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Abstract

A k-containerC(u, v) of a graphG is a set ofk-disjoint paths joiningu to v. A k-containerC(u, v)

of G is ak∗-containerif it contains all the vertices ofG. A graphG is k∗-connectedif there exists a
k∗-container between any two distinct vertices. Let�(G) be the connectivity ofG. A graphG is super
connectedif G is i∗-connected for all 1� i��(G). A bipartite graphG is k∗-laceableif there exists a
k∗-container between any two vertices from different parts ofG. A bipartite graphG issuper laceable
if G is i∗-laceable for all 1� i��(G). In this paper, we prove that then-dimensional pancake graph
Pn is super connected if and only ifn �= 3 and then-dimensional star graphSn is super laceable if
and only ifn �= 3.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An interconnection network connects the processors of parallel computers. Its architec-
ture can be represented as a graph in which the vertices correspond to processors and the
edges correspond to connections. Hence, we use graphs and networks interchangeably.
There are many mutually conflicting requirements in designing the topology for computer
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networks. Then-cube is one of the most popular topologies[18]. Then-dimensional star
networkSn was proposed in [1] as “an attractive alternative to then-cube” topology for
interconnecting processors in parallel computers. Since its introduction, the network has
received considerable attention. Akers et al. [1] showed that the star graphs are vertex tran-
sitive and edge transitive. The diameter and fault diameters were computed in [1,17,22,23].
The hamiltonian and hamiltonian laceability of star graphs are studied in [12,15,19]. In par-
ticular, Fragopoulou andAkl [7,8] studied the embedding of(n− 1) directed edge-disjoint
spanning trees on the star networkSn. These spanning trees are used in communication
algorithms for star networks.
Akers et al. [1] also proposed another family of interesting graphs, then-dimensional

pancake graphPn. They also showed that the pancake graphs are vertex transitive. Hung
et al. [14] studied the hamiltonian connectivity on the faulty pancake graphs. The embed-
ding of cycles and trees into the pancake graphs where discussed in [6,14,16]. Gates and
Papadimitriou [10] studied the diameter of the pancake graphs. Until now, we do not know
the exact value of the diameter of the pancake graphs [11].
For the graph definition and notation, we follow [3].G = (V ,E) is a graph ifV is a

finite set andE is a subset of{(a, b) | (a, b) is an unordered pair ofV}. We say thatV
is thevertex setandE is theedge set. A path of lengthk from x to y is a sequence of
distinct vertices〈v0, v1, v2, . . . , vk〉, wherex = v0, y = vk, and(vi−1, vi) ∈ E for all
1� i�k. We also write the path〈v0, v1, . . . , vk〉 as〈v0, . . . , vi,Q, vj , . . . , vk〉, whereQ
is a path fromvi to vj . Note that we allowQ to be a path of length zero. We also write
the path〈v0, v1, v2, . . . , vk〉 as〈v0,Q1, vi, vi+1, . . . , vj ,Q2, vt , . . . , vk〉, whereQ1 is the
path〈v0, v1, . . . , vi〉 andQ2 is the path〈vj , vj+1, . . . , vt 〉. We used(u, v) to denote the
distancebetweenu andv, i.e., the length of the shortest path joiningu andv.
A path of graphG from u to v is ahamiltonian pathif it contains all vertices ofG. A

graphG ishamiltonian connectedif there exists a hamiltonian path joining any two distinct
vertices.Acycleis a path (except that the first vertex is the sameas the last vertex) containing
at least three vertices. A cycle ofG is ahamiltonian cycleif it contains all vertices. A graph
is hamiltonianif it has a hamiltonian cycle.
Theconnectivityof G, �(G), is the minimum number of vertices whose removal leaves

the remaining graph disconnected or trivial. It follows from Menger’s Theorem [20] that
there arek internal vertex-disjoint(abbreviated asdisjoint) pathsjoining any two distinct
verticesu andv for any k��(G). A k-containerC(u, v) of G is a set ofk disjoint paths
joining u to v. In this paper, we discuss another type of container. Ak-containerC(u, v) is
a k∗-containerif it contains all vertices ofG. A graphG is k∗-connectedif there exists a
k∗-container between any two distinct vertices. In particular, a graphG is 1∗-connected if
and only if it is hamiltonian connected, and a graphG is 2∗-connected if and only if it is
hamiltonian.All 1∗-connected graphs except thatK1 andK2 are 2∗-connected. The study of
k∗-connected graphs is motivated by the globally 3∗-connected graphs proposed by Albert
et al. [2]. A graphG is super connectedif it is i∗-connected for all 1� i��(G). In this
paper, we will prove that the pancake graphPn is super connected if and only ifn �= 3.
A graphG is bipartite if its vertex set can be partitioned into two subsetsV1 andV2 such

that every edge joins vertices betweenV1 andV2. Let G be ak-connected bipartite graph
with bipartitionV1 andV2 such that|V1|� |V2|. Suppose that there exists ak∗-container
C(u, v) = {P1, P2, . . . , Pk} in a bipartite graph joiningu to v with u, v ∈ V1. Obviously,



C.-K. Lin et al. / Theoretical Computer Science 339 (2005) 257–271 259

the number of vertices inPi is 2ki +1 for some integerki . There areki −1 vertices ofPi in
V1 other thanuandv, andki vertices ofPi inV2.As a consequence,|V1| = ∑k

i=1(ki−1)+2
and|V2| = ∑k

i=1 ki . Therefore, any bipartite graphG with �(G)�3 is notk∗-connected
for any 3�k��(G).
For this reason, a bipartite graph isk∗-laceableif there exists ak∗-container between any

two vertices fromdifferent partite sets.Obviously, any bipartitek∗-laceable graphwithk�2
has the equal size of bipartition.A 1∗-laceable graph is also known ashamiltonian laceable
graph. Moreover, a graphG is 2∗-laceable if and only if it is hamiltonian. All 1∗-laceable
graphs except thatK1 andK2 are 2∗-laceable. A bipartite graphG is super laceableif G is
i∗-laceable for all 1� i��(G). In this paper, we will prove that the star graphSn is super
laceable if and only ifn �= 3.
In the following section, we give the definition of the pancake graphs and discuss some of

their properties. In Section 3, we prove that the pancake graphPn is super connected if and
only if n �= 3. The definition of the star graphs and some of their properties are presented
in Section 4. In Section 5, we prove that the star graphSn is super laceable if and only if
n �= 3. In the final section, we discuss further research.

