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Abstract. Normally, breakage is the main cause of failure of a micro drilling system, of which coupling

effect of lateral and torsional displacements plays the most important role. This research developed a
modified transfer matrix method to investigate the dynamics of a micro drilling system focusing on
displacements induced by not only lateral, shear, torsional deformations, but also the coupling effect
between lateral and torsional vibrations. The micro drilling system is modeled as pre-twisted rotating
Timoshenko beam elements with a continuous-system concept. Each element includes components of linear

bearings, axial drilling force, gyroscopic moments, and eccentricity. The overall transfer matrix of the
system is developed to determine the state vector of the system including displacements and forces. Finally,
a numerical example was presented, where the lateral and torsional displacements and critical speed of the
micro drilling system at the micro drill's tip were presented.

1 Introduction

Nowadays, with the development of science and
technology, there is an increasing demand for producing
micro holes in some devices, for example, cameras,
mobile phones, computers, medical instruments, micro
dies and molds, fuel injection nozzles, watches, bearings,
especially printed circuit boards (PCB). In methods to
manufacture micro holes now, such as using micro
mechanical machining or micro drilling, electron beam
machining, electrical discharge machining, and laser
machining, the micro drilling has higher accuracy, greater
productivity, and more economical efficiency, compared
with other approaches [1-3]. Hence, there are more and
more researchers making great efforts to improve the
ability of micro drilling to meet that demand. To achieve
that purpose, it is necessary to understand the dynamic
characteristics of micro drilling process [4, 5]. The
transverse displacement affects hole’s accuracy, and
exhibits the maximum displacements if its operating
speed is equal to a critical one. In the past, several
researches on dynamics of micro drilling were published.
To name few, Yang studied transverse displacement of a
micro drill tip, but a lot of dynamic properties of the
micro drilling system on the drilling process are not

considered, such as eccentricity, gyroscopic moments, etc.

[6]. Ehmann modeled micro drills as long twisted beams
including effects of transverse shear, rotary inertia and
gyroscopic moments during drilling. Models for the
critical speeds and critical bucking loads were developed
by the finite element method. However, the beams did
not include the effect of eccentricity of the drilling
system and the torsional displacements were ignored [7].
Zhaojun modeled a micro-drill-spindle system as
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Timoshenko beam elements. Besides considerations of
transverse shear, rotary inertia and gyroscopic moments
similar to Ehmann's models, the element models also
included the effects of eccentricity of the spindle-clamp-
drill system, axial drilling force, and bearings.
Nevertheless, the element's torsional displacement was
also ignored [8]. Ozdoganlar modeled the flute part of a
micro drill, and other parts as a beam including torsional
displacement and one-dimensional beams, respectively.
However, the models did not consider the effect of
eccentricity of the drilling system [9, 10].

In this research, the underlying micro drilling system
includes a micro drill grasped in a spindle, which is
supported by identical linear bearings. It is modeled as
pre-twisted rotating Timoshenko beam elements with a
continuous-system concept. Each element includes
effects of linear bearings, axial drilling force, gyroscopic
moments, and eccentricity. Its orientation is described by
Euler angles. Then the kinetic, potential energies, and
work done by non-conservative forces are developed, and
the Hamilton’s principle is applied to obtain its motion
equations, as well as natural boundary conditions with
respect to the fixed coordinates. The harmonic balance
method is used to solve those equations. The state vector
of the system containing displacements and forces is
developed by the transfer matrix method (TMM). The
most significant advantage of this method is that it does
not require the storage and manipulation of large system
arrays. Therefore, there is less demand on computer
memory. After developing local transfer matrices of
system elements and bearings, the overall transfer matrix
of the system is developed to determine the state vector.
Finally, a numerical example was presented and the
results of the dynamic analysis showed the effects of
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external forces, bearing coefficients, and eccentricity to
the displacements and critical speeds of the micro drilling
system at the micro drill tip.

