)1, (z))1} = {(yi)1} if
(Yi)1 = (zi)1.) We set

Qi =(u, RiYi, (¥)". Ti, (z)". zi, H}, v) for 1<i <k —2,

Qk—1= (U, Ri_q, Yk—1, (Yk—1)", Tk—1. (Z)", zx, Hy, v), and

Ok = (U, R, Yk. Y- Z, Zk—1, H{_1. V).
It is easy to check thatQ1, Qo, ..., O} forms ak*-container ofS,, joining u to v not
using the edgéu, v) if (u,v) € E(S,). O

Theorem 5. §,, is (n — 1)*-laceable ifn > 2.
Proof. Itis easy to see that, is 1*-laceable ands is 2*-laceable. Since th§, is vertex

transitive, we claim thas, is 3*-laceable by listing all 3-containers from the white vertex
1234 to any black vertex as follows:

(1234, (2134)
(1234, (3214, (2314), (4312, (1342, (2341), (4321, (1324, (3124, (2134)
(1234, (4231), (3241, (1243, (4213, (2413, (3412, (1432, (243D, (3421), (1423, (4123, (2143, (3142, (4132, (2134)

(1234, (3214)
(1234), (4231, (3241), (2341, (1342, (3142, (2143, (1243, (4213, (3214)
(1234), (2134), (4132, (1432, (2431, (3421), (4321), (1324, (3124, (4123, (1423, (2413, (3412, (4312, (2314, (3214)

(1234, (423D)
(1234, (2134, (4132, (3142, (1342, (4312, (3412, (1432, (2431), (423D)
(1234, (3214, (2314, (1324, (3124 (4123, (2143, (1243, (4213, (2413, (1423, (3421, (4321), (2341), (3241, (4231)

(1234, (2134, (3124, (1325, (2314, (4312, (1342, (3142, (4132, (1432, (3412, (2413, (1423, (4123, (2143, (1243)
(1234, (3214, (4213, (1243)
(1234, (4231), (2431, (3421, (4321, (2341), (3241), (1243)

(1234), (2134, (4132, (1432)
(1234), (3214, (2314, (1324, (3124, (4123, (1423, (2413, (4213, (1243, (2143 (3142, (1342, (4312, (3412, (1432)
(1234, (4231), (3241, (234D, (4321, (342D, (2431, (1432)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

((1234), (2134, (4132, (3142, (1342, (4312, (3412, (1432, (2431, (342D, (1423, (2413, (4213, (1243, (2143, (4123, (3124, (1324)
((1234, (3214, (2314, (1324)
((1234), (423D), (324D, (2341, (4321), (1324)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(1234, (2134, (3124, (1324, (2314, (4312, (3412, (1432, (4132, (3142, (1342, (234D))
(1234, (3214, (4213, (1423, (2413, (4123, (2143, (1243, (3241), (234D))
(1234, (4231), (2431), (3421, (4321), (234D)

(1234, (2134, (4132, (3142, (1342, (4312, (3412, (1432, (243D, (342D)
(1234, (3214, (2314, (1324, (3124, (4123, (2143, (1243, (4213, (2413, (1423, (342D)
(1234, (4231), (3241), (2341, (432D, (342D))

(1234, (2134, (3124, (1324, (2314, (4312)
(1234, (3214, (4213, (1243, (2143, (4123, (1423, (2413, (3412, (4312)
(1234, (4231), (3241), (2341), (4321), (3421), (2431), (1432, (4132, (3142, (1342, (4312)

(1234), (2134, (4132, (1432, (3412, (4312, (1342, (3142. (2143, (4123)
(1234), (3214, (2314, (1324, (3124, (4123)
(1234, (4231), (243D, (3421, (4321, (234D, (324D, (1243, (4213 (2413, (1423, (4123)

(1234, (2134, (4132, (3142)
(1234, (3214, (2314, (1324, (3124, (4123, (1423, (2413, (4213, (1243, (2143, (3142)
(1234, (4231), (3241, (2341, (4321), (3421, (2431, (1432, (3412, (4312, (1342, (3142)

(1234), (2134, (3124, (1324), (2314, (4312 (1342, (3142, (4132. (1432, (3412, (2413)
(1234), (3214, (4213, (2413)
(1234, (4231), (243D, (3421, (4321, (2341, (324D, (1243, (2143 (4123, (1423, (2413)
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Assume thatSy is (k — 1)*-laceable for every £ k<n — 1. We need to construct an
(n — 1)*-container ofS,, between any white vertaxto any black vertex.