2. The pancake graphs

Let n be a positive integer. We use〈n〉 to denote the set{1,2, . . . , n}. Then-dimensional
pancake graph, denotedbyPn, is agraphwith thevertex setV (Pn) = {u1u2 . . . un | ui ∈ 〈n〉
andui �= uj for i �= j}. The adjacency is defined as follows:u1u2 . . . ui . . . un is adjacent
to v1v2 . . . vi . . . vn through an edge of dimensioni with 2� i�n if vj = ui−j+1 for all
1�j � i andvj = uj for all i < j �n. We will use bold face to denote a vertex ofPn.
Hence,u1, u2, . . . , un denote a sequence of vertices inPn. In particular,edenotes the vertex
12. . . n. By definition,Pn is an(n − 1)-regular graph withn! vertices.
Let u = u1u2 . . . un be any vertex ofPn. We use(u)i to denote theith component

ui of u, and useP {i}
n to denote theith subgraph ofPn induced by those verticesu with

(u)n = i. Obviously,Pn can be decomposed inton vertex disjoint subgraphsP {i}
n for

everyi ∈ 〈n〉 such that eachP {i}
n is isomorphic toPn−1. Thus, the pancake graph can be

constructed recursively. LetH ⊆ 〈n〉, we usePH
n to denote the subgraph ofPn induced

by ∪i∈HV (P
{i}
n ). By definition, there is exactly one neighborv of u such thatu andv are

adjacent through ani-dimensional edgewith 2� i�n. For this reason, we use(u)i to denote
the uniquei-neighbor ofu. We have((u)i)i = u and(u)n ∈ P

{(u)1}
n . For 1� i, j �n and

i �= j , we useEi,j to denote the set of edges betweenP
{i}
n andP {j}

n . The pancake graphs
P2, P3, andP4 are shown in Fig.1 for illustration.
The following theorem is proved by Hung et al. [14].

Theorem 1(Hung et al.[14] ). Pn is 1∗-connected ifn �= 3, and Pn is 2∗-connected if
n�3.

Lemma 1. Assume thatn�3. |Ei,j | = (n − 2)! for any1� i, j �n with i �= j .
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Fig. 1. The pancake graphsP2, P3, andP4.

Lemma 2. Letu andv be any two distinct vertices ofPn withd(u, v)�2.Then(u)1 �= (v)1.
Moreover, {((u)i)1 |2� i�n − 1} = 〈n〉 − {(u)1, (u)n} if n�3.

Lemma 3. Let n�5 andH = {i1, i2, . . . , im} be any nonempty subset of〈n〉. There is a
hamiltonian path ofPH

n joining any vertexu ∈ P
{i1}
n to any other vertexv ∈ P

{im}
n .

Proof. Note thatP
{ij }
n is isomorphic toPn−1 for every 1�j �m. We setx1 = u and

ym = v. By Theorem1, this theorem holds form = 1. Assume thatm�2. By Lemma 1,
we choose(yj , xj+1) ∈ Eij ,ij+1 with yj �= xj andym �= xm for every 1�j �m − 1. By

Theorem 1, there is a hamiltonian pathQj of P
{ij }
n joining xj to yj for every 1�j �m. The

path〈x1,Q1, y1, x2,Q2, y2, . . . , xm,Qm, ym〉 forms a desired path. �

3. The super connectivity of the pancake graphs

Lemma 4. Letn�5. Let u andv be any two distinct vertices inP {t}
n for somet ∈ 〈n〉. If

Pn−1 is k∗-connected, then there is a(k + 1)∗-container ofPn betweenu andv.

Proof. SinceP {t}
n is isomorphic toPn−1, there is ak∗-container{Q1,Q2, . . . ,Qk} of P {t}

n

joining u to v. We need to find a(k + 1)∗-container ofPn joining u to v. We setp = (u)1
andq = (v)1.

Case1: p = q. Thus,(u)n and(v)n are inP
{p}
n . By Lemma3, there is a hamiltonian

pathQ of P {p}
n joining (u)n to (v)n. We writeQ as 〈(u)n,Q′, y, z, (v)n〉. By Lemma 2,

(y)1 �= (z)1, (y)1 �= t , and (z)1 �= t . By Lemma 3, there is a hamiltonian pathR of
P

〈n〉−{t,p}
n joining (y)n to (z)n. We setQk+1 as 〈u, (u)n,Q′, y, (y)n, R, (z)n, z, (v)n, v〉.
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Fig. 2. Illustration for Lemma4.

Then{Q1,Q2, . . . ,Qk+1} forms a(k + 1)∗-container ofPn joining u to v. See Fig.2a for
illustration.

Case2: p �= q. Thus, (u)n and (v)n are in different subgraphsP {p}
n andP

{q}
n . By

Lemma 3, there is a hamiltonian pathQ of P 〈n〉−{t}
n joining (u)n to (v)n. We setQk+1 as

〈u, (u)n,Q, (v)n, v〉. Then{Q1,Q2, . . . ,Qk+1} forms a(k + 1)∗-container ofPn joining
u to v. See Fig. 2b for illustration.
Thus, the theorem is proved.�

Lemma 5. Letn�5and k be any positive integer with3�k�n−1.Letu be any vertex in
P

{s}
n andv be any vertex inP {t}

n such thats �= t . Suppose thatPn−1 is k∗-connected. Then
there is ak∗-container ofPn betweenu andv not using the edge(u, v) if (u, v) ∈ E(Pn).