2 Motion Equations of the Drilling
System Element

The structure of the micro drilling system can be
simplified as shown in Fig.1. The micro drill E is grasped
in the clamp C-D that is connected to the spindle A by a
small shaft B. The system is supported by two identical
linear bearings, and applied by an axial force F,,, and a
torque 7 during drilling the work-piece W. The whole

system's dimensions and parameters are shown in table 1
(8, 11].
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Figure 1. Micro drilling system

Because the axial displacement is much smaller than
the other displacements, it is neglected in this research
[12-14]. The micro drill and spindle of micro drilling
system are modeled pre-twisted rotating Timoshenko
beam elements as shown in Fig. 2.

Y

Figure 2. Pre-twisted rotating Timoshenko beam element

The motion equations of the pre-twisted rotating
Timoshenko beam element are developed by applying the
extended Hamilton's principle. According to this
principle, for a rotating element with kinetic energy £, ,

potential energy £, , virtual work ' done by the non-

conservative force, its governing equation motions can be
obtained by the following equation.

éj-(Ek—Ep+W)dt=O 1)

4

The kinetic energy E, includes translational and

rotational ones. To make it simple for developing the
rotational kinetic energy, the Euler angles ( ¢,6,y ) as

shown in Fig. 3(a) are used. They were introduced by
Leonhard Euler to describe orientations of rotating
elements and explained via the following steps: (1) rotate
the XYZ initial coordinate system, parallel to the fixed
coordinate system, about the Z axis by an angle ¢ to
lead to the X'Y'Z coordinate system, (2) rotate XY Z'
about the X axis by an angle 6 to lead to the
UV'W' coordinate system, (3) rotate U V'W' about the
W' axis by an angle y to produce the UVW principal

coordinate system. As the rotating element is deflected in
position and orientation, the angular displacements as
shown in Fig. 3(b) are the projections of angle 6,
measuring counterclockwise from the Z fixed axis to the
W spin axis, onto YZ and XZ planes, thus

{HX =6fcos¢ @

0, =0sing

Furthermore, the spin angle about the W axis is
obtained as @ = ¢+ from the geometric configuration

of a rotating element with a very small oblique angle .
Applying the coordinate transformation formula, the
components of the angular velocities in directions of the
principal coordinates are obtained [11, 15].

w, = écosw+¢5sin9sinw
0, = —ésinl// +¢fsin60051/1 3)

, =y +gcosd

Take the mass center C of the cross-section of the
rotating element as the origin of the UVW principal
coordinate system. Its kinetic energy E, is calculated in

the fixed coordinate system as follows:
1t 1
_ ! 2 .2\ 1 2 2 2 4
E, = 2p£[A(xC +yc)2(lua)u + 1,0, +]pww)}dZ “4)

where A4 is the cross sectional area, p is mass density.
1

u?

and /, are area principal moments of inertia, /, is

area polar moment of inertia. The o,,®,,®, are angular
velocities about principal axes U,V ,W , respectively.
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Figure 3. Orientation of a rotating element
Table 1. Structure dimensions of the micro drilling system
Name of shafts Shaft symbol Diameter Length Number of
(mm) (mm) divided elements
Spindle A 22 60 3
Shaft B 6.3 9 1
Up clamp C 22.5 19 1
Down clamp D 14 8 1
Shank S 3 10 1
Cone 1 (o 4.1 5
Micro drill Cylinder S, 0.8 2.6 1
Cone 2 C, 0.933 5
Flute F, 0.3 5 20

Positions of bearings (mm) L=11.25, L;=37.5

The Fig 4 shows the whirling orbit of a rotating
element which is in asymmetric, eccentric form. From the
geometric relations, the coordinates of the mass center C
can be calculated as follows:

MEHEN

I:ex } ~ {COS(QI +o+ ) -sin(Qr+p+ ﬂ)}{eu } ©

e, sin(Qt + @+ f)  cos(Qt+o+ ) ||e,

where, Q) is rotating speed , ¢ is torsional angle, S
is the initial twist angle between principle axes U ,
and X axis, ¢ is time, e, , e, are eccentricities
corresponding to U, V' coordinates, respectively.
Substituting Eq. 6 into Eq. 5, and differentiating it yields,

c

X, =x—e,(Q+@)cos(Qr+o+ )

N O]
—-e, (Q+(p)s1n(Qt+(p+ﬂ)
V. =y+e, (Q+g)cos(Qr+p+ j) ®
-e, (Q+¢)sin(Qt+¢+ﬂ)
C: mass center
G: geometric center
Y \Y e: eccencity
el ,C §)
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Figure 4.