Casel:d(u,v) = 1. We have(u, v) € E(S,). By induction,S,_1 is (n — 2)*-laceable.
By Lemmay, there exists & — 2)*-container{Q1, Q>, ..., Q,—2} of S, joining u to
v not using the edgéu, v). We setQ,,_1 as(u, V). Then{Q1, Q», ..., Q,—1} forms an
(n — 1)*-container ofS,, joiningu tov.

Case2: d(u, v) > 3. We have star graph is edge transitive. Without loss of generality, we
may assume that € S andv e SV with (u)1 # n — 1 and(v); # n. By Lemma
6, there are(”‘TZ)! > 3 edges joining black vertices 6‘1{1”} to white vertices oﬁ,{,"_l}. We
can choose an edgg, z) € E"1" wherey is a black vertex inS,{,”} andz is a white
vertex inS" Y. Let {Rq, Ra, . .., Ru_p) be an(n — 2)*-container ofs\" joining u toy,
and let{Hy, Ho, ..., H,_2} be an(n — 2)*-container ofS,,"’l} joining z to v. We write
R; = (u, R!,yi,y) andH; = (z,z, H/, v). Note thaty; is a white vertex and is a black
vertex for every Ki<n — 2. We have{(yj)1 |1<i<n — 2} = {()1]1<i<n — 2} =
(n — 2). Without loss of generality, we assume tligf)1 = (z;)1 for every 1<i<n — 2
with (Yn—2)1 = (U)1.

Subcas@.l:(u); = (v)1. By Theorem 4, there is a hamiltonian p&thof S,{,(y‘)l} joining
the black vertexy;)” to the white vertexz;)" for everyi € (n—3), and there is a hamiltonian

pathH of S,{l(y”*Z)l} joining the black vertexu)” to the white vertexv)”. We set
Qi =(u, R, yi, ¥)". T;, (z)", zi, H}, v) for 1<i<n -3,
On-1=(U, R, _5.Yn-2,Y,2,Zn-2, H, »,V), and
Qn—2=(u, (W", H, V)", V,).
Then{Q1, Q>, ..., 0,1} forms an(n — 1)*-container ofS, joining u andv.
Subcase.2: (u); # (v)1. Without loss of generality, we assume tiigt_3)1 = (V)1.
By Theorem 4, there is a hamiltonian path of S,{,(y‘)l} joining (yi)" to (z;)" for every
i € (n — 4), there is a hamiltonian path of S,{,(y”‘3)1} joining the black vertexy,_3)" to
the white vertexv)”, and there is a hamiltonian paf@of S,{,(y”‘”l} joining the black vertex
(u)" to the white verteXz,_»)". We set
Qi =(u, R, Yi, Y)", Ti, (z)", zi, H;, v) for 1<i<n — 4,
On-3=(U, R, _3,Yn-3. (Yn-3)", H, (V)", V, ),
On-—2=(U,(W", P, (zn-2)", Zn—2, H, 5, V,), and
On-1=(U, R,_5,Yn-2.Y,Z, Zn_3, H,_3, V).

It is easy to check thdiQ1, Q», ..., Q,_1} isan(n — 1)*-container ofS, joiningu tov.
Thus, this theorem is proved [

Theorem 6. S, is super laceable if and only if # 3.

Proof. Itis easy to see that this theorem is true $grand S». SinceSs is isomorphic to a
cycle with six verticesSs is not I*-laceable. Thus§s is not super laceable. By Theorems
4 and 5, this theorem holds &i2. Assume thasy is super laceable for everydk <n — 1.

By Theorems 4 and 55, is k*-laceable for anyg € {1, 2, n» — 1}. Thus, we still need to
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construct &*-container ofS,, between any white vertaxand any black vertex for every
3<k<n — 2. By induction,S,,_1 is k*-laceable. By Lemma, there is &*-container of
S, joiningutov. O

6. Further study

In this paper, we prove that the pancake gr&phs super connected far # 3 and the
star graphss,, is super laceable for £ 3. We believe that there are other super connected
and super laceable graphs. It would be very interesting to classify such graphs.

We may also study the fault tolerakit-connectivity for any super connected graph. For
example, leF C V(P,)U E(P,) with |F| = f<n—3. Obviously,P, — Fis(n—1— f)
connected. However, we believe that — F is (n — 1 — f)*-connected. Similarly, we
can study the fault tolerarit*-laceability for any super laceable graph. For example, let
F C E(S,) with |F| = f <n — 3. Obviously,S,, — F is (n — 1 — f) connected. However,
we believe thats, — F is (n — 1 — f)*-connected.