Proof. Since|Es,t | = (n − 2)!�6, we can choose a vertexy in P
{s}
n − {u} and a vertex

z in P
{t}
n − {v} with (y, z) ∈ Es,t . Note thatP {s}

n andP {t}
n are both isomorphic toPn−1.

Let {R1, R2, . . . , Rk} be ak∗-container ofP {s}
n joining u to y, and{H1, H2, . . . , Hk} be a

k∗-container ofP {t}
n joining z to v. We writeRi = 〈u, R′

i , yi, y〉 andHi = 〈z, zi, H
′
i , v〉.

(Note thatyi = u if the length ofR′
i is zero andzi = v if the length ofH ′

i is zero.)
Let I = {yi |1� i�k} and J = {zi |1� i�k}. Note that(yi)1 = (y)j for somej ∈
{2,3, . . . , n − 1}, and(y)l �= (y)m if l �= m. By Lemma2, {(yi)1 |1� i�k} ∩ {s, t} = ∅.
Similarly, {(zi)1 |1� i�k} ∩ {s, t} = ∅. LetA = {yi | yi ∈ I and there exists an element
zj ∈ J such that(yi)1 = (zj )1}. Then we relabel the indices ofI andJ such that(yi)1 =
(zi)1 for 1� i� |A|. We setX as{(yi)1 |1� i�k − 2} ∪ {(zi)1 |1� i�k − 2} ∪ {s, t}. By
Lemma 3, there is a hamiltonian pathTi of P

{(yi )1,(zi )1}
n joining (yi)

n to (zi)
n for every

1� i�k − 2, and there is a hamiltonian pathTk−1 of P 〈n〉−X
n joining (yk−1)

n to (zk)
n.

(Note that{(yi)1, (zi)1} = {(yi)1} if (yi)1 = (zi)1.) We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�k − 2,

Qk−1 = 〈u, R′
k−1, yk−1, (yk−1)

n, Tk−1, (zk)
n, zk , H

′
k, v〉, and

Qk = 〈u, R′
k, yk , y, z, zk−1, H

′
k−1, v〉.

It is easy to check that{Q1,Q2, . . . ,Qk} forms ak∗-container ofPn joining u to v not
using the edge(u, v) if (u, v) ∈ E(Pn). See Fig. 3 for illustration. �
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Fig. 3. Illustration for Lemma5.

Theorem 2. Pn is (n − 1)∗-connected ifn�2.

Proof. It is easy to see thatP2 is 1∗-connected andP3 is 2∗-connected. Since theP4 is
vertex transitive, we claim thatP4 is 3∗-connected by listing all 3∗-containers from 1234
to any vertex as follows:

〈(1234), (2134), (4312)〉
〈(1234), (3214), (4123), (2143), (3412), (4312)〉
〈(1234), (4321), (2341), (1432), (4132), (2314), (1324), (3124), (4213), (1243), (3421), (2431), (4231), (3241), (1423), (2413), (3142), (1342), (4312)〉
〈(1234), (2134), (3124), (1324), (4231), (2431), (1342)〉
〈(1234), (3214), (2314), (4132), (1432), (2341), (3241), (1423), (4123), (2143), (3412), (4312), (1342)〉
〈(1234), (4321), (3421), (1243), (4213), (2413), (3142), (1342)〉
〈(1234), (2134), (3124), (4213), (2413), (1423), (3241), (2341), (1432), (3412), (4312), (1342), (3142), (4132), (2314), (1324), (4231), (2431), (3421)〉
〈(1234), (3214), (4123), (2143), (1243), (3421)〉
〈(1234), (4321), (3421)〉
〈(1234), (2134), (3124), (1324), (4231), (2431), (3421), (4321)〉
〈(1234), (3214), (2314), (4132), (1432), (3412), (4312), (1342), (3142), (2413), (4213), (1243), (2143), (4123), (1423), (3241), (2341), (4321)〉
〈(1234), (4321)〉
〈(1234), (2134), (3124), (1324), (4231), (2431)〉
〈(1234), (3214), (2314), (4132), (3142), (2413), (4213), (1243), (2143), (4123), (1423), (3241), (2341), (1432), (3412), (4312), (1342), (2431)〉
〈(1234), (4321), (3421), (2431)〉
〈(1234), (2134), (3124), (4213), (1243), (2143), (3412), (4312), (1342), (3142), (2413), (1423)〉
〈(1234), (3214), (4123), (1423)〉
〈(1234), (4321), (3421), (2431), (4231), (1324), (2314), (4132), (1432), (2341), (3241), (1423)〉
〈(1234), (2134), (3124), (4213), (2413), (3142), (1342), (4312), (3412), (1432), (4132), (2314), (1324), (4231), (2431), (3421), (1243), (2143), (4123)〉
〈(1234), (3214), (4123)〉
〈(1234), (4321), (2341), (3241), (1423), (4123)〉
〈(1234), (2134), (3124), (4213), (2413), (1423), (3241), (4231)〉
〈(1234), (3214), (4123), (2143), (1243), (3421), (2431), (4231)〉
〈(1234), (4321), (2341), (1432), (3412), (4312), (1342), (3142), (4132), (2314), (1324), (4231)〉
〈(1234), (2134), (3124), (1324), (2314), (4132), (3142), (1342), (4312), (3412), (1432), (2341), (3241)〉
〈(1234), (3214), (4123), (2143), (1243), (4213), (2413), (1423), (3241)〉
〈(1234), (4321), (3421), (2431), (4231), (3241)〉
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〈(1234), (2134), (4312), (1342), (2431), (3421), (1243), (4213), (3124), (1324), (4231), (3241), (2341)〉
〈(1234), (3214), (2314), (4132), (3142), (2413), (1423), (4123), (2143), (3412), (1432), (2341)〉
〈(1234), (4321), (2341)〉
〈(1234), (2134), (3124), (4213), (2413)〉
〈(1234), (3214), (4123), (2143), (1243), (3421), (2431), (4231), (1324), (2314), (4132), (1432), (3412), (4312), (1342), (3142), (2413)〉
〈(1234), (4321), (2341), (3241), (1423), (2413)〉
〈(1234), (2134), (3124), (1324), (4231), (2431), (3421), (1243)〉
〈(1234), (3214), (2314), (4132), (1432), (3412), (4312), (1342), (3142), (2413), (4213), (1243)〉
〈(1234), (4321), (2341), (3241), (1423), (4123), (2143), (1243)〉
〈(1234), (2134), (3124), (1324), (2314), (3214)〉
〈(1234), (3214)〉
〈(1234), (4321), (3421), (2431), (4231), (3241), (2341), (1432), (4132), (3142), (1342), (4312), (3412), (2143), (1243), (4213), (2413), (1423), (4123), (3214)〉
〈(1234), (2134), (3124), (4213), (2413), (3142), (4132), (2314)〉
〈(1234), (3214), (2314)〉
〈(1234), (4321), (3421), (1243), (2143), (4123), (1423), (3241), (2341), (1432), (3412), (4312), (1342), (2431), (4231), (1324), (2314)〉
〈(1234), (2134), (4312), (3412), (1432), (4132), (3142), (1342), (2431), (3421), (1243), (2143), (4123), (1423), (2413), (4213), (3124), (1324)〉
〈(1234), (3214), (2314), (1324)〉
〈(1234), (4321), (2341), (3241), (4231), (1324)〉
〈(1234), (2134), (3124)〉
〈(1234), (3214), (4123), (1423), (3241), (4231), (2431), (3421), (1243), (2143), (3412), (4312), (1342), (3142), (2413), (4213), (3124)〉
〈(1234), (4321), (2341), (1432), (4132), (2314), (1324), (3124)〉
〈(1234), (2134)〉
〈(1234), (3214), (2314), (1324), (3124), (2134)〉
〈(1234), (4321), (2341), (3241), (4231), (2431), (3421), (1243), (4213), (2413), (1423), (4123), (2143), (3412), (1432), (4132), (3142), (1342), (4312), (2134)〉
〈(1234), (2134), (4312), (1342), (3142)〉
〈(1234), (3214), (4123), (1423), (2413), (3142)〉
〈(1234), (4321), (3421), (2431), (4231), (3241), (2341), (1432), (3412), (2143), (1243), (4213), (3124), (1324), (2314), (4132), (3142)〉
〈(1234), (2134), (3124), (1324), (2314), (4132)〉
〈(1234), (3214), (4123), (1423), (2413), (4213), (1243), (2143), (3412), (4312), (1342), (3142), (4132)〉
〈(1234), (4321), (3421), (2431), (4231), (3241), (2341), (1432), (4132)〉
〈(1234), (2134), (4312), (1342), (3142), (2413), (1423), (3241), (4231), (2431), (3421), (1243), (4213), (3124), (1324), (2314), (4132), (1432)〉
〈(1234), (3214), (4123), (2143), (3412), (1432)〉
〈(1234), (4321), (2341), (1432)〉
〈(1234), (2134), (3124), (1324), (2314), (4132), (3142), (1342), (4312), (3412)〉
〈(1234), (3214), (4123), (1423), (2413), (4213), (1243), (2143), (3412)〉
〈(1234), (4321), (3412), (2431), (4231), (3241), (2341), (1432), (3412)〉
〈(1234), (2134), (4312), (1342), (3142), (4132), (2314), (1324), (3124), (4213)〉
〈(1234), (3214), (4123), (1423), (2413), (4213)〉
〈(1234), (4321), (3421), (2431), (4231), (3241), (2341), (1432), (3412), (2143), (1243), (4213)〉
〈(1234), (2134), (4312), (1342), (3142), (4132), (1432), (3412), (2143)〉
〈(1234), (3214), (2314), (1324), (3124), (4213), (2413), (1423), (4123), (2143)〉
〈(1234), (4321), (2341), (3241), (4231), (2431), (3421), (1243), (2143)〉

Assume thatPk is (k − 1)∗-connected for every 4�k�n − 1. Letu andv be any two
distinct vertices ofPn with u ∈ P

{s}
n andv ∈ P

{t}
n . We need to find an(n − 1)∗-container

betweenu andv of Pn. Suppose thats = t . By Lemma4, there is an(n − 1)∗-container of
Pn joining u to v. Thus, we assume thats �= t . We setp = (u)1 andq = (v)1.

Case1: p = t andq = s. Thus,(u)n ∈ P
{t}
n and(v)n ∈ P

{s}
n .

Subcase1.1:u = (v)n. Thus,(u, v) ∈ E(Pn). By Lemma5, there is an(n−2)∗-container
{Q1,Q2, . . . ,Qn−2} of Pn joining u to v not using the edge(u, v). We setQn−1 as〈u, v〉.
Then{Q1,Q2, . . . ,Qn−1} forms an(n − 1)∗-container ofPn joining u to v.

Subcase1.2:u �= (v)n. We sety = (v)n andz = (u)n. Let {R1, R2, . . . , Rn−2} be an
(n − 2)∗-container ofP {s}

n joining u to y, and let{H1, H2, . . . , Hn−2} be an(n − 2)∗-
container ofP {t}

n joiningz tov.We writeRi = 〈u, R′
i , yi, y〉 andHi = 〈z, zi, H

′
i , v〉.We set

I = {(yi)1 |1� i�n − 2} andJ = {(zi)1 |1� i�n − 2}. Note that(yi)1 = (y)j for some
j ∈ {2,3, . . . , n − 1}, and(y)k �= (y)l if k �= l. By Lemma 2,I = {(y)i |2� i�n − 1} =
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Fig. 4. Illustration for Theorem2.