Whirling orbit of a rotating element
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Replacing Egs. 2, 3, 7, and 8, and @ =Qt+ ¢+ f
into Eq. 4, one gets

By = p|{4] & —2e, (Q+ §)cos(Qt + o+ B)

1
2

© Ly

-2xe, (Q+¢)sin(Qr + o+ )

+ 3% +2ye, (Q+@)cos(Qt + 9+ )

-2ye, (Q+¢)sin(Qr + @+ )

+(Q+9¢) e2J+1p (Q+¢)
+1,(Q2+0)(6,0,-6,0,)+1(6 +67)

+2A6,0, sin2(Qt + ¢+ ) )

+A(9§ —éyz)cosz(Qt+¢+ﬂ)}dZ

where, / =%(1u +1,), A=

1
—(1, -1
2(14 v)

Assuming the rotating element as shown in Fig 5 is
acted by an axial force F, , its potential energy E,

According to the bending and shear deformations can be
described as in the following:

E, :%I[E(I+Acos2(§2t +o+ )0, )2

+E(17Acos2(Qt+(o+ﬂ))(9'y)2

+ 2BA0,0, sin2(Qt + 9+ fB)

+h,GA((x =0, + (v +6,))

+GI, ((p')z ~F, ((x')2 +(y')2)}dz

(10)

From Fig. 5, the work done by external force is

R R R R R
W=Vix+M,0,+V y+ M, 0. +T"¢
L L L L L (11)
~(rxe M0, vy MLO 4T )

Substituting Egs. 9, 10, and 11 into Eq. 1, one gets
motion equations of the rotating elements and natural
boundary conditions as follows:

pA[-k+ e, cos(Qt+¢+ )+ e, sin(Qt +p+ )
—(Q+(b)2 e, sin(Qt+¢)+ﬁ)+(Q+(b)2 e, cos(Qt+¢)+ﬁ)]

+kSGA(x" —Q'V)—Fax" =0 (12)

pA[fj}f()ieu cos(Qt+¢+ﬂ)+¢ev sin(Qt+go+ﬂ)
+(Q+¢)2 e, sin(Qt+¢+ﬁ)+(Q+gb)2 e, cos(Qt+(p+ﬂ)}

+h,GA(y' +6,)=F,y =0 (13)

Z=0 Z=L

(@)

(b)
Figure 5. Forces, moments, and torques applying on a
rotating element
pI6, +% P10, + pI, (Q+¢)6, —EIO, + kXGA(Hx + y')
+pA[ 8, 5in2(Qt + g+ B)+26, (Q+ §)cos2(Q + g+ B) 14
+0, cos2(Qt + @+ B)-20, (Q+¢)sin2(Qt + o+ ﬂ)}
+EA [—0)", sin2(Qr + g+ ) 20,9 cos2(Qi+ ¢+ )

—0; cos2(Qt+(p+ﬁ)+29;(p' sin2(Qt+(p+ﬁ)} =

16, —%pll,(ﬁﬁx ~pl, (Q+¢)0, ~ E16] +k,GA(0, -
+pA[ G, sin2(Qt + g+ B)+20, (Q+ §)cos2(Qu + g+ ) 15)
—éy cos2(Qr+p+ ) +29}, (Q+¢J)Sin2(Qt+¢J+ﬂ)}
+EA[—6; sin2(Qt+gp+ﬁ)—29;¢J' cosZ(Qt+qp+ﬁ)
+t9; cosZ(Qt+¢7+ﬁ)—26’;,(p‘ Sin2(Qt+gp+ﬂ)j| =
plo+— 1 pl,ﬁ 0, - péy@x + pA[ e, cos(Qt + o+ )
e, sm(Qt+(p+ﬂ)+j}eu cos(Qr+ g+ )

) 1 25—
yevsm(Qt+(p+ﬂ)+e ¢J:| Gl (16)

