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ABSTRACT 

A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm is proposed in this 
paper for color reproduction from Bayer mosaic images. The proposed algorithm aims to estimate the optimal 
interpolation direction and perform hard-decision interpolation, in which the decision is made before interpolation. To 
do so, a new heterogeneity-projection scheme based on spectral-spatial correlation is proposed to decide the best 
interpolation direction from the original mosaic image directly. Exploiting the proposed heterogeneity-projection 
scheme, a hard-decision rule can be designed easily to perform the interpolation. We have compared this technique with 
three recently proposed demosaicing techniques: Lu’s, Gunturk’s and Li’s methods, by utilizing twenty-five natural 
images from Kodak PhotoCD. The experimental results show that HPHD-AI outperforms all of them in both PSNR 
values and S-CIELab *

abE∆  measures.  
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1. INTRODUCTION 
 

Digital color images from single-chip digital still cameras are obtained by interpolating the output from a color filter 
array (CFA), in which each sensor pixel only samples one of three primary color components. These sparsely sampled 
color values are termed mosaic images. A full-color image is reproduced from a mosaic image by estimating two 
missing color values for each pixel. This image reconstruction process is commonly known as CFA interpolation or 
CFA demosaicing. The simplest CFA demosaicing methods apply well-known interpolation techniques to each color 
channel separately such as bilinear interpolation and cubic spline interpolation. However, these single-channel 
algorithms usually introduce severe color artifacts and blurs around sharp edges [1]. These drawbacks motivate the need 
of more specialized algorithms for advanced demosaicing performance. An excellent literature survey on advanced 
demosaicing algorithms can be found in [2]. 

In recent years, there have been researches on more sophisticated demosaicing algorithms. In [3], Lu and Tan 
presented an improved hybrid CFA demosaicing method that consists of interpolation and post-processing steps to 
render full-color images and suppress visible demosaicing artifacts. In [4], the authors utilized a projection-onto-
convex-set (POCS) technique to estimate the missing color values in red and blue channels using alternating projection 
scheme based on high inter-channel correlation. In [5], Li proposed a successive approximation demosaicing strategy by 
adopting color difference interpolation iteratively. Another recent demosaicing approach, termed as decision-based 
demosaicing algorithm, divides the demosaicing procedure into interpolation step and decision step [6, 7]. In the 
interpolation step, they produce respectively horizontally interpolated and vertically interpolated images. In decision 
step, a soft decision method was adopted for choosing the pixels interpolated in the direction with fewer artifacts. For 
the decision step, Hirakawa et al proposed the color image homogeneity metric to measure the level of misguidance 
color artifacts presented in these two images [6]. Based on this measurement, the interpolation decision is made by 
choosing the region with larger homogeneity map values. In [7], Wu et al adopted the Fisher’s linear discriminant 
technique to determine the optimal interpolation direction under two hypotheses, one for horizontal structure and the 
other for vertical structure, in a local window. The decision-based demosaicing algorithm performs well not only in 
textured regions, but also in well-defined edges of the image. However, the main drawback of decision-based 
demosaicing algorithms is that they are not efficient in the interpolation step because each pixel has to interpolate twice, 
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one in horizontal direction and the other in vertical direction, before applying the soft decision method. Therefore, to 
develop an efficient color interpolation algorithm with high performance in both textured and edge regions is still a 
challenge in CFA demosaicing research. 

In this paper, a novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) method is proposed 
for color reproduction from Bayer mosaic images. The proposed algorithm aims to decide the optimal interpolation 
direction before performing interpolation. To do so, a new heterogeneity-projection scheme based on spectral-spatial 
correlation is proposed to estimate the best interpolation direction from the original Bayer mosaic images directly. 
Based on the proposed heterogeneity-projection scheme, a hard-decision rule can be designed easily to perform the 
interpolation. The advantage of the proposed demosaicing algorithm is threefold. First, the proposed heterogeneity-
projection scheme can be combined with existent decision-based demosaicing algorithms. Second, the decision is made 
before interpolation and thus each pixel only has to interpolate once in the interpolation step. Finally, the proposed 
demosaicing algorithm also performs well not only in textured regions, but also in well-defined edges of the image. 
 

2. SPECTRAL-SPATIAL CORRELATION 
 

Fig. 1 shows the most used CFA pattern, the Bayer pattern [8], where R, G and B denote, respectively, the pixels 
having only red, green and blue color values. We limit our discussion in this paper to the Bayer pattern because it is 
popular. In the following, we will introduce a novel spectral-spatial correlation based on two popular image 
correlations: spectral and spatial correlations.  