〈n〉 − {s, t}. Similarly, J = 〈n〉 − {s, t}. We haveI = J . Without loss of generality, we
assume that(yi)1 = (zi)1 for every 1� i�n − 2. By Lemma3, there is a hamiltonian path
Ti of P

{(yi )1}
n joining (yi)

n to (zi)
n for every 1� i�n − 4, and there is a hamiltonian path

Tn−3 of P
{(yn−3)1,(yn−2)1}
n joining (yn−3)

n to (zn−2)
n. We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�n − 4,

Qn−3 = 〈u, R′
n−3, yn−3, (yn−3)

n, Tn−3, (zn−2)
n, zn−2, H

′
n−2, v〉,

Qn−2 = 〈u, z, zn−3, H
′
n−3, v〉, and

Qn−1 = 〈u, R′
n−2, yn−2, y, v〉.

Then{Q1,Q2, . . . ,Qn−1} forms an(n − 1)∗-container ofPn joining u to v. See Fig. 4a
for illustration.

Case2: p = t andq ∈ 〈n〉 − {s, t}. Since|Es,q | = (n − 2)!�6, we can choose a
vertexy in P

{s}
n − {u} with (y)n ∈ P

{q}
n . We setz = (u)n ∈ P

{t}
n . Let {R1, R2, . . . , Rn−2}

be an(n − 2)∗-container ofP {s}
n joining u to y, and{H1, H2, . . . , Hn−2} be an(n − 2)∗-

container ofP {t}
n joining z to v. We writeRi = 〈u, R′

i , yi, y〉 andHi = 〈z, zi, H
′
i , v〉. We

have{(yi)1 |1� i�n − 2} = {(y)i |2� i�n − 1}. By Lemma 2,{(yi)1 |1� i�n − 2} =
〈n〉 − {s, q}. Similarly, {(zi)1 |1� i�n − 2} = 〈n〉 − {s, t}. Without loss of generality, we



C.-K. Lin et al. / Theoretical Computer Science 339 (2005) 257–271 265

assume that(yi)1 = (zi)1 for every 1� i�n−3,(yn−2)1 = t , and(zn−2)1 = q. By Lemma
3, there is a hamiltonian pathTi of P

{(yi )1}
n joining (yi)

n to (zi)
n for every 1� i�n−3, and

there is a hamiltonian pathTn−2 of P
{q}
n joining (y)n to (v)n. We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�n − 3,

Qn−2 = 〈u, R′
n−2, yn−2, y, (y)n, Tn−2, (v)n, v〉, and

Qn−1 = 〈u, z, zn−2, H
′
n−2, v〉.

Then{Q1,Q2, . . . ,Qn−1} forms an(n − 1)∗-container ofPn joining u to v. See Fig. 4b
for illustration.

Case3:p, q ∈ 〈n〉−{s, t}. Since|Es,t | = (n−2)!�6, there exists an edge(y, z) inEs,t

with y ∈ P
{s}
n −{u} andz ∈ P

{t}
n −{v}. Let {R1, R2, . . . , Rn−2} be an(n−2)∗-container of

P
{s}
n joiningu toy, and let{H1, H2, . . . , Hn−2} be an(n−2)∗-container ofP {t}

n joiningz to
v.WewriteRi = 〈u, R′

i , yi, y〉andHi = 〈z, zi, H
′
i , v〉.WesetI = {(yi)1 |1� i�n−2}and

J = {(zi)1 |1� i�n−2}.We haveI = {(y)i |2� i�n−1}. By Lemma2,I = 〈n〉−{s, t}.
Similarly, J = 〈n〉 − {s, t}. We haveI = J . Without loss of generality, we assume that
(yi)1 = (zi)1 for every 1� i�n − 2 with (yn−2)1 = p.

Subcase3.1:p = q. By Lemma 3, there is a hamiltonian pathTi of P
{(yi )1}
n joining (yi)

n

to (zi)
n for everyi ∈ 〈n − 3〉, and there is a hamiltonian pathTn−2 in P

{p}
n joining (u)n to

(v)n. We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�n − 3,

Qn−2 = 〈u, R′
n−2, yn−2, y, z, zn−2, H

′
n−2, v〉, and

Qn−1 = 〈u, (u)n, Tn−2, (v)n, v〉.
Then{Q1,Q2, . . . ,Qn−1} forms an(n − 1)∗-container ofPn joining u andv. See Fig. 4c
for illustration.

Subcase3.2:p �= q.Without loss of generality, weassume that(yn−3)1 = q. ByTheorem
1, there is a hamiltonian pathTi of P

{(yi )1}
n joining (yi)

n to (zi)
n for every 1� i�n − 4,

there is a hamiltonian pathTn−3 of P
{q}
n joining (yn−3)

n to (v)n, and there is a hamiltonian
pathTn−2 of P

{p}
n joining (u)n to (zn−2)

n. We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n,H ′

i , v〉 for 1� i�n − 4,

Qn−3 = 〈u, R′
n−3, yn−3, (yn−3)

n, Tn−3, (v)n, v〉,
Qn−2 = 〈u, (u)n, Tn−2, (zn−2)

n, zn−2, H
′
n−2, v〉, and

Qn−1 = 〈u, R′
n−2, yn−2, y, z, zn−3, H

′
n−3, v〉.

It is easy to check that{Q1,Q2, . . . ,Qn−1} is an(n − 1)∗-container ofPn from u to v.
See Fig. 4d for illustration.
Thus, the theorem is proved.�

Theorem 3. Pn is super connected if and only ifn �= 3.