. 2
+pA[—29x0y cosZ(Qt+(p+,B)+(9x) sin2(Qt+go+ﬂ)
212
~(6,) sin2(Qu+p+p) }rm[zee cos2(Qr+ ¢+ )

_(.9;) sin2(Qt + o+ B) (6) )251112 Qt+¢+,8)}

Note that the ¢ and x appeared in Egs. 12, 15, and 16,
so as @ and y appeared in Egs. 13, 14, and 16. So there
are the coupling effect between torsional displacement ¢
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and lateral displacements

(x, »)
(Q+¢)0,,and 0, (Q+¢)in Egs. 14, and 15, respectively
present the gyroscopic effects.

Natural boundary conditions are
VE+kGa(0, -x )+ F,-x =0
VVR _ksGA(ex +yl)+Fa 'y' =0
" -Gl =0

—EI0, —EAG, cos2(Qt+p+ ) ,atz=1 (17
—EAH; cos2(Qt+(p+ﬂ) =0

—EI0, — EAO, cos2(Qt + ¢+ )
~EAD, cos2(Qt+ g+ f) =

vl kGa(0, ~x )+ F,-x =0
VE-kGA(0,+y )+ F, -y =0
" -Gl =0
—E10,-EAO, cos2(Qt+p+B) ,atZ=0  (18)
—EAH;, cosZ(Qt+(p+ﬂ) =
—EI6, - EAD, cos2(Qt +p+ )
—EAH; cosZ(Qt+(0+ﬂ) =0

3 Transfer Matrix of the Micro Drilling
System

The most important work of the transfer matrix
method is to calculate the overall transfer matrix of the
system. Based on it, the state vector including
displacements, shear forces, moments, and torques at any
position of the system can be evaluated. It is the
multiplication of element transfer matrices that are
developed by solving their motion equations.

The transfer matrix of pre-twisted rotating
Timoshenko beam element is obtained by solving Egs.
12-16. The solution process is presented below.
Assuming the steady-state solutions of Egs. 12-16 can be
expressed in series form as

x(Z,t) =X (Z)+inc (Z)cosiQHxis (Z)siniCu
i=1

n
Z)+ nyf (Z)cosiQt +y,, (Z)sini

HX (Z’t) = ‘9)(,0 (Z)+ Ze,nic (
i=1

9},(Z,t):GySO(Z)+ZBW( JeosiQt+0, , (Z)siniQt

(19)
Z)cosiQt +0, ; (Z)siniQx

Z)+ Y g (Z)cosiQt+ g, (Z)siniCx

where,

%0 (2): 30(2): 0c(2).0,0(2)- 0(2): % (2). x5 (2).

Yie (Z)’ Yis (Z)’ gx,ic (Z)’ ex,ix (2)9 Hy,ic (Z)’ Hy,is (Z)’ (pit‘ (Z)’
and ¢, (Z) are the mode functions of the relative 0"

order and »nx harmonic whirl with respect to the static
coordinate system of the Timoshenko beam element.

[Xo xlc Z --xnc(Z) xlv(Z)--xm(Z)
Y0 (Z) 11 (Z2) - 3ue (Z) 11 (2) v (2)
0,0(2) 0.1c(Z) 0,,(Z) 0,15(2)- 0
0,0(2) 6,1.(2) 0,,.(Z) 6,,,(Z)- 6

( )¢1c(z) Pne ( )

The size of X(Z) is (10n+5)x1

into Eqgs. 12-16, ignoring nonlinear terms, and equating
the same harmonic term, the following matrix equation
can be obtained.

ons (Z)
s (Z)
(2) 0, (Z)JT (20)

. Replacing Eq. 19

E,X"(Z)+EX (Z)+E)X(Z)=F, 1)

where, X”(Z), X'(Z) are second and first order
derivatives  of X(Z) with respect to Z coordinate,

respectively. E,,E,, and E, are matrices with size of
(10n+5)x(10n+5) . The size of matrix F, is
(10n+5)x1. The general solutions of Eq .21 are the sum
of homogeneous and particular solutions.

