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ABSTRACT

A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm is proposed in this
paper for color reproduction from Bayer mosaic images. The proposed algorithm aims to estimate the optimal
interpolation direction and perform hard-decision interpolation, in which the decision is made before interpolation. To
do so, a new heterogeneity-projection scheme based on spectral-spatial correlation is proposed to decide the best
interpolation direction from the original mosaic image directly. Exploiting the proposed heterogeneity-projection
scheme, a hard-decision rule can be designed easily to perform the interpolation. We have compared this technique with
three recently proposed demosaicing techniques: Lu’s, Gunturk’s and Li’s methods, by utilizing twenty-five natural
images from Kodak PhotoCD. The experimental results show that HPHD-AI outperforms all of them in both PSNR
values and S-CIELab AE, measures.
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1. INTRODUCTION

Digital color images from single-chip digital still cameras are obtained by interpolating the output from a color filter
array (CFA), in which each sensor pixel only samples one of three primary color components. These sparsely sampled
color values are termed mosaic images. A full-color image is reproduced from a mosaic image by estimating two
missing color values for each pixel. This image reconstruction process is commonly known as CFA interpolation or
CFA demosaicing. The simplest CFA demosaicing methods apply well-known interpolation techniques to each color
channel separately such as bilinear interpolation and cubic spline interpolation. However, these single-channel
algorithms usually introduce severe color artifacts and blurs around sharp edges [1]. These drawbacks motivate the need
of more specialized algorithms for advanced demosaicing performance. An excellent literature survey on advanced
demosaicing algorithms can be found in [2].

In recent years, there have been researches on more sophisticated demosaicing algorithms. In [3], Lu and Tan
presented an improved hybrid CFA demosaicing method that consists of interpolation and post-processing steps to
render full-color images and suppress visible demosaicing artifacts. In [4], the authors utilized a projection-onto-
convex-set (POCS) technique to estimate the missing color values in red and blue channels using alternating projection
scheme based on high inter-channel correlation. In [5], Li proposed a successive approximation demosaicing strategy by
adopting color difference interpolation iteratively. Another recent demosaicing approach, termed as decision-based
demosaicing algorithm, divides the demosaicing procedure into interpolation step and decision step [6, 7]. In the
interpolation step, they produce respectively horizontally interpolated and vertically interpolated images. In decision
step, a soft decision method was adopted for choosing the pixels interpolated in the direction with fewer artifacts. For
the decision step, Hirakawa et a/ proposed the color image homogeneity metric to measure the level of misguidance
color artifacts presented in these two images [6]. Based on this measurement, the interpolation decision is made by
choosing the region with larger homogeneity map values. In [7], Wu et al/ adopted the Fisher’s linear discriminant
technique to determine the optimal interpolation direction under two hypotheses, one for horizontal structure and the
other for vertical structure, in a local window. The decision-based demosaicing algorithm performs well not only in
textured regions, but also in well-defined edges of the image. However, the main drawback of decision-based
demosaicing algorithms is that they are not efficient in the interpolation step because each pixel has to interpolate twice,
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one in horizontal direction and the other in vertical direction, before applying the soft decision method. Therefore, to
develop an efficient color interpolation algorithm with high performance in both textured and edge regions is still a
challenge in CFA demosaicing research.

In this paper, a novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) method is proposed
for color reproduction from Bayer mosaic images. The proposed algorithm aims to decide the optimal interpolation
direction before performing interpolation. To do so, a new heterogeneity-projection scheme based on spectral-spatial
correlation is proposed to estimate the best interpolation direction from the original Bayer mosaic images directly.
Based on the proposed heterogeneity-projection scheme, a hard-decision rule can be designed easily to perform the
interpolation. The advantage of the proposed demosaicing algorithm is threefold. First, the proposed heterogeneity-
projection scheme can be combined with existent decision-based demosaicing algorithms. Second, the decision is made
before interpolation and thus each pixel only has to interpolate once in the interpolation step. Finally, the proposed
demosaicing algorithm also performs well not only in textured regions, but also in well-defined edges of the image.

2. SPECTRAL-SPATIAL CORRELATION

Fig. 1 shows the most used CFA pattern, the Bayer pattern [8], where R, G and B denote, respectively, the pixels
having only red, green and blue color values. We limit our discussion in this paper to the Bayer pattern because it is
popular. In the following, we will introduce a novel spectral-spatial correlation based on two popular image
correlations: spectral and spatial correlations.