Proof. We prove this theorem by induction. Obviously, this theorem is true forP1 andP2.
SinceP3 is isomorphic to a cycle with six vertices,P3 is not 1∗-connected. Thus,P3 is



266 C.-K. Lin et al. / Theoretical Computer Science 339 (2005) 257–271

not super connected. By Theorems1 and 2, this theorem holds onP4. Assume thatPk is
super connected for every 4�k�n − 1. By Theorems 1 and 2,Pn is k∗-connected for any
k ∈ {1,2, n − 1}. Thus, we still need to construct ak∗-container ofPn between any two
distinct verticesu ∈ P

{s}
n andv ∈ P

{t}
n for every 3�k�n − 2.

Suppose thats = t . By induction,Pn−1 is (k − 1)∗-connected. By Lemma 4, there is a
k∗-container ofPn joining u to v. Suppose thats �= t . By induction,Pn−1 is k∗-connected.
By Lemma 5, there is ak∗-container ofPn joining u to v.
Hence, the theorem is proved.�

4. The star graphs

Then-dimensional star graph, denoted bySn, is a graph with the vertex setV (Sn) =
{u1u2 . . . un | ui ∈ 〈n〉 andui �= uj for i �= j}. The adjacency is defined as follows:
u1u2 . . . ui . . . un is adjacent tov1v2 . . . vi . . . vn through an edge of dimensioni with
2� i�n if vj = uj for j /∈ {1, i}, v1 = ui , andvi = u1. Again, we use bold face to
denote a vertex ofSn. Hence,u1, u2, . . . , un denote a sequence of vertices ofSn. In par-
ticular,e denotes the vertex 12. . . n. By definition,Sn is an(n − 1)-regular graph withn!
vertices.
It is known thatSn is a bipartite graphwith one partite set containing all odd permutations

and the other partite set containing all even permutations. For convenience, we refer an
even permutation as a white vertex, and refer an odd permutation as a black vertex. Let
u = u1u2 . . . un be any vertex ofSn. We use(u)i to denote theith componentui of u and
S

{i}
n to denote theith subgraph ofSn induced by those verticesu with (u)n = i. Obviously,

Sn can be decomposed inton vertex disjoint subgraphsS{i}
n for 1� i�n, such that eachS{i}

n

is isomorphic toSn−1. Thus, the star graph can be constructed recursively. LetH ⊆ 〈n〉.
We useSH

n to denote the subgraph ofSn induced by∪i∈HV (S{i}
n ). By the definition ofSn,

there is exactly one neighborv of u such thatu andv are adjacent through ani-dimensional
edge with 2� i�n. For this reason, we use(u)i to denote the uniquei-neighbor ofu. We
have((u)i)i = u and(u)n ∈ S

{(u)1}
n . For 1� i, j �n andi �= j , we useEi,j to denote the

set of edges betweenS{i}
n andS{j}

n . The star graphsS2, S3, andS4 are shown in Fig. 5 for
illustration.
The following theorem is proved by Hsieh et al. [12].

Theorem 4(Hsieh et al.[12] ). Sn is1∗-laceable ifn �= 3,andSn is2∗-connected ifn�3.

Lemma 6. Assume thatn�3. |Ei,j | = (n−2)! for any1� i �= j �n.Moreover, there are
(n−2)!

2 edges joining black vertices ofS{i}
n to white vertices ofS{j}

n .

Lemma 7. Letu andv be any two distinct vertices ofSn withd(u, v)�2.Then(u)1 �= (v)1.
Moreover, {((u)i)1 |2� i�n − 1} = 〈n〉 − {(u)1, (u)n} if n�3.

Lemma 8. Let n�5 andH = {i1, i2, . . . , im} be any nonempty subset of〈n〉. There is a
hamiltonian path ofSH

n joining any white vertexu ∈ S
{i1}
n to any black vertexv ∈ S

{im}
n .
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Fig. 5. The star graphsS2, S3, andS4.

Proof. Note thatS
{ij }
n is isomorphic toSn−1 for every 1�j �m.We setx1 = u andym = v.

By Theorem4, this theorem holds form = 1. Assume thatm�2. By Lemma 6, we choose
(yj , xj+1) ∈ Eij ,ij+1 with yj is a black vertex ofS{j}

n andxj+1 is a white vertex ofS{j+1}
n

for every 1�j �m − 1. By Theorem 4, there is a hamiltonian pathQj of S
{ij }
n joining xj

to yj . The path〈x1,Q1, y1, x2,Q2, y2, . . . , xm,Qm, ym〉 forms a desired path.�

5. The super laceability of the star graphs

In this section, we are going to prove thatSn is super laceable if and only ifn �= 3. As
you will observe, the proof is very similar to the proof thatPn is super connected if and
only if n �= 3.

Lemma 9. Let n�5 and k be any positive integer with3�k�n − 1. Let u be any white
vertex andv be any black vertex ofSn. Suppose thatSn−1 is k∗-laceable. Then there is a
k∗-container ofSn betweenu andv not using the edge(u, v) if (u, v) ∈ E(Sn).

Proof. SinceSn is edge transitive, we may assume thatu ∈ S
{n}
n andv ∈ S

{n−1}
n . By

Lemma6, there are(n−2)!
2 �3 edges joining black vertices ofS{n}

n to white vertices of

S
{n−1}
n . We can choose an edge(y, z) ∈ En−1,n wherey is a black vertex inS{n}

n andz
is a white vertex inS{n−1}

n . By induction, there is ak∗-container{R1, R2, . . . , Rk} of S{n}
n

joining u to y, and there is ak∗-container{H1, H2, . . . , Hk} of S{n−1}
n joining z to v. We

write Ri = 〈u, R′
i , yi, y〉 andHi = 〈z, zi, H

′
i , v〉. Note thatyi is a white vertex andzi is

a black vertex for every 1� i�k. Let I = {yi | (yi, y) ∈ E(Ri) and 1� i�k}, andJ =
{zi | (zi, x) ∈ E(Hi) and 1� i�k}. Note that(yi)1 = (y)j for somej ∈ {2,3, . . . , n − 1},
and(y)l �= (y)m if l �= m. By Lemma 7,{(yi)1 |1� i�k} ∩ {n − 1, n} = ∅. Similarly,
{(zi)1 |1� i�k} ∩ {n − 1, n} = ∅. LetA = {yi | yi ∈ I and there exists an elementzj ∈ J
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such that(yi)1 = (zj )1}. Then we relabel the indices ofI andJ such that(yi)1 = (zi)1 for
1� i� |A|.We setXas{(yi)1 |1� i�k−2}∪{(zi)1 |1� i�k−2}∪{n−1, n}. By Lemma
8, there is a hamiltonian pathTi of S