X(2)=X(z)" +X(2)" (22)

The homogeneous solution X(Z)h is [11]
L
z)' =) cXje” (23)

where, 1, is eigen-value, X! is eigen-vector

corresponding to A4;, which are solutions of Eq. 24; C;is

0
= (24)
kx {Olﬂl

an undetermined constant.

E, E | [0 B,

where, £ =20n+10.

X!
Xh

The particular solution is

h
X(2)" = [xé’ xpxkoxpb -

Pyl vl vh vhvh

9)20 Haflc efnc H;ls expm eypO eflc efnc
00+ 01,08 ol -0l of-oh | (25)
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where

PP = i PP —o g
xj, ==yl =e,cos f+e,sinf, x/. = yl. =e, sinf—e, cos f,

yho=x :_M, fZXf,:—M

c N 4921 s c 4Q21
9520 =€p23 =MZ, HXPZS =_6p25 =MZ,
e k,GI » Y. kGl

other elements = 0.

Substituting Eqs. 25, and 23 into Eq. 22, one gets
C
X(Z):[G(Z)]L} (26)

where[G(Z )] is the matrix function of Z with the size

of  (10n+5)xQ20n+11) , C=[C Cy ~Copiro]
where, C,the undetermined constant in Eq. 23. Hence the
displacement state vectors at two ends of the drill flute

elementsare X" =X(Z=L)= [GL]LC} 27)

X" =X(z=0)=[G, ]LC} (28)

where [G,]=[G(2=L)], [G,|=[G(2=0)] .

Assuming the solutions of Egs. 17, and 18 are described
in Fourier series form as

V(Z:2) =V (Z)+ D Ve (Z)cosiQt+7,
i=l

s (Z)sin iQt
Vo(Z,0)=V,0(2)+ YV, (Z)cosiQu+7, (2 )siniCx

J
i=1
n

M (Z,8) =M (Z)+ ) M, (Z)cosiCu+ M, (Z)siniCu 29)
i=l

M, (Z.t)=M, o (Z)+ YV, ;. (Z)cosiQt+ M, (Z)sinix
i=1

T(Z,t)=Ty(Z)+ ) T, (Z)cosiQt +T, (Z)siniQ

ic

i=l

The mode function vector of the general force F(Z ) is

defined as below

F(Z)=[Veo(Z) Vere(Z) Vene(Z) Ver(Z) Vs (2)

(30)

Substituting Egs. 19, 27, 29, and 30 into Eq. 17, and
equating the coefficients of the same harmonic term, one

obtained the vector of general force general force F(Z )

at the right end of the Timoshenko beam element.

Ff :[HL]E:} 31

Similarly, Substituting Eqgs. 19, 28, 29, and 30 into Eq. 18,
the vector F(Z) at the left end is

F :[HO]LC} (32)

where [H,], [H,] are matrices with the size of
10n+5)x(20n+11) .

Combining Eqgs. 27, and 31, one gets

X* G
" [c
F* |=|H, L } (33)
1 My,
where My, =[00 "'1]1x(2on+11)
Xk G |
Let [SR]: | [M,]=|H, |, and inserting them
F M, |
into Eq. 33 yields
s* e

Similarly, combining Eqs 28, and 32, one gets

ef]

where, [M,], [M,] are matrices with the size of
(20n+11)x(20n+11). From Egs. 34, and 35, it yields

LSR}:[ML]LC}=[ML][MOTLSL}:[TS]LSL] (36)

where [MOT1 is the inverse matrix of matrix [M, |,

[T “‘}:[M L][MOT1 is called as transfer matrix of the

pre-twisted rotating Timoshenko beam element. From it,
the relation of the state vector S including displacements,
shear forces, moments, and torques at two element ends
is developed. So far, transfer matrices of spindle and
micro drill elements are derived from the transfer matrix
of the of the pre-twisted rotating Timoshenko beam
element. Transfer matrix of the bearing will be
considered next.