Many existent demosaicing methods are developed using image spectral or spatial correlation, or both. The concept
of spectral correlation is based on the assumption that the color difference signals are locally constant in chrominance
smooth areas [9]. The spatial correlation refers to the fact that within a homogeneous image region, neighboring pixels
share similar color values [3, 10]. In other words, the difference between neighboring pixel values along an edge
direction in spatial domain is a constant. Spectral and spatial correlations of a natural image describe the relationship
between different color channels. However, in Bayer mosaic image, it is difficult to calculate the spectral and spatial
correlations directly because each pixel only contains one primary component. This problem motivates us to find a more
efficient criterion instead of spectral and spatial correlations for Bayer mosaic images.

A significant characteristic of Bayer pattern is that for each pixel, the surrounding pixels are one of the primary
components in different channels. This causes us to investigate the relationship between neighboring pixels in different
color channels. Consider the following situation: on a horizontal edge, two green pixels surround a red pixel on
horizontal direction. Take the difference between the center red pixel and right green pixel, we then have

R0 ») -G+ 1,3) = [REe ) -G e ) [+ [G () - G+ L), (1)
where G (x,y) denotes the missing green value at center red pixel location. By the assumption of spectral and spatial
correlations, expression (1) becomes such that

Sy/;{(x,xﬂ) =R(x,y)-G(x+1,y) = A,_g (x,»)+dG, . 2)
Similarly, the difference between a blue pixel and its right green pixel is given by
Sy = B(x,y) = G(x+1,y) = 4, (x,y)+dG, . ®

The same results also can be obtained along vertical direction on a vertical edge such that

S =R(x, )= G(x,y+1)= 4, (x,y)+dG, , and

Sy = B(x,y) = G(x,y+1) =4, (x,y) +dG, . 4
where A4 (x,y) and 4, (x,y) are piecewise constant functions; dG, and dG, are constants. Expressions (1)-(4)
tell us that the difference between surrounding pixels in different color channels is equal to the summation of spectral
and spatial correlations. We refer these relationships (1)-(4) as spectral-spatial correlations (SSC). SSC has two
important characteristics. First, SSC can be easily and directly calculated from Bayer mosaic images. Second, SSC
inherits the characteristics of spectral and spatial correlations. In other words, SSC is also piecewise constant within the
boundary of a given object or along an edge direction. SSC acts as a significant clue for us to find the directional

smooth regions in Bayer mosaic images directly before performing the interpolation. In the following section, we will
present the proposed heterogeneity-projection based on these observations.
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Fig. 1: Bayer color filter array pattern (Bayer pattern)
3. HETEROGENEITY-PROJECTION FOR BAYER MOSAIC IMAGES

The aim of this section is to derive the heterogeneity-projection formulation based on SSC. The proposed
heterogeneity-projection scheme can directly transfer the original Bayer mosaic image into horizontal and vertical
heterogeneity maps. Using these two heterogeneity maps, the decision of interpolation direction can be determined
easily by choosing the smallest heterogeneity values.

A. Heterogeneity-Projection

Because SSC is piecewise constant along an edge direction, the nth-order directional finite derivative of SSC along
the edge direction tends toward a small value. For example, let’s consider the interpolation of R,, in Fig. 1. Suppose
that the pixel R,, is located on a horizontal edge. The SSC values of pixel R,, and its neighboring pixels along

horizontal direction can be found such that
S:g(ll) = Ayg (1,3) + dGh , S;(M) - Arg (3,3)+ dGh s

S:f2’3> =-4,123)+dG,, S:r(4’5) =-4,4,3)+dG,, 5)
where S;f M = G(x,y)— R(x+1,y) . Define the first-order horizontal finite derivative of SSC such that

dS!H = §109 _§HD — 4 (13)~ 4, (3,3), and

dSi) = §10 —§h = 4 (43)-4,(2,3). (6)
Because A4, (x,y) is piecewise constant function, dS'"¥ and dS'*” both will approach to zero along this

horizontal edge. Consequently, the second-order horizontal finite derivative of SSC
d’S)" =dS\" —dS) " =4, (13)+4,023)-4,33)-4,(43)

will also tend toward zero along the horizontal edge. This observation poses a question that how the nth-order
directional finite derivative of SSC can be directly calculated from a Bayer mosaic image. To resolve this problem, a
heterogeneity-projection scheme has been developed to transfer row data of a Bayer mosaic image into nth-order
directional finite derivative of SSC directly. Note that we refer the value of nth-order directional finite derivative of
SSC as heterogeneity value because it leads to a small value within a directional smooth region.