Many existent demosaicing methods are developed using image spectral or spatial correlation, or both. The concept 
of spectral correlation is based on the assumption that the color difference signals are locally constant in chrominance 
smooth areas [9]. The spatial correlation refers to the fact that within a homogeneous image region, neighboring pixels 
share similar color values [3, 10]. In other words, the difference between neighboring pixel values along an edge 
direction in spatial domain is a constant. Spectral and spatial correlations of a natural image describe the relationship 
between different color channels. However, in Bayer mosaic image, it is difficult to calculate the spectral and spatial 
correlations directly because each pixel only contains one primary component. This problem motivates us to find a more 
efficient criterion instead of spectral and spatial correlations for Bayer mosaic images. 

A significant characteristic of Bayer pattern is that for each pixel, the surrounding pixels are one of the primary 
components in different channels. This causes us to investigate the relationship between neighboring pixels in different 
color channels. Consider the following situation: on a horizontal edge, two green pixels surround a red pixel on 
horizontal direction. Take the difference between the center red pixel and right green pixel, we then have 
    [ ] [ ]),1(),(),(),(),1(),( yxGyxGyxGyxRyxGyxR +−+−=+− ,   (1) 
where ),( yxG  denotes the missing green value at center red pixel location. By the assumption of spectral and spatial 
correlations, expression (1) becomes such that 
 hrg

xxh
rg dGyxAyxGyxRS +=+−≡+ ),(),1(),()1,( .   (2) 

Similarly, the difference between a blue pixel and its right green pixel is given by 
 hbg

xxh
bg dGyxAyxGyxBS +=+−≡+ ),(),1(),()1,( .  (3) 

The same results also can be obtained along vertical direction on a vertical edge such that 
vrg

yyv
rg dGyxAyxGyxRS +=+−≡+ ),()1,(),()1,( , and  

vbg
yyv

bg dGyxAyxGyxBS +=+−≡+ ),()1,(),()1,( .   (4) 
where ),( yxArg  and ),( yxAbg  are piecewise constant functions; hdG  and vdG  are constants. Expressions (1)-(4) 
tell us that the difference between surrounding pixels in different color channels is equal to the summation of spectral 
and spatial correlations. We refer these relationships (1)-(4) as spectral-spatial correlations (SSC). SSC has two 
important characteristics. First, SSC can be easily and directly calculated from Bayer mosaic images. Second, SSC 
inherits the characteristics of spectral and spatial correlations. In other words, SSC is also piecewise constant within the 
boundary of a given object or along an edge direction. SSC acts as a significant clue for us to find the directional 
smooth regions in Bayer mosaic images directly before performing the interpolation. In the following section, we will 
present the proposed heterogeneity-projection based on these observations. 
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Fig. 1: Bayer color filter array pattern (Bayer pattern) 

 
3. HETEROGENEITY-PROJECTION FOR BAYER MOSAIC IMAGES 

 
The aim of this section is to derive the heterogeneity-projection formulation based on SSC. The proposed 

heterogeneity-projection scheme can directly transfer the original Bayer mosaic image into horizontal and vertical 
heterogeneity maps. Using these two heterogeneity maps, the decision of interpolation direction can be determined 
easily by choosing the smallest heterogeneity values. 

 
A.  Heterogeneity-Projection 

Because SSC is piecewise constant along an edge direction, the nth-order directional finite derivative of SSC along 
the edge direction tends toward a small value. For example, let’s consider the interpolation of 33R  in Fig. 1. Suppose 
that the pixel 33R  is located on a horizontal edge. The SSC values of pixel 33R  and its neighboring pixels along 
horizontal direction can be found such that 

hrg
h
rg dGAS += )3,1()2,1( , hrg

h
rg dGAS += )3,3()4,3( ,  

          hrg
h
gr dGAS +−= )3,2()3,2( , hrg

h
gr dGAS +−= )3,4()5,4( ,   (5) 

where ),1(),()1,( yxRyxGS xxh
gr +−≡+ . Define the first-order horizontal finite derivative of SSC such that  

)3,3()3,1()4,3()2,1()4,1(
rgrg

h
rg

h
rg

h
rg AASSdS −=−≡ , and 

    )3,2()3,4()5,4()3,2()5,2(
rgrg

h
gr

h
gr

h
gr AASSdS −=−≡ .   (6) 

Because ),( yxArg  is piecewise constant function, )4,1(h
rgdS  and )5,2(h

rgdS  both will approach to zero along this 
horizontal edge. Consequently, the second-order horizontal finite derivative of SSC 

)3,4()3,3()3,2()3,1()5,2()4,1()5,1(2
rgrgrgrg

h
gr

h
rg

h
rg AAAAdSdSSd −−+=−≡  

will also tend toward zero along the horizontal edge. This observation poses a question that how the nth-order 
directional finite derivative of SSC can be directly calculated from a Bayer mosaic image. To resolve this problem, a 
heterogeneity-projection scheme has been developed to transfer row data of a Bayer mosaic image into nth-order 
directional finite derivative of SSC directly. Note that we refer the value of nth-order directional finite derivative of 
SSC as heterogeneity value because it leads to a small value within a directional smooth region. 