The bearings supporting the micro drilling system are
considered to be linear and isotropic. The bearing as

shown in Fig. 6 creates forces Ff , Fyb , bending moments
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M, b ;’, and torque Tt applying on the spindle. They VXR VXL Ff
are calculated by the following Eq. 37. B

m M o

6'_. = b’l _H_.R KHxx Kﬁxy 6 " C@xx Cﬂxy éx
o=0" =0 K@}x KBU 9’ Cﬂyx Cﬂyy éy

=Tt~ T” =T"+K,0+C,p

Replacing Egs. 19, and 29 into Eq. 38, and equating
(@) the coefficients of the same harmonic term, one obtained

s* b st
: = 39
1 i‘"‘ |:1 :| |:T :|(20n+1 Dx(20n+11) l:l ( )

M: ‘,*?-w £~ 5 N . .

K where the state vector S contains all coefficients of Egs.
¥ Y\Tf

M y=ph = R 19, and 29. The [T b} is the transfer matrix of the

6, = *‘f_f' =6 bearing. Then the overall transfer matrix of the whole
=9 =9 system is the multiplication of the transfer matrices of all
X z elements from the tip of the micro drill to its end.

According to the modified transfer matrix method, the
state vectors at two ends of the micro drilling system are
described as the following.

(b)

R L
Figure 6. Forces, moments, and torques applying on a X X
bearing node FR | = [U] FL (40)

F! {Kﬂ K}H [Cm C}H ! :
F yl') K »x K » y C)’X Cy-" y

. : where [U] s the total transfer matrix of the system, and
M x KBxx K Oxy ex C@m C@xy ax (37) . . g . .
= 0 1” . it is the multiplication of transfer matrices of elements.
M Kﬁvx Kth C&yr C&yy 0

b4 v From Fig. 1, and Table 1, one gets
b =— 9= Cop

[WI=[r), 71 [T [T, 75 (7], (7], (7D, (7], (D)

h T T T T T T T T
The equilibrium equations of the force, bending where (7], (7], [T 17,0 ] 3 ]q’ [ ]52’[ ]C°’
moment and torque acting on the bearing node as shown and [T ] are the transfer matrices of parts A, B, C, D, S,
in Fig. 6 are

Ci S, Cz, and F,, respectively.

The micro drill flute F; shown in Fig 7(a) is divided
into small elements, so its transfer matrix [T]F is the
1

multiplication of transfer matrices of these elements. The
transfer matrix of each flute element is derived from the
transfer matrix of the of the pre-twisted rotating
Timoshenko beam element. To calculate it, it is necessary
to evaluate the area moments of inertia (/,, /,) about its
principal axes of the flute cross-section as well as its
polar moments of inertia /, , and the twist angle /3

between U principal axis and X -axis. Because the drill
flute is formed by sweeping helically a flute cross-section,
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every drill flute element has the same area moments of
inertia. Therefore, to be simple, 7, /,, and I, are

calculated at the flute cross-section perpendicular to the
drill axis at the drill tip O as shown in Fig 7. Developing
the profile of the cross section in Fig 7(a) is referred to
the reference [16, 17]. Its moments of inertia /,,, /,,, and

I, are evaluated by Solidworks software, and its

principal axes U, V is coincident to the axes x and y

of the fixed coordinate system, respectively [18]. The
twist angle S of the cross section of the flute element

with coordinate Z, as shown in Fig 7(b) is calculated by

tan(hy )
R

the following equation: § = Z, , where R, h, are

radius, helical angle of the micro drill, respectively.

<<

(a) Flute elements (b) Flute cross- section

Figure 7. Micro drill flute

To be simple, the conical part of the micro drill is
considered as the sum of small cylinders as shown in Fig.
8. Hence, the transfer matrix of the conical part is the
multiplication of transfer matrices of small cylinders. The
area principal moments of inertia ( /,, [,), area polar

moment of inertia /,,, area A4, and initial twist angle /

of a cylinder are calculated as follows:
4 4

I=1, =1V=”%,1 :%,A:ﬁrz,ﬁzo, where 7 is

the radius of the cross section.

\

|

‘ I\ /
| - \ /
‘ \ /
|

\

\ /

Figure 8. Approximation of conical part

The transfer matrix of spindle part A including two
bearings, and three cylinder portions is

[T]A - [T]L3 [T]B [T]Az [T]B [T]L3 (42)

4 Dynamic analysis of the micro drilling
system

The vibration at the micro drill tip has the most
important impact to the quality of drilled holes, and the
cutting life time of the micro drill. Therefore, the
dynamic analysis is carried out at the drill tip in this
research. Namely, the state vectors containing
displacements (x, y, 6,, 6,, ), and the critical speeds

of the system are evaluated.