Denote RG,,=[R, G, R, --]., asrow dataof a Bayer mosaic image, N is the presetting window size, and

H, is the corresponding horizontal heterogeneity value. To calculate the horizontal heterogeneity value H, from
RG,

IxN 2

horizontal finite derivative of SSC using a linear transformation such that

we have the following steps. First, the row data RG,, is transferred into a 1x(N —3) vector of first-order

[dS::M) dS:,(Z'S) dS,{:M) .“]lx(N—S) :RGIXNTI\I/X(N—S)’ (7)
where T, . . :[1 -1 -1 1]T®eye(N—3) , ® denotes the 2D convolution operator and eye(M) denotes a

M x M identity matrix. Second, the horizontal heterogeneity value H, can be calculated using Euclidean inner
product [11]
H :[dSh(lA) dSh(Z,S) dSh(},(y) .__] TZ (8)
h rg ar rg

Ix(N-3) F (N-3)x1

(N-3)x1

N-4
where T2 . = H[l - I]T ®eye(N-3-i) isa (N-3)x1 vector. Next, substituting (7) into (8) yields
i=1
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H,=RG,T.  .T> . =RG_P

IxXN™ Nx(N-3)" (N-3)x1 IxN* Nx1 2 (9)

=Ty vs is @ Nx1 vector and referred as heterogeneity vector. Expression (9) shows that the

horizontal heterogeneity value H, is the projection of the row data of Bayer mosaic image onto the heterogeneity

where P,

vector P, . Thus expression (9) is termed as horizontal heterogeneity-projection of Bayer mosaic image’s row data.
Similarly, the vertical heterogeneity value H, is the projection of Bayer mosaic image’s column data onto the
heterogeneity vector P, such that

H,=RG]P,,, (10)
where RG,, =[R, G, R, -], is a column data of Bayer mosaic image. Finally, based on (9) and (10), the

Nx1

horizontal and vertical heterogeneity maps, H and H, can be obtained, respectively by

h_map v_map
:|Bayer®Ple , (11)

H1177;1a17 = |Bayer ® PNTxl ’ and Hvimﬂp
where Bayer denotes the original Bayer mosaic image. We see from (11) that the horizontal and vertical heterogeneity

maps are derived directly from the Bayer mosaic image via horizontal and vertical heterogeneity-projection,
respectively.

B. Directional Adaptive Filtering

The directional heterogeneity-projection along an edge direction leads to a small heterogeneity value; however, it
may also obtain a small heterogeneity value when the directional heterogeneity-projection performs along a wrong edge
direction. This problem will cause a wrong decision in the interpolation step. In order to overcome this problem, a
directional adaptive filter whose behavior changes based on statistical characteristics of the image inside a local window
is designed to reduce the estimation error in horizontal and vertical heterogeneity maps.

The proposed directional adaptive filter is divided into horizontal and vertical adaptive filters. For horizontal
heterogeneity map, only the horizontal adaptive filter is applied to it without the vertical one. The concept of directional
adaptive filter is to perform adaptive filtering based on statistical measures of surrounding pixels along one direction.
The simplest statistical measures are the mean and variance in a local window [12]. For instance, consider the horizontal

adaptive filtering of a pixel #, on the horizontal heterogeneity map; the adaptively filtered pixel H " is obtained by
oH /L ITR fags

—L—(H,-H,). 12
it D (12
where H; and H[, respectively, denote the left and right neighboring pixels of #,; (H),6H}) and (H],5H))

H =H'+

are the local mean and variance of #, and HJ, respectively. Similarly, the vertical adaptive filter for the pixel #,

on the vertical heterogeneity map is given by
O6H! —p =

H =H'+——— _(H”-HY), 13
,=H, éHVUJFéHVD(V ) (13)

where f; and HP, respectively, denote the up and down neighboring pixels of #, ; (H',6H") and (H",6H")
are the local mean and variance of H. and H, respectively. After adopting, respectively the horizontal and vertical

adaptive filters presented above into horizontal and vertical heterogeneity maps, the filtered horizontal and vertical
heterogeneity maps H, , ~and H ,  are obtained.