{(yi )1,(zi )1}
n joining the black vertex(yi)

n to the white
vertex(zi)

n for every 1� i�k − 2, and there is a hamiltonian pathTk−1 of S
〈n〉−X
n joining

the black vertex(yk−1)
n to the white vertex(zk)

n. (Note that{(yi)1, (zi)1} = {(yi)1} if
(yi)1 = (zi)1.) We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�k − 2,

Qk−1 = 〈u, R′
k−1, yk−1, (yk−1)

n, Tk−1, (zk)
n, zk , H

′
k, v〉, and

Qk = 〈u, R′
k, yk , y, z, zk−1, H

′
k−1, v〉.

It is easy to check that{Q1,Q2, . . . ,Qk} forms ak∗-container ofSn joining u to v not
using the edge(u, v) if (u, v) ∈ E(Sn). �

Theorem 5. Sn is (n − 1)∗-laceable ifn�2.

Proof. It is easy to see thatS2 is 1∗-laceable andS3 is 2∗-laceable. Since theS4 is vertex
transitive, we claim thatS4 is 3∗-laceable by listing all 3∗-containers from the white vertex
1234 to any black vertex as follows:

〈(1234), (2134)〉
〈(1234), (3214), (2314), (4312), (1342), (2341), (4321), (1324), (3124), (2134)〉
〈(1234), (4231), (3241), (1243), (4213), (2413), (3412), (1432), (2431), (3421), (1423), (4123), (2143), (3142), (4132), (2134)〉
〈(1234), (3214)〉
〈(1234), (4231), (3241), (2341), (1342), (3142), (2143), (1243), (4213), (3214)〉
〈(1234), (2134), (4132), (1432), (2431), (3421), (4321), (1324), (3124), (4123), (1423), (2413), (3412), (4312), (2314), (3214)〉
〈(1234), (4231)〉
〈(1234), (2134), (4132), (3142), (1342), (4312), (3412), (1432), (2431), (4231)〉
〈(1234), (3214), (2314), (1324), (3124), (4123), (2143), (1243), (4213), (2413), (1423), (3421), (4321), (2341), (3241), (4231)〉
〈(1234), (2134), (3124), (1324), (2314), (4312), (1342), (3142), (4132), (1432), (3412), (2413), (1423), (4123), (2143), (1243)〉
〈(1234), (3214), (4213), (1243)〉
〈(1234), (4231), (2431), (3421), (4321), (2341), (3241), (1243)〉
〈(1234), (2134), (4132), (1432)〉
〈(1234), (3214), (2314), (1324), (3124), (4123), (1423), (2413), (4213), (1243), (2143), (3142), (1342), (4312), (3412), (1432)〉
〈(1234), (4231), (3241), (2341), (4321), (3421), (2431), (1432)〉
〈(1234), (2134), (4132), (3142), (1342), (4312), (3412), (1432), (2431), (3421), (1423), (2413), (4213), (1243), (2143), (4123), (3124), (1324)〉
〈(1234), (3214), (2314), (1324)〉
〈(1234), (4231), (3241), (2341), (4321), (1324)〉
〈(1234), (2134), (3124), (1324), (2314), (4312), (3412), (1432), (4132), (3142), (1342), (2341)〉
〈(1234), (3214), (4213), (1423), (2413), (4123), (2143), (1243), (3241), (2341)〉
〈(1234), (4231), (2431), (3421), (4321), (2341)〉
〈(1234), (2134), (4132), (3142), (1342), (4312), (3412), (1432), (2431), (3421)〉
〈(1234), (3214), (2314), (1324), (3124), (4123), (2143), (1243), (4213), (2413), (1423), (3421)〉
〈(1234), (4231), (3241), (2341), (4321), (3421)〉
〈(1234), (2134), (3124), (1324), (2314), (4312)〉
〈(1234), (3214), (4213), (1243), (2143), (4123), (1423), (2413), (3412), (4312)〉
〈(1234), (4231), (3241), (2341), (4321), (3421), (2431), (1432), (4132), (3142), (1342), (4312)〉
〈(1234), (2134), (4132), (1432), (3412), (4312), (1342), (3142), (2143), (4123)〉
〈(1234), (3214), (2314), (1324), (3124), (4123)〉
〈(1234), (4231), (2431), (3421), (4321), (2341), (3241), (1243), (4213), (2413), (1423), (4123)〉
〈(1234), (2134), (4132), (3142)〉
〈(1234), (3214), (2314), (1324), (3124), (4123), (1423), (2413), (4213), (1243), (2143), (3142)〉
〈(1234), (4231), (3241), (2341), (4321), (3421), (2431), (1432), (3412), (4312), (1342), (3142)〉
〈(1234), (2134), (3124), (1324), (2314), (4312), (1342), (3142), (4132), (1432), (3412), (2413)〉
〈(1234), (3214), (4213), (2413)〉
〈(1234), (4231), (2431), (3421), (4321), (2341), (3241), (1243), (2143), (4123), (1423), (2413)〉
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Assume thatSk is (k − 1)∗-laceable for every 4�k�n − 1. We need to construct an
(n − 1)∗-container ofSn between any white vertexu to any black vertexv.