Denote NN RGRRG ×× = 13211 ][ L  as row data of a Bayer mosaic image, N  is the presetting window size, and 

hH  is the corresponding horizontal heterogeneity value. To calculate the horizontal heterogeneity value hH  from 

NRG ×1 , we have the following steps. First, the row data NRG ×1  is transferred into a )3(1 −× N  vector of first-order 
horizontal finite derivative of SSC using a linear transformation such that 

 1
)3(1)3(1

)6,3()5,2()4,1( ][ −××−× = NNNN
h
rg

h
gr

h
rg TRGdSdSdS L ,      (7) 

where [ ] )3(11111
)3( −⊗−−=−× NeyeT T

NN , ⊗  denotes the 2D convolution operator and )(Meye denotes a 
MM ×  identity matrix. Second, the horizontal heterogeneity value hH  can be calculated using Euclidean inner 

product [11] 
 2

1)3()3(1
)6,3()5,2()4,1( ][ ×−−×= NN

h
rg

h
gr

h
rgh TdSdSdSH L ,      (8) 

where [ ]∏
−

=
×− −−⊗−=

4

1

2
1)3( )3(11

N

i

T
N iNeyeT  is a 1)3( ×−N  vector. Next, substituting (7) into (8) yields 

SPIE-IS&T/ Vol. 6069  606906-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/02/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

 11
2

1)3(
1

)3(1 ×××−−×× == NNNNNNh PRGTTRGH ,      (9) 

where 2
1)3(

1
)3(1 ×−−×× = NNNN TTP  is a 1×N  vector and referred as heterogeneity vector. Expression (9) shows that the 

horizontal heterogeneity value hH  is the projection of the row data of Bayer mosaic image onto the heterogeneity 
vector 1×NP . Thus expression (9) is termed as horizontal heterogeneity-projection of Bayer mosaic image’s row data. 
Similarly, the vertical heterogeneity value vH  is the projection of Bayer mosaic image’s column data onto the 
heterogeneity vector 1×NP  such that 

 11 ××= N
T
Nv PRGH ,       (10) 

where T
NN RGRRG 13211 ][ ×× = L  is a column data of Bayer mosaic image. Finally, based on (9) and (10), the 

horizontal and vertical heterogeneity maps, maphH _  and mapvH _  can be obtained, respectively by 

 T
Nmaph PBayerH 1_ ×⊗= , and 1_ ×⊗= Nmapv PBayerH ,     (11) 

where Bayer  denotes the original Bayer mosaic image. We see from (11) that the horizontal and vertical heterogeneity 
maps are derived directly from the Bayer mosaic image via horizontal and vertical heterogeneity-projection, 
respectively.  
 
B.  Directional Adaptive Filtering 

The directional heterogeneity-projection along an edge direction leads to a small heterogeneity value; however, it 
may also obtain a small heterogeneity value when the directional heterogeneity-projection performs along a wrong edge 
direction. This problem will cause a wrong decision in the interpolation step. In order to overcome this problem, a 
directional adaptive filter whose behavior changes based on statistical characteristics of the image inside a local window 
is designed to reduce the estimation error in horizontal and vertical heterogeneity maps. 

The proposed directional adaptive filter is divided into horizontal and vertical adaptive filters. For horizontal 
heterogeneity map, only the horizontal adaptive filter is applied to it without the vertical one. The concept of directional 
adaptive filter is to perform adaptive filtering based on statistical measures of surrounding pixels along one direction. 
The simplest statistical measures are the mean and variance in a local window [12]. For instance, consider the horizontal 
adaptive filtering of a pixel hH  on the horizontal heterogeneity map; the adaptively filtered pixel *

hH  is obtained by 

)(* L
h

R
hR

h
L
h

L
hL

hh HH
HH

HHH −
+

+=
δδ

δ .     (12) 

where L
hH  and R

hH , respectively, denote the left and right neighboring pixels of hH ; ),( L
h

L
h HH δ  and ),( R

h
R
h HH δ  

are the local mean and variance of L
hH  and R

hH , respectively. Similarly, the vertical adaptive filter for the pixel vH  
on the vertical heterogeneity map is given by 

 )(* U
v

D
vD

v
U
v

U
vU

vv HH
HH

HHH −
+

+=
δδ

δ ,     (13) 

where U
hH  and D

hH , respectively, denote the up and down neighboring pixels of hH ; ),( U
v

U
v HH δ  and ),( D

v
D

v HH δ  

are the local mean and variance of U
vH  and D

vH , respectively. After adopting, respectively the horizontal and vertical 
adaptive filters presented above into horizontal and vertical heterogeneity maps, the filtered horizontal and vertical 
heterogeneity maps *

_ maphH  and *
_ mapvH  are obtained.  