map v_map

4. HARD-DECISION ADAPTIVE INTERPOLATION

When the horizontal and vertical heterogeneity maps are obtained, a hard-decision rule is employed for color
interpolation. First, we define three subsets in the image such that

Q, = {0 | H, (o0 <a ,, ()},
Q, ={nIH ,, (o) <aH, . (5],
Q ={x (0 eQ, (x.))eQ |, (14)
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where Q,, Q ,and Q_  denote the horizontal, vertical, and smooth subsets, respectively. o is a positive constant

satisfying 0<a <1. The parameter « in (14) controls the size of a smooth subset in the image. A small (large) «
leads to a large (small) smooth subset in the image. For example, if o =0, the image only contains smooth subset
without horizontal and vertical subsets. On the contrary, for & =1, the image only contains horizontal and vertical
subsets but without smooth subset.
Second, based on (14), the concept of hard-decision rule for interpolation is obtained
if (x,y)eQ,
Perform horizontal interpolation on each missing color channel.
elseif (x,y)eQ, (15)
Perform vertical interpolation on each missing color channel.
else
Perform weight averaging of neighboring pixels on each missing color channel.
The color interpolation method is performed based on the hard-decision rule (15). We first interpolate green channel
because the green plane possesses most spatial information of the image. Each missing green value G, is to be

miss.

estimated from its four surrounding green pixels by the following expression
e,G, +e.,.G.. ve, G, +e,G

_ Tup T up right = right down " down left " left (16)
= s

€y T Cign T o T €1

miss

where G denote

wpsianaomseyA€NOtE the color-adjusted green values of four surrounding green pixels, and e

{up right down left}
the corresponding edge indicators. However, in our method, the following modification on edge indicators is adopted
according to the hard-decision rule (15) such that

i (xy)eQ,
(e”p 2€4m) = (0,0). (17)
elseif (x,y)eQ,
(€ -€10) = (0,0).
In other words, the hard-decision adaptive interpolation for green channel is summarized as follows

e Grighl + eleft G[(f/i

e i (x,y)eQ,
éengj—/ + e/eﬁé (18)
€ CaownTdown .
Gmm = M’ U“ (x’y) e Qv
eup + eduwn

e, Gup + emghl Gmghl + edown Gdown + elej{ Gle/}‘

up

i () eQ,

eup te + eduwn + elL{fr

right
Note that the formulation of each surrounding color-adjusted green value in (18) adopts the approach proposed in [3]
while the corresponding edge indicator can be referred from among the references [3], [10], and [13]. Hereafter, the
color-adjusted value of each color pixel and the corresponding edge-indicator are determined as in [3].

When the green channel has been fully recovered, it can be used to assist the interpolation of red and blue channels.
The interpolation procedure for red and blue channels consists of two sub-steps: 1) interpolating the missing red/blue
values at blue/red pixels, and 2) interpolating the rest of the missing red/blue values at green pixels. In our method, we
only apply the hard-decision rule (15) to the sub-step 2) because there is not enough information to perform horizontal
and vertical interpolations in sub-step 1). Since the same procedure is utilized to interpolate the red and blue channels,
only the red channel interpolation will be presented.

Let R’ denote a missing red value at a blue pixel. It is estimated from its four neighboring red pixels by the
following formulation
e R +e R 4e R +e R
b —right™ “up—right down—right™ “down—right down—lefi* “down—lefi —lefit N up—left
Rm’cv — up—rigi up—rigi own—rigl lown—righ lown: lown: up—iej up- , (19)
[C— + € Jovn—right + r— + € poiefi
where R, o domtonaprey  d€NOtE  the color-adjusted red values of four neighboring red pixels, and

€, right doonright down-tenapiery 4€NOtE the corresponding edge indicators. Subsequently, the rest of the missing red values at
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green pixels will be proceeded. As the same procedure is performed in green channel, each missing red value at a green
pixel RE can be estimated from its four surrounding red pixels by the following hard-decision adaptive interpolation

miss

A A

erighthight + e]eﬁRleft .
- s U(‘ (x9 y ) € Qh
eright + e/eft
e R +e, R (20)
g _ up ™ “up down™ “down .
Rmi.s'.\' - > U(‘ (x’ y) € Qv
eup + ed()wn
e R +e.,R. +e, R, +e. R,
up” up right” “right down™ *down left* “left .
S if (6,y)€Q
eup + eright + edown + eleft
where R, .. i denote the color-adjusted red values of four surrounding red pixels, and e, .. sumis; ar€ the

corresponding edge indicators. Finally, a full-color image can be obtained after applying the same interpolation
processes described above on each missing blue value.