Assume thaG is k*-connected. We may also define ttfeconnected distandeetween
any two verticesi andv, denoted by/; (u, v), which is the minimum length among ait-
containers betweem andv. Thek*-diameter ofG, denote byD; (G), is maxXd; (u, v) | u
and v are two different vertices of;}. In particular, we are intrigued im)i,(G)(G) and
D3(G). Similarly, we define thé&*. -laceable distancen bipartite graph between any two
verticesu andv from different partite sets, denoted H}}L (u, v), which is the minimum
length among alt*-containers betweanandv. Thek*. -diameter of5, denoted byD;* (G),
is maxXd;" (u, v) |u andv are vertices from different partite sgtdgain, we are intrigued
in DiL(G)(G) andD}" (G).

References

[1] S.B. Akers, B. Krishnameurthy, A group-theoretic model for symmetric interconnection networks, IEEE
Trans. Comput. 38 (1989) 555—-566.
[2] M. Albert, R.E.L. Aldred, D. Holton, On"3-connected graphs, Australasian J. Combin. 24 (2001) 193-208.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1980.
[4] A. Bouabdallah, M.C. Heydemann, J. Opatmy, D. Sotteau, Embedding complete binary trees into star and
pancake graphs, Theory of Comput. Syst. 31 (1998) 279-305.
[5] K. Day, A. Tripathi, A comparative study of topological properties, IEEE Trans. Parallel and Distributed Syst.
5(1994) 31-38.
[6] W.C. Fang, C.C. Hsu, On the fault-tolerant embedding of complete binary tree in the pancake graph
interconnection network, Inform. Sci. 126 (2000) 191-204.
[7] P. Fragopoulou, S.G. Akl, Optimal communication algorithms on the star graphs using spanning tree
constructions, J. Parallel and Distributed Comput. 23 (1995) 55-71.
[8] P. Fragopoulou, S.G. Akl, Edge-disjoint spanning trees on the star networks with applications to fault
tolerance, IEEE Trans. Comput. 45 (1996) 174-185.
[9] L. Gargano, U. Vaccaro, A. Vozella, Fault tolerant routing in the star and pancake interconnection networks,
Inform. Process. Lett. 45 (1993) 315-320.
[10] W.H. Gates, C.H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979) 47-57.
[11] M.H. Heydari, I.H. Sudborough, On the diameter of the pancake network, J. Algorithms 25 (1997) 67-94.
[12] S.Y. Hsieh, G.H. Chen, C.W. Ho, Hamiltonian-laceability of star graphs, Networks 36 (2000) 225-232.



C.-K. Lin et al. / Theoretical Computer Science 339 (2005) 257-271 271

[13] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fundamentals of
Electron. E 77A (1994) 668—680.

[14] C.N. Hung, H.C. Hsu, K.Y. Liang, L.H. Hsu, Ring embedding in faulty pancake graphs, Inform. Process.
Lett. 86 (2003) 271-275.

[15] J.S. Jwo, S. Lakshmivarahan, S.K. Dhall, Embedding of cycles and grids in star graphs, J. Circuits, Systems,
and Comput. 1 (1991) 43-74.

[16] A. Kanevsky, C. Feng, On the embedding of cycles in pancake graphs, Parallel Comput. 21 (1995) 923-936.

[17] S. Latifi, On the fault-diameter of the star graph, Inform. Process. Lett. 46 (1993) 143-150.

[18] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays. Trees. Hypercubes, Morgan
Kaufmann, San Mateo, CA, 1992.

[19] T.K. Li, J.M. Tan, L.H. Hsu, Hyper Hamiltonian Laceability on the Edge Fault Star Graph, Inform. Sci. 165
(2004) 59-71.

[20] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Math. 10 (1927) 95-115.

[21] K. Qiu, H. Meijer, S.G. Akl, Decomposing a star graph into disjoint cycles, Inform. Process. Lett. 39 (1991)
125-129.

[22] Y. Rouskov, S. Latifi, P.K. Srimani, Conditional fault diameter of star graph networks, J. Parallel and
Distributed Comput. 33 (1996) 91-97.

[23] Y. Rouskov, P.K. Srimani, Fault diameter of star graph networks, Inform. Process. Lett. 48 (1993) 243—-251.