 
4. HARD-DECISION ADAPTIVE INTERPOLATION 

 
When the horizontal and vertical heterogeneity maps are obtained, a hard-decision rule is employed for color 

interpolation. First, we define three subsets in the image such that 
{ }),(),(|),( *

_
*

_ yxHyxHyx mapvmaphh α<≡Ω , 

{ }),(),(|),( *
_

*
_ yxHyxHyx maphmapvv α<≡Ω , 

{ }vhs yxyxyx Ω∉Ω∉≡Ω ),(,),(|),( ,               (14) 
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where hΩ , vΩ , and sΩ  denote the horizontal, vertical, and smooth subsets, respectively. α  is a positive constant 
satisfying 10 ≤≤ α . The parameter α  in (14) controls the size of a smooth subset in the image. A small (large) α  
leads to a large (small) smooth subset in the image. For example, if 0=α ,  the image only contains smooth subset 
without horizontal and vertical subsets. On the contrary, for 1=α , the image only contains horizontal and vertical 
subsets but without smooth subset.  

Second, based on (14), the concept of hard-decision rule for interpolation is obtained 

 

channel.color  missingeach on  pixels gneighborin of   Perform     

channel.color  missingeach on ion interpolat    Perform     
),(  

channel.color  missingeach on ion interpolat    Perform     
),(  

averagingweight
else

vertical
yxelseif

horizontal
yxif

v

h

Ω∈

Ω∈

       (15) 

The color interpolation method is performed based on the hard-decision rule (15). We first interpolate green channel 
because the green plane possesses most spatial information of the image. Each missing green value missG  is to be 
estimated from its four surrounding green pixels by the following expression 

 
leftdownrightup

leftleftdowndownrightrightupup
miss eeee

GeGeGeGe
G

+++
+++

=
ˆˆˆˆ

,       (16) 

where },,,{
ˆ

leftdownrightupG  denote the color-adjusted green values of four surrounding green pixels, and },,,{ leftdownrightupe  denote 
the corresponding edge indicators. However, in our method, the following modification on edge indicators is adopted 
according to the hard-decision rule (15) such that 

 

.)0,0(),(     
),(  

).0,0(),(     
),(  

=
Ω∈

=
Ω∈

leftright

v

downup

h

ee
yxelseif

ee
yxif

        (17) 

In other words, the hard-decision adaptive interpolation for green channel is summarized as follows 

        

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

Ω∈
+++

+++

Ω∈
+

+

Ω∈
+

+

=

s
leftdownrightup

leftleftdowndownrightrightupup

v
downup

downdownupup

h
leftright

leftleftrightright

miss

yxif
eeee

GeGeGeGe

yxif
ee

GeGe

yxif
ee

GeGe

G

),(    ,
ˆˆˆˆ

),(    ,
ˆˆ

),(    ,
ˆˆ

     (18) 

Note that the formulation of each surrounding color-adjusted green value in (18) adopts the approach proposed in [3] 
while the corresponding edge indicator can be referred from among the references [3], [10], and [13]. Hereafter, the 
color-adjusted value of each color pixel and the corresponding edge-indicator are determined as in [3]. 

When the green channel has been fully recovered, it can be used to assist the interpolation of red and blue channels. 
The interpolation procedure for red and blue channels consists of two sub-steps: 1) interpolating the missing red/blue 
values at blue/red pixels, and 2) interpolating the rest of the missing red/blue values at green pixels. In our method, we 
only apply the hard-decision rule (15) to the sub-step 2) because there is not enough information to perform horizontal 
and vertical interpolations in sub-step 1). Since the same procedure is utilized to interpolate the red and blue channels, 
only the red channel interpolation will be presented.  