5. COMPARATIVE STUDY ON EXPERIMENTAL RESULTS

Fig. 2 shows twenty-five Kodak photographic images employed in the experiments for demonstrating the
demosaicing performance. According to [14], the CFA operations in digital camera pipeline usually introduce a
demosaiced image post-processing framework to provide more pleasing color output. Therefore, the experiments also
apply a post-processing framework to complete the comparisons. Fig. 3 illustrates the flowchart of the experiment,
which contains interpolation and post-processing steps. In interpolation step, the demosaiced results of the proposed
HPHD adaptive interpolation (HPHD-AI) method are compared with those using three recent published methods: Lu’s
[3], Gunturk’s [4], and Li’s [5] methods. For Gunturk’s method, we make use of one-level (1-L) decomposition with
eight projection iterations in the experiment. For Li’s method, the universal threshold value (5, =5, =4), suggested

threshold value (5[ =4,5, =0.05 ), and maximum iteration number jfer =20 are chosen in the experiment. For the

proposed method, the presetting window size and positive constant are chosenas N=9 and « =0.8, respectively. All
test images are down-sampled to obtain the Bayer pattern (as shown in Fig. 1) and then reconstructed using the
demosaicing methods under comparison in RGB color space.

To evaluate the quality of the demosaiced images, two performance measures are adopted in the experiments: PSNR
metric and S-CIELab AE, metric [3, 15]. The PSNR (in dB) metric in this paper is defined as

PSNR(dB) :101ogm{2552(ﬁ > Z||5(u,v)—5(u,v)||2j } @21

1<v<M 1<u<N
where M, N are the total column and row number of the image; O(u,v) is the color vector at the (u,v) th position
of the original color image; D(u,v) is the corresponding color vector in the demosaiced color image. Note that, for a
demosaiced image, high fidelity implies high PSNR and small S-CIELab AE’, measures.

A. Quantitative Comparison Using PSNR and S-CIELab Measures
Table I records the PSNR values and S-CIELab AE’, measures of the demosaiced results obtained by the proposed

interpolation method together with these by other methods for comparison. The bold-type font denotes the highest
PSNR and smallest AE’, values across each row. From Table I, it can be seen that HPHD-AI method generates

improved demosaiced fidelity in most of the test images in the interpolation step. Moreover, in the post-processing step,
HPHD-AI method not only has significant improvement, but also obtains the best demosaiced results in most of the test
images compared with other methods.

B. Visual Comparison

The demosaiced results shown in Figs. 4-5 evaluate the performance of the proposed HPHD-AI method in edge
regions and fine textures. Figs. 4(a)-5(a) show the zoom-in of the test image No. 16 and 20, respectively. These scenes
contain many long edges and fine detail regions such as fine fiber patterns (Fig. 4) and picket fences (Fig. 5). These
features can effectively challenge the performance of demosaicing methods. Figs. 4(b)-5(b) and 4(c)-5(c) are,
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Fig. 3: Flowchart of the experiment. In the interpolation step, we compare the performance of Lu’s, Gunturk’s, Li’s and proposed
HPHD adaptive interpolation (HPHD-AI) methods. In post-processing step, Lu’s post-processing method is adopted into each
demosaicing method.

respectively, the demosaiced results obtained from Lu’s and Gunturk’s methods. Figs. 4(d)-5(d) and 4(e)-5(e) are the
demosaiced results obtained from Li’s method with the universal threshold value (UTV) and suggested threshold value
(STV), respectively. Figs. 4(f)-5(f) are the demosaiced results obtained from HPHD-AI methods. From visual
comparison, we observe that the Lu’s, Gunturk’s and Li’s methods induce more color artifacts in edge and textured
regions than HPHD-AI do. Therefore, these experimental results validate that proposed HPHD-AI method performs
satisfactorily not only in textured regions, but also in well-defined edges of the image.