After calculating all transfer matrices of system
elements, the overall transfer matrix [U ] is calculated. Eq.

40 can be rewritten as Eq. 43

R L
X Up Up w X

F*=Uy Uy u,||F (43)
1 0 0 1|1

where U,,, U,, U,,, U,, are matrices with the size
of (10n+5)x(10n+5). u,, u, are vectors with the size
of (10n+5)x1. The 0 is zero vector with the size of
1x(10n+5) . Because there is no external force applying
on the left end of the drilling system, one obtains
F'=[00 -

"O](10n+5)x1‘ Only torque T is the external

force applying on the right end or drill tip of the system,

ie,F*=[00-0-T 0.--0](10n+5)xl ,where FR@8n+4,1)=-T .

From Eq. 43, one obtains
FR =U, X" + U, F" +u, =U, X" +u,
= X' =0/ (F" —u, )
X* =U, X" + U, F" +u, =U; X+,

The vector X* containing the displacements (x, y
, 0., Hy, @) at the drill tip are calculated, i.e., the lateral

and torsional displacements at the drill tip are evaluated.

Because lateral displacements including x and y , and
torsional displacement ¢ play the most important role to

the quality of the micro drill, they were analyzed in this
section. The amplitude of the Ilateral (bending)
displacement is calculated as below.

Lateral amplitude = maximum value of /x> +3?  (44)
where x and y are evaluated by Eq. 19.

We chose order of whirling at the drill tip to be n=2.
With the given parameters in Table 2, the lateral and
torsional displacements are obtained. According to Fig. 9

(a, b), the lateral and torsional amplitudes is 5.39-10 m
and 7.4101769-107" rad under 30000 rpm, respectively.
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Table 2. Parameters of the micro drilling system
Micro drill Value The material properties
Young’s Shear Mass Shear
Radius R 1.5-10%m modulus E modulus G density p coefficient k
(N/m2) (N/m2) (Kg/m3)
Helical angle 4, 300 Flute part 650 x 109 280 x 109 15250 0.835
Semi point angle p 65° paOrttiler 200 x 109 90 x 109 7800 0.85
Bearing parameters
Bearing stiffness (N/m x 105) Bearing damping ~ (N/m x 103)

Kxx: Kyy:1 751 3, ny: ny: KGxx: Kny :Kny = Keyx :0,

K,=0.3

Cy= Cyy=1.7513, Cyy= Cyy= Coxy= Coxy =Coyy = Coy =0, K,=0.001

Eccentricity

_ _ _ -5 _ 0.106 .: . .
e, =k, r, e, =k, -r, where k,, =1-107, k,, =-9-107, risradius of each cross section.

Flute: e, =k, R, e, =k, R, where ko, =110, k,, =—9-10°,R=15-10"m

Q =30000 rpm , 7 = 107> Nmm, F,=7-10°N

x10°

max[,[,\; 17 ]a’,39-10$m

Torsional displacement (rad)

74101745

74101750

7.4101755

T ANITO0 f-vmee e
1A01765 - f-- -

74101770
0

X (m)

(a) Lateral displacement

x 107

Time (s)

(b) Torsional displacement

Figure 9. Effects of external forces to displacements

Fig. 10 shows the lateral and torsional amplitudes. It
shows that the lateral and torsional displacements are
under resonance at rotating speed of 83080 rpm. Fig 11

shows the lateral and torsional displacement at the critical

speed.