Let b
missR  denote a missing red value at a blue pixel. It is estimated from its four neighboring red pixels by the 

following formulation 

 
leftupleftdownrightdownrightup

leftupleftupleftdownleftdownrightdownrightdownrightuprightupb
miss eeee

ReReReRe
R

−−−−

−−−−−−−−

+++

+++
=

ˆˆˆˆ
,    (19) 

where },,,{
ˆ

leftupleftdownrightdownrightupR −−−−  denote the color-adjusted red values of four neighboring red pixels, and 

},,,{ leftupleftdownrightdownrightupe −−−−  denote the corresponding edge indicators. Subsequently, the rest of the missing red values at 
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green pixels will be proceeded. As the same procedure is performed in green channel, each missing red value at a green 
pixel g

missR  can be estimated from its four surrounding red pixels by the following hard-decision adaptive interpolation 

          

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

Ω∈
+++

+++

Ω∈
+
+

Ω∈
+
+

=

s
leftdownrightup

leftleftdowndownrightrightupup

v
downup

downdownupup

h
leftright

leftleftrightright

g
miss

yxif
eeee

ReReReRe

yxif
ee

ReRe

yxif
ee

ReRe

R

),(    ,
ˆˆˆˆ

),(    ,
ˆˆ

),(    ,
ˆˆ

           (20) 

where },,,{
ˆ

leftdownrightupR  denote the color-adjusted red values of four surrounding red pixels, and },,,{ leftdownrightupe  are the 
corresponding edge indicators. Finally, a full-color image can be obtained after applying the same interpolation 
processes described above on each missing blue value. 
 

5. COMPARATIVE STUDY ON EXPERIMENTAL RESULTS 
 

Fig. 2 shows twenty-five Kodak photographic images employed in the experiments for demonstrating the 
demosaicing performance. According to [14], the CFA operations in digital camera pipeline usually introduce a 
demosaiced image post-processing framework to provide more pleasing color output. Therefore, the experiments also 
apply a post-processing framework to complete the comparisons. Fig. 3 illustrates the flowchart of the experiment, 
which contains interpolation and post-processing steps. In interpolation step, the demosaiced results of the proposed 
HPHD adaptive interpolation (HPHD-AI) method are compared with those using three recent published methods: Lu’s 
[3], Gunturk’s [4], and Li’s [5] methods. For Gunturk’s method, we make use of one-level (1-L) decomposition with 
eight projection iterations in the experiment. For Li’s method, the universal threshold value ( 4== hl δδ ), suggested 
threshold value ( 05.0,4 == hl δδ ), and maximum iteration number 20=iter  are chosen in the experiment. For the 
proposed method, the presetting window size and positive constant are chosen as 9=N  and 8.0=α , respectively. All 
test images are down-sampled to obtain the Bayer pattern (as shown in Fig. 1) and then reconstructed using the 
demosaicing methods under comparison in RGB color space. 

To evaluate the quality of the demosaiced images, two performance measures are adopted in the experiments: PSNR 
metric and S-CIELab *

abE∆  metric [3, 15]. The PSNR (in dB) metric in this paper is defined as 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ −=
−

≤≤ ≤≤
∑ ∑

1

1 1

22
10 ),(),(1255log10)(

Mv Nu

vuDvuO
MN

dBPSNR ,        (21) 

where M , N  are the total column and row number of the image; ),( vuO  is the color vector at the ),( vu th position 
of the original color image; ),( vuD  is the corresponding color vector in the demosaiced color image. Note that, for a 
demosaiced image, high fidelity implies high PSNR and small S-CIELab *

abE∆  measures. 
 
A.  Quantitative Comparison Using PSNR and S-CIELab Measures 

Table I records the PSNR values and S-CIELab *
abE∆  measures of the demosaiced results obtained by the proposed 

interpolation method together with these by other methods for comparison. The bold-type font denotes the highest 
PSNR and smallest *

abE∆  values across each row. From Table I, it can be seen that HPHD-AI method generates 
improved demosaiced fidelity in most of the test images in the interpolation step. Moreover, in the post-processing step, 
HPHD-AI method not only has significant improvement, but also obtains the best demosaiced results in most of the test 
images compared with other methods. 
 
B.  Visual Comparison 

The demosaiced results shown in Figs. 4-5 evaluate the performance of the proposed HPHD-AI method in edge 
regions and fine textures. Figs. 4(a)-5(a) show the zoom-in of the test image No. 16 and 20, respectively. These scenes 
contain many long edges and fine detail regions such as fine fiber patterns (Fig. 4) and picket fences (Fig. 5). These 
features can effectively challenge the performance of demosaicing methods. Figs. 4(b)-5(b) and 4(c)-5(c) are,  
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Fig. 2: Test images used in the experiment. 