6. CONCLUSIONS

A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm has been developed
based on spectral-spatial correlation. The proposed HPHD-AI method effectively reconstructs the fine detail features in
both edge and texture regions of demosaiced images. One merit of the proposed algorithm is that it can be combined
with many existing image interpolation methods such as decision-based algorithm (set «=1), edge-directed
interpolation, adaptive interpolation, linear interpolation, etc. The performance of HPHD-AI method has been compared
with three recent published demosaicing methods. Experimental results show that HPHD-AI method not only
outperforms all of them in PSNR (dB) and AE, measures, but also gives superior demosaiced fidelities in visual

comparison with other methods.
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Table I: Performance comparison among recent proposed methods:
PSNR (dB) and S-CIELab AE;, measures of demosaiced images in the interpolation and post-processing steps.

Step Interpolation Step Post-Processing Step
Method Lu [3] Gunturk Li with Li with HPHD-AI Lu [3] Gunturk Li with Li with HPHD-AI
[4] UTV [5] STV [5] [4] UTV [5] STV [5]
1 31.0257 29.3765 28.4957 27.5149 31.2606 30.7940 29.2676 28.3192 27.4982 31.0342
1.5357 1.7666 1.8899 1.9636 1.5202 1.5466 1.7845 1.9083 1.9795 1.5233
2 31.6889 33.2296 33.6676 33.6663 31.4653 33.8433 33.6595 33.9846 34.0382 34.0739
1.7135 1.5972 1.5396 1.5374 1.7480 1.4668 1.5445 1.4974 1.4871 1.4473
3 35.7152 34.7577 35.2213 34.9041 35.8612 35.7232 34.6331 35.0579 34.8693 36.0636
1.4910 1.6598 1.5958 1.6084 1.4691 1.4943 1.6721 1.6008 1.6089 1.4581
4 37.3966 36.6168 36.3808 35.4652 37.7831 38.0096 36.7206 36.3960 35.6678 38.2998
0.9094 0.9774 0.9766 0.9977 0.8869 0.8576 0.9635 0.9615 0.9774 0.8385
5 35.4482 34.9839 34.8997 34.6224 35.3821 36.1356 34.9657 347714 34.5816 36.2018
1.3020 1.3508 1.3260 1.3333 1.3132 1.1861 1.3075 1.3213 1.3261 1.1804
6 32.7081 32.6411 31.8126 30.8156 32.5609 33.7802 32.6069 31.6062 30.7851 33.8550
2.0318 2.1864 2.3790 2.4840 2.0839 1.8551 2.1709 2.3857 2.4808 1.8533
7 32.4465 34.0239 33.8198 33.8272 33.7754 34.0965 34.3593 34.5397 34.6761 35.7373
1.2998 1.2157 1.2266 1.2288 1.1676 1.1592 1.1896 1.1590 1.1528 1.0157
8 37.9098 36.8763 36.7725 36.1020 37.8379 38.1854 36.6670 36.4265 35.9278 38.2823
0.9885 1.1338 1.1444 1.1711 0.9859 0.9694 1.1576 1.1699 1.1954 0.9626
9 29.7212 30.8332 31.2495 30.8557 30.3530 31.3071 31.1581 31.4196 31.1759 32.1709
1.8327 1.7679 1.7192 1.7774 1.7553 1.6277 1.7214 1.6968 1.7479 1.5285
10 36.8133 36.7662 37.2501 36.1575 37.1048 37.8106 37.0662 37.2927 36.3276 38.1879
0.8758 0.8925 0.8255 0.8629 0.8562 0.7919 0.8491 0.8226 0.8594 0.7698
11 36.8098 36.7975 37.0956 36.7442 36.8842 37.5213 37.0497 37.0952 36.8198 37.6985
0.8715 0.8954 0.8286 0.8377 0.8720 0.7926 0.8536 0.8263 0.8343 0.7843