Lateral amplitude(m)

Tarsional Amplitude (rad)

]
{ | Critical speed: 83080

7 8 9 10 "
Rotating speed (RPM) 4

(a) Lateral amplitude

Rotating speed (RPM}) 4

(b) Torsional amplitude

Figure 10. Effects of external forces to displacement

amplitudes
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x 1078
-7.41559
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-7.41563 |-

Torsional displacement (rad)

R e

-7.41565 i i i
0 0.5 1 1.5 2
Time (s) -3

(b) Torsional displacement

Figure 11. Displacements at critical speed

5 Conclusions

The dynamic analysis of the micro drilling system was
implemented by the new approach, modified transfer
matrix, in this research. The micro drilling system is
modeled as pre-twisted rotating Timoshenko beam
elements using a continuous-system concept. Each
element could include linear bearings, axial drilling force,

gyroscopic moments, and eccentricity, especially
coupling effect between lateral and torsional
displacements. Therefore, the method has higher

accuracy in evaluating the displacements and critical
speeds of the system. The numerical example about
effects of external forces, eccentricity, and bearings on
lateral and torsional displacements and critical speeds of
the system at the micro drill tip was presented in this
research.

References

1. Y. Zhaojun, L. Wei, C. Yanhong, and W. Lijiang,
Study for increasing micro-drill reliability by
vibrating drilling, Reliab. Eng. Syst. Safe. 61, 5
(1998)

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Chae, S. S. Park, and T. Freiheit, Investigation of
micro-cutting operations, Int. J. Mach. Tool. Manu.
46, 20(2006)

T. Masuzawa, State of the Art of Micromachining,
CIRP Annals - Manufacturing Technology, 49,
16(2000)

C.K. Yu, C. H. Chang, Y. P. Ping, Y. K. Tien, and H.
B. Wun, Natural properties in a micro drill cutting
into bones, Life Sci. J. 6, 6(2009)

B.-W. Huang, The Drilling Vibration Behavior of a
Twisted Microdrill, J. Manuf. Sci. Eng. 126,8 (2005)

Z. Yang, Q. Tan, and L. Wang, Principle of precision
micro-drilling with axial vibration of low frequency,
Int. J. Prod. Res. 40, 7 (2002)

Y. Gong, K. F. Ehmann, and C. Lin, Analysis of
dynamic characteristics of micro-drills, J. Mater.
Process. Technol. 141, 9(2003)

P. Yongchen, T. Qingchang, and Y. Zhaojun, A
study of dynamic stresses in micro-drills under high-
speed machining, Int. J. Mach. Tool. Manu. 46,9
(2006)

S. Filiz and O. Burak Ozdoganlar, A model for
bending, torsional, and axial vibrations of micro- and
macro-drills including actual drill geometry—part I:
model development and numerical solution, J. Manuf.
Sci. Eng.132,(2010)

[10]S. Filiz and O. B. Ozdoganlar, A model for
bending, torsional, and axial vibrations of micro- and
macro-drills including actual drill geometry—part II:
model validation and application, J. Manuf. Sci. Eng.
132,(2010)

S.-C. Hsieh, J.-H. Chen, and A.-C. Lee, A modified
transfer matrix method for the coupling lateral and
torsional vibrations of symmetric rotor-bearing
systems, J. Sound Vib. 289, 10( 2006)

H. P. Lee, Dynamic response of a rotating
timoshenko shaft subject to axial forces and moving
loads, J. Sound Vib. 181, 9(1995)

D.-M. Ku, Finite element analysis of whirl speeds for
rotor-bearing systems with internal damping, Mech.
Syst. Sig. Process., 12, (1998)

Q. H. Qin and C. X. Mao, Coupled torsional-flexural
vibration of shaft systems in mechanical
engineering—I. Finite element model, Comput.
Struct. 58, 9(1996)

Y. Kang, Y.-P. Shih, and A.-C. Lee, Investigation on
the steady-state responses of asymmetric rotors, J.
Sound Vib. 114, 7(1992)

C. Lin, S. Kang, and K. Ehmann, "Planar micro-drill
point design and grinding methods," Trans. North
Am. Manuf. Res. Inst. SME, 20, 7(1992)

S.-C. Hsieh, J.-H. Chen, and A.-C. Lee, A modified
transfer matrix method for the coupled lateral and
torsional vibrations of asymmetric rotor-bearing
systems, J. Sound Vib. 312, 9(2008)

A.-C. Lee, D.-T. Nguyen, and G.-T. Wu, Analyses of
a new four-facet drill, Int. J. Adv. Manuf.
Technol.75,14(2014)