 

 
Fig. 3: Flowchart of the experiment. In the interpolation step, we compare the performance of Lu’s, Gunturk’s, Li’s and proposed 
HPHD adaptive interpolation (HPHD-AI) methods. In post-processing step, Lu’s post-processing method is adopted into each 
demosaicing method. 
 
respectively, the demosaiced results obtained from Lu’s and Gunturk’s methods. Figs. 4(d)-5(d) and 4(e)-5(e) are the 
demosaiced results obtained from Li’s method with the universal threshold value (UTV) and suggested threshold value 
(STV), respectively. Figs. 4(f)-5(f) are the demosaiced results obtained from HPHD-AI methods. From visual 
comparison, we observe that the Lu’s, Gunturk’s and Li’s methods induce more color artifacts in edge and textured 
regions than HPHD-AI do. Therefore, these experimental results validate that proposed HPHD-AI method performs 
satisfactorily not only in textured regions, but also in well-defined edges of the image. 
 

6. CONCLUSIONS 
 

A novel heterogeneity-projection hard-decision adaptive interpolation (HPHD-AI) algorithm has been developed 
based on spectral-spatial correlation. The proposed HPHD-AI method effectively reconstructs the fine detail features in 
both edge and texture regions of demosaiced images. One merit of the proposed algorithm is that it can be combined 
with many existing image interpolation methods such as decision-based algorithm (set 1=α ), edge-directed 
interpolation, adaptive interpolation, linear interpolation, etc. The performance of HPHD-AI method has been compared 
with three recent published demosaicing methods. Experimental results show that HPHD-AI method not only 
outperforms all of them in PSNR (dB) and *

abE∆  measures, but also gives superior demosaiced fidelities in visual 
comparison with other methods.  
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Table I: Performance comparison among recent proposed methods: 

PSNR (dB) and S-CIELab *
abE∆  measures of demosaiced images in the interpolation and post-processing steps. 

Step Interpolation Step Post-Processing Step 
Method Lu [3] Gunturk 

[4] 
Li with  

UTV [5] 
Li with  
STV [5] 

HPHD-AI Lu [3] Gunturk 
[4] 

Li with  
UTV [5] 

Li with  
STV [5] 