12 33.8725 34.5407 34.4102 33.7818 34.0164 35.2610 34.6820 34.7541 34.2524 35.6644
1.4666 1.4748 1.4275 1.4515 1.4450 1.3140 1.4288 1.3622 1.3772 1.2713
13 37.3884 37.8205 37.7569 37.3173 38.0053 38.3279 37.9377 37.8628 37.5068 39.0792
0.6695 0.6731 0.6760 0.6841 0.6463 0.6267 0.6665 0.6610 0.6690 0.5981
14 27.8600 29.7386 30.4264 30.5734 27.7554 30.2549 30.2466 30.8242 31.1554 30.4845
2.4652 2.5595 2.4457 2.4330 2.8844 2.3619 2.8077 2.3680 2.3196 2.3558
15 32.4833 30.8370 29.6090 28.4714 32.4883 32.6128 30.6644 29.3860 28.5487 32.8477
1.7491 1.9406 2.1114 2.2016 1.7547 1.6518 1.9284 2.1159 2.1994 1.6275
16 34.4161 34.4301 34.3050 33.8643 34.5715 34.9354 34.3523 34.2067 33.8927 35.0711
1.3868 1.4764 1.4804 1.4972 1.3814 1.3388 1.4682 1.4704 1.4846 1.3264
17 35.6650 37.3602 37.0917 37.0862 37.5058 37.2329 37.6885 37.8239 37.8704 39.2991
1.0971 0.9964 1.0009 0.9993 0.9665 0.9865 0.9740 0.9477 0.9431 0.8526
18 35.7449 36.2947 36.4685 36.0800 35.7404 36.8960 36.5932 36.6429 36.2771 36.9402
1.4857 1.4628 1.3340 1.3471 1.4897 1.3056 1.3572 1.3100 1.3213 1.3029
19 31.6767 32.3393 32.3295 32.0304 31.3846 32.9921 32.5119 32.2416 32.0507 32.9077
2.2879 2.3592 2.3903 2.4202 2.3443 2.0898 2.3137 2.4326 2.4546 2.1113
20 34.5020 34.9738 35.2707 34.9622 34.9280 35.7424 35.2671 35.5570 35.3051 36.4388
1.3409 1.3061 1.2493 1.2727 1.3294 1.1902 1.2452 1.2094 1.2304 1.1637
21 35.8899 35.7991 35.7714 35.2282 35.7142 36.8055 36.0108 35.9894 35.5311 36.8352
1.0016 1.0396 1.0294 1.0521 1.0179 0.9230 1.0077 0.9971 1.0146 0.9239
22 33.0809 34.0980 33.8535 33.8285 32.9655 34.6893 34.3656 34.4198 34.5202 34.8393
1.3691 1.3142 1.3468 1.3536 1.3895 1.2138 1.2900 1.2757 1.2687 1.2031
23 33.5303 32.8830 32.9540 32.4965 33.3529 33.7291 32.8127 32.8188 32.5483 33.7452
1.3922 1.5024 1.5250 1.5490 14115 1.3651 1.5307 1.5364 1.5548 1.3662
24 38.0689 37.0203 37.0820 36.7586 38.1592 38.1993 36.9022 36.9148 36.7148 38.4097
0.8977 0.9664 0.9820 0.9894 0.8901 0.8945 0.9867 0.9956 1.0017 0.8834
25 29.4449 29.8870 30.0755 29.8573 29.6185 30.0984 30.0602 30.0909 29.9332 30.3096
1.4432 1.4933 1.5055 1.5331 1.4594 1.3599 1.4858 1.5123 1.5353 1.3566
Avg. 34.0523 34.1970 34.1628 33.7204 34.2590 34.9994 34.3300 34.2577 33.9390 35.3791
1.4099 1.4403 1.4382 1.4635 1.4027 1.2948 1.4145 1.4217 1.4410 1.2682
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(d (e) ®
Fig. 4: Zoom-in demosaicing results of test image No. 16. (a) Original picture; Demosaiced result in the interpolation step using (b)
Lu’s method, (c) Gunturk’s method, (d) Li’s method with UTV, (e) Li’s method with STV, and (f) proposed HPHD-AI method.

(d) (e)
Fig. 5: Zoom-in demosaicing results of test image No. 20. (a) Original picture; Demosaiced result in the interpolation step using (b)
Lu’s method, (c¢) Gunturk’s method, (d) Li’s method with UTV, (e) Li’s method with STV, and (f) proposed HPHD-AI method.
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