Case1: d(u, v) = 1. We have(u, v) ∈ E(Sn). By induction,Sn−1 is (n − 2)∗-laceable.
By Lemma9, there exists a(n − 2)∗-container{Q1,Q2, . . . ,Qn−2} of Sn joining u to
v not using the edge(u, v). We setQn−1 as〈u, v〉. Then{Q1,Q2, . . . ,Qn−1} forms an
(n − 1)∗-container ofSn joining u to v.

Case2: d(u, v)�3. We have star graph is edge transitive. Without loss of generality, we
may assume thatu ∈ S

{n}
n andv ∈ S

{n−1}
n with (u)1 �= n − 1 and(v)1 �= n. By Lemma

6, there are(n−2)!
2 �3 edges joining black vertices ofS{n}

n to white vertices ofS{n−1}
n . We

can choose an edge(y, z) ∈ En−1,n wherey is a black vertex inS{n}
n andz is a white

vertex inS{n−1}
n . Let {R1, R2, . . . , Rn−2} be an(n − 2)∗-container ofS{n}

n joining u to y,
and let{H1, H2, . . . , Hn−2} be an(n − 2)∗-container ofS{n−1}

n joining z to v. We write
Ri = 〈u, R′

i , yi, y〉 andHi = 〈z, zi, H
′
i , v〉. Note thatyi is a white vertex andzi is a black

vertex for every 1� i�n − 2. We have{(yi)1 |1� i�n − 2} = {(zi)1 |1� i�n − 2} =
〈n − 2〉. Without loss of generality, we assume that(yi)1 = (zi)1 for every 1� i�n − 2
with (yn−2)1 = (u)1.

Subcase2.1:(u)1 = (v)1. By Theorem 4, there is a hamiltonian pathTi of S
{(yi )1}
n joining

theblack vertex(yi)
n to thewhite vertex(zi)

n for everyi ∈ 〈n−3〉, and there is ahamiltonian
pathH of S{(yn−2)1}

n joining the black vertex(u)n to the white vertex(v)n. We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�n − 3,

Qn−1 = 〈u, R′
n−2, yn−2, y, z, zn−2, H

′
n−2, v〉, and

Qn−2 = 〈u, (u)n,H, (v)n, v, 〉.
Then{Q1,Q2, . . . ,Qn−1} forms an(n − 1)∗-container ofSn joining u andv.

Subcase2.2: (u)1 �= (v)1. Without loss of generality, we assume that(yn−3)1 = (v)1.
By Theorem 4, there is a hamiltonian pathTi of S

{(yi )1}
n joining (yi)

n to (zi)
n for every

i ∈ 〈n − 4〉, there is a hamiltonian pathH of S{(yn−3)1}
n joining the black vertex(yn−3)

n to

the white vertex(v)n, and there is a hamiltonian pathPof S{(yn−2)1}
n joining the black vertex

(u)n to the white vertex(zn−2)
n. We set

Qi = 〈u, R′
i , yi, (yi)

n, Ti, (zi)
n, zi, H

′
i , v〉 for 1� i�n − 4,

Qn−3 = 〈u, R′
n−3, yn−3, (yn−3)

n,H, (v)n, v, 〉,
Qn−2 = 〈u, (u)n, P, (zn−2)

n, zn−2, H
′
n−2, v, 〉, and

Qn−1 = 〈u, R′
n−2, yn−2, y, z, zn−3, H

′
n−3, v〉.

It is easy to check that{Q1,Q2, . . . ,Qn−1} is an(n − 1)∗-container ofSn joining u to v.
Thus, this theorem is proved.�

Theorem 6. Sn is super laceable if and only ifn �= 3.

Proof. It is easy to see that this theorem is true forS1 andS2. SinceS3 is isomorphic to a
cycle with six vertices,S3 is not 1∗-laceable. Thus,S3 is not super laceable. By Theorems
4 and 5, this theorem holds onS4. Assume thatSk is super laceable for every 4�k�n− 1.
By Theorems 4 and 5,Sn is k∗-laceable for anyk ∈ {1,2, n − 1}. Thus, we still need to
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construct ak∗-container ofSn between any white vertexu and any black vertexv for every
3�k�n − 2. By induction,Sn−1 is k∗-laceable. By Lemma9, there is ak∗-container of
Sn joining u to v. �

6. Further study

In this paper, we prove that the pancake graphPn is super connected forn �= 3 and the
star graphsSn is super laceable forn �= 3. We believe that there are other super connected
and super laceable graphs. It would be very interesting to classify such graphs.
We may also study the fault tolerantk∗-connectivity for any super connected graph. For

example, letF ⊂ V (Pn)∪E(Pn) with |F | = f �n−3. Obviously,Pn −F is (n−1− f )

connected. However, we believe thatPn − F is (n − 1 − f )∗-connected. Similarly, we
can study the fault tolerantk∗-laceability for any super laceable graph. For example, let
F ⊂ E(Sn) with |F | = f �n − 3. Obviously,Sn − F is (n − 1− f ) connected. However,
we believe thatSn − F is (n − 1− f )∗-connected.
Assume thatG is k∗-connected. We may also define thek∗-connected distancebetween

any two verticesu andv, denoted byds
k (u, v), which is the minimum length among allk∗-

containers betweenu andv. Thek∗-diameter ofG, denote byDs
k(G), is max{ds

k (u, v) | u
and v are two different vertices ofG}. In particular, we are intrigued inDs

�(G)(G) and
Ds

2(G). Similarly, we define theksL -laceable distanceon bipartite graph between any two
verticesu andv from different partite sets, denoted bydsL

k (u, v), which is the minimum
length amongallk∗-containers betweenuandv. TheksL -diameter ofG, denotedbyDsL

k (G),
is max{dsL

k (u, v) | u andv are vertices from different partite sets}. Again, we are intrigued
in D

sL
�(G)(G) andDsL

2 (G).
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