HPHD-AI 

1 31.0257 
1.5357 

29.3765 
1.7666 

28.4957 
1.8899 

27.5149 
1.9636 

31.2606 
1.5202 

30.7940 
1.5466 

29.2676 
1.7845 

28.3192 
1.9083 

27.4982 
1.9795 

31.0342 
1.5233 

2 31.6889 
1.7135 

33.2296 
1.5972 

33.6676 
1.5396 

33.6663 
1.5374 

31.4653 
1.7480 

33.8433 
1.4668 

33.6595 
1.5445 

33.9846 
1.4974 

34.0382 
1.4871 

34.0739 
1.4473 

3 35.7152 
1.4910 

34.7577 
1.6598 

35.2213 
1.5958 

34.9041 
1.6084 

35.8612 
1.4691 

35.7232 
1.4943 

34.6331 
1.6721 

35.0579 
1.6008 

34.8693 
1.6089 

36.0636 
1.4581 

4 37.3966 
0.9094 

36.6168 
0.9774 

36.3808 
0.9766 

35.4652 
0.9977 

37.7831 
0.8869 

38.0096 
0.8576 

36.7206 
0.9635 

36.3960 
0.9615 

35.6678 
0.9774 

38.2998 
0.8385 

5 35.4482 
1.3020 

34.9839 
1.3508 

34.8997 
1.3260 

34.6224 
1.3333 

35.3821 
1.3132 

36.1356 
1.1861 

34.9657 
1.3075 

34.7714 
1.3213 

34.5816 
1.3261 

36.2018 
1.1804 

6 32.7081 
2.0318 

32.6411 
2.1864 

31.8126 
2.3790 

30.8156 
2.4840 

32.5609 
2.0839 

33.7802 
1.8551 

32.6069 
2.1709 

31.6062 
2.3857 

30.7851 
2.4808 

33.8550 
1.8533 

7 32.4465 
1.2998 

34.0239 
1.2157 

33.8198 
1.2266 

33.8272 
1.2288 

33.7754 
1.1676 

34.0965 
1.1592 

34.3593 
1.1896 

34.5397 
1.1590 

34.6761 
1.1528 

35.7373 
1.0157 

8 37.9098 
0.9885 

36.8763 
1.1338 

36.7725 
1.1444 

36.1020 
1.1711 

37.8379 
0.9859 

38.1854 
0.9694 

36.6670 
1.1576 

36.4265 
1.1699 

35.9278 
1.1954 

38.2823 
0.9626 

9 29.7212 
1.8327 

30.8332 
1.7679 

31.2495 
1.7192 

30.8557 
1.7774 

30.3530 
1.7553 

31.3071 
1.6277 

31.1581 
1.7214 

31.4196 
1.6968 

31.1759 
1.7479 

32.1709 
1.5285 

10 36.8133 
0.8758 

36.7662 
0.8925 

37.2501 
0.8255 

36.1575 
0.8629 

37.1048 
0.8562 

37.8106 
0.7919 

37.0662 
0.8491 

37.2927 
0.8226 

36.3276 
0.8594 

38.1879 
0.7698 

11 36.8098 
0.8715 

36.7975 
0.8954 

37.0956 
0.8286 

36.7442 
0.8377 

36.8842 
0.8720 

37.5213 
0.7926 

37.0497 
0.8536 

37.0952 
0.8263 

36.8198 
0.8343 

37.6985 
0.7843 

12 33.8725 
1.4666 

34.5407 
1.4748 

34.4102 
1.4275 

33.7818 
1.4515 

34.0164 
1.4450 

35.2610 
1.3140 

34.6820 
1.4288 

34.7541 
1.3622 

34.2524 
1.3772 

35.6644 
1.2713 

13 37.3884 
0.6695 

37.8205 
0.6731 

37.7569 
0.6760 

37.3173 
0.6841 

38.0053 
0.6463 

38.3279 
0.6267 

37.9377 
0.6665 

37.8628 
0.6610 

37.5068 
0.6690 

39.0792 
0.5981 

14 27.8600 
2.4652 

29.7386 
2.5595 

30.4264 
2.4457 

30.5734 
2.4330 

27.7554 
2.8844 

30.2549 
2.3619 

30.2466 
2.8077 

30.8242 
2.3680 

31.1554 
2.3196 

30.4845 
2.3558 

15 32.4833 
1.7491 

30.8370 
1.9406 

29.6090 
2.1114 

28.4714 
2.2016 

32.4883 
1.7547 

32.6128 
1.6518 

30.6644 
1.9284 

29.3860 
2.1159 

28.5487 
2.1994 

32.8477 
1.6275 

16 34.4161 
1.3868 

34.4301 
1.4764 

34.3050 
1.4804 

33.8643 
1.4972 

34.5715 
1.3814 

34.9354 
1.3388 

34.3523 
1.4682 

34.2067 
1.4704 

33.8927 
1.4846 

35.0711 
1.3264 

17 35.6650 
1.0971 

37.3602 
0.9964 

37.0917 
1.0009 

37.0862 
0.9993 

37.5058 
0.9665 

37.2329 
0.9865 

37.6885 
0.9740 

37.8239 
0.9477 

37.8704 
0.9431 

39.2991 
0.8526 

18 35.7449 
1.4857 

36.2947 
1.4628 

36.4685 
1.3340 

36.0800 
1.3471 

35.7404 
1.4897 

36.8960 
1.3056 

36.5932 
1.3572 

36.6429 
1.3100 

36.2771 
1.3213 

36.9402 
1.3029 

19 31.6767 
2.2879 

32.3393 
2.3592 

32.3295 
2.3903 

32.0304 
2.4202 

31.3846 
2.3443 

32.9921 
2.0898 

32.5119 
2.3137 

32.2416 
2.4326 

32.0507 
2.4546 

32.9077 
2.1113 

20 34.5020 
1.3409 

34.9738 
1.3061 

35.2707 
1.2493 

34.9622 
1.2727 

34.9280 
1.3294 

35.7424 
1.1902 

35.2671 
1.2452 

35.5570 
1.2094 

35.3051 
1.2304 

36.4388 
1.1637 

21 35.8899 
1.0016 

35.7991 
1.0396 

35.7714 
1.0294 

35.2282 
1.0521 

35.7142 
1.0179 

36.8055 
0.9230 

36.0108 
1.0077 

35.9894 
0.9971 

35.5311 
1.0146 

36.8352 
0.9239 

22 33.0809 
1.3691 

34.0980 
1.3142 

33.8535 
1.3468 

33.8285 
1.3536 

32.9655 
1.3895 

34.6893 
1.2138 

34.3656 
1.2900 

34.4198 
1.2757 

34.5202 
1.2687 

34.8393 
1.2031 

23 33.5303 
1.3922 

32.8830 
1.5024 

32.9540 
1.5250 

32.4965 
1.5490 

33.3529 
1.4115 

33.7291 
1.3651 

32.8127 
1.5307 

32.8188 
1.5364 

32.5483 
1.5548 

33.7452 
1.3662 

24 38.0689 
0.8977 

37.0203 
