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ABSTRACT We developed a pharmacophore-
based evolutionary approach for virtual screening.
This tool, termed the Generic Evolutionary Method
for molecular DOCKing (GEMDOCK), combines an
evolutionary approach with a new pharmacophore-
based scoring function. The former integrates dis-
crete and continuous global search strategies with
local search strategies to expedite convergence. The
latter, integrating an empirical-based energy func-
tion and pharmacological preferences (binding-site
pharmacological interactions and ligand prefer-
ences), simultaneously serves as the scoring func-
tion for both molecular docking and postdocking
analyses to improve screening accuracy. We apply
pharmacological interaction preferences to select
the ligands that form pharmacological interactions
with target proteins, and use the ligand preferences
to eliminate the ligands that violate the electro-
static or hydrophilic constraints. We assessed the
accuracy of our approach using human estrogen
receptor (ER) and a ligand database from the com-
parative studies of Bissantz et al. (J Med Chem
2000;43:4759-4767). Using GEMDOCK, the average
goodness-of-hit (GH) score was 0.83 and the average
false-positive rate was 0.13% for ER antagonists, and
the average GH score was 0.48 and the average
false-positive rate was 0.75% for ER agonists. The
performance of GEMDOCK was superior to compet-
ing methods such as GOLD and DOCK. We found
that our pharmacophore-based scoring function in-
deed was able to reduce the number of false posi-
tives; moreover, the resulting pharmacological inter-
actions at the binding site, as well as ligand
preferences, were important to the screening accu-
racy of our experiments. These results suggest that
GEMDOCK constitutes a robust tool for virtual data-
base screening. Proteins 2005;59:205-220.
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INTRODUCTION

Virtual screening (VS) of molecular compound libraries
has emerged as a powerful and inexpensive method for the
discovery of novel lead compounds for drug develop-
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ment."? Given the structure of a target protein active site
and a potential small ligand database, VS predicts the
binding mode and the binding affinity for each ligand and
ranks a series of candidate ligands. There are 4 main
reasons for the rapid acceptance and success of VS: (1) the
availability of the growing number of protein crystal
structures; (2) the advent of structural proteomics technolo-
gies; (3) the enrichment and speed of VS'%; and (4) the
contribution of VS to the reduction in the cost of drug
discovery. VS generally encompasses 4 phases based on
both high-throughput molecular docking methods and the
crystal structures of the target protein. These include
target protein preparation, compound database prepara-
tion, molecular docking, and postdocking analysis.® The
molecular docking method screens the compound library
to find lead compounds for the target protein, whereas
postdocking analysis enriches the hit rate and optimizes
the confirmed lead molecules through structure—activity
relationship.*

The VS computational method involves 2 basic critical
elements: efficient molecular docking and a reliable scor-
ing method. A molecular docking method for VS should be
able to screen a large number of potential ligands with
reasonable accuracy and speed. The many molecular dock-
ing approaches that have been developed can be roughly
categorized as rigid docking,® flexible ligand docking,®”
and protein flexible docking. Most current VS methods
employ flexible docking tools, such as incremental and
fragment-based approaches (DOCK® and FlexX”) and evo-
lutionary algorithms (GOLD,® AutoDock,” and GEM-
DOCK').

Scoring methods for VS should effectively discriminate
between correct binding states and non-native docked
conformations during the molecular docking phase and
distinguish a small number of active compounds from
hundreds of thousands of nonactive compounds during the
postdocking analysis. The scoring functions that calculate
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the binding free energy mainly include knowledge-
based,'! physics-based,'? and empirical-based'® scoring
functions. The performance of these scoring functions is
often inconsistent across different systems from a data-
base search.'*'® It has been proposed that combining
multiple scoring functions (consensus scoring) improves
the enrichment of true positives.'*1%

While the field of VS may be maturing,’® and many
good VS methods have been proposed, the promise of the
virtual compound library*® to rapidly increase the number
of candidate ligands demands further improvement in
terms of the computational efficiency of flexible docking
algorithms.®”° In addition, some VS methods are capable
of identifying so-called “pharmacological preferences” that
are often the important interactions or binding-site hot
spots typically evolved from known active ligands and the
target protein.'”'® These preferences might improve
screening accuracy and guide the design and selection of
lead compounds for subsequent investigation and refine-
ment during lead discovery and lead optimization pro-
cesses. Finally, the screening quality of docking methods
using energy-based scoring functions alone is often influ-
enced by the molecular weight and the structure of the
ligand being screened (e.g., the numbers of charged and