0.9664 

37.0820 
0.9820 

36.7586 
0.9894   

38.1592 
0.8901 

38.1993 
0.8945 

36.9022 
0.9867 

36.9148 
0.9956 

36.7148 
1.0017 

38.4097 
0.8834 

25 29.4449 
1.4432 

29.8870 
1.4933 

30.0755 
1.5055 

29.8573 
1.5331   

29.6185 
1.4594 

30.0984 
1.3599 

30.0602 
1.4858 

30.0909 
1.5123 

29.9332 
1.5353 

30.3096 
1.3566 

Avg. 34.0523 
1.4099 

34.1970 
1.4403 

34.1628 
1.4382 

33.7204 
1.4635   

34.2590 
1.4027 

34.9994 
1.2948 

34.3300 
1.4145 

34.2577 
1.4217 

33.9390 
1.4410 

35.3791 
1.2682 
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(a)        (b)      (c) 

   
(d)        (e)      (f) 

Fig. 4: Zoom-in demosaicing results of test image No. 16. (a) Original picture; Demosaiced result in the interpolation step using (b) 
Lu’s method, (c) Gunturk’s method, (d) Li’s method with UTV, (e) Li’s method with STV, and (f) proposed HPHD-AI method. 
 

    
(a)        (b)      (c) 

   
(d)        (e)      (f) 

Fig. 5: Zoom-in demosaicing results of test image No. 20. (a) Original picture; Demosaiced result in the interpolation step using (b) 
Lu’s method, (c) Gunturk’s method, (d) Li’s method with UTV, (e) Li’s method with STV, and (f) proposed HPHD-AI method. 
 

SPIE-IS&T/ Vol. 6069  606906-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/02/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

7. ACKNOWLEDGMENT 
 

The authors would like to thank Prof. B. K. Gunturk of Louisiana State University, USA; Prof. Yap-Peng Tan of 
Nanyang Technological University, Singapore; and Prof. Xin Li of West Virginia University, Morgantown, USA for 
providing us their CFA demosaicing programs. This work was supported by the National Science Council of Taiwan, 
ROC under grant NSC 92-2213-E-009-007. 
 

8. REFERENCES 
 
[1] D. R. Cok, “Reconstruction of CCD images using template matching,” in Proc. IS&T Ann. Conf./ICPS., pp.380-

385, 1994. 
[2] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter 

array interpolation,” IEEE Signal Processing Magazine, Vol. 22, No. 1, pp. 44-54, January 2005. 
[3] W.-M. Lu and Y.-P. Tan, “Color filter array demosaicking: new method and performance measures,” IEEE 

transactions on Image Processing, Vol. 12, No.10, pp. 1194-1210, October 2003. 
[4] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” 

IEEE transactions on Image Processing, Vol. 11, No.9, pp. 997-1013, September 2002. 
[5] X. Li, “Demosaicing by successive approximation,” IEEE transactions on Image Processing, Vol. 14, No.3, pp. 

370-379, March 2005. 
[6] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE transactions on 

Image Processing, Vol. 14, No.3, pp. 360-369, March 2005. 
[7] X.-L. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking for digital cameras (patent 

pending),” IEEE transactions on Image Processing, Vol. 13, No.9, pp. 1263-1274, March 2004. 
[8] B. Bayer, Color imaging array, U.S. Patent 3,971,065, 1976. 
[9] S.-C. Pei and I.-K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE 

transactions on Circuits and Systems Video Technol., Vol. 13, No.6, pp. 503-513, Jun. 2003. 
[10] L.-L. Chang and Y.-P. Tan, “Effective use of spatial and spectral correlations for color filter array demosaiking,” 

IEEE transactions on Consumer Electronics, Vol. 50, No.1, pp.355-365, January 2004. 
[11] H. Stark and Y. Yang, Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural 

Nets, and Optics, New York, John Wiley&Sons, INC., 1998. 
[12] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd edition, NJ: Prentice-Hall, 2002. 
[13] R. Kimmel, “Demosaicking: Image reconstruction from color CCD samples,” IEEE transactions on Image 

Processing, Vol. 8, No. 9, pp.1221-1228, 1999. 
[14] R. Lukac, K. Martin, and K. N. Plataniotis, “Demosaicked image postprocessing using local color ratios,” IEEE 

Transactions on Circuits and Systems Video Technol., Vol. 14, No. 6, pp.914-920, 2004. 
[15] M. Mahy, E. Van Eyckden, and O. Oosterlinck, “Evaluation of uniform color spaces developed after the adoption 

of CIELAB and CIELUV,” Color Res. Applicat., Vol. 19, No. 2, pp. 105-121, 1994. 

SPIE-IS&T/ Vol. 6069  606906-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/02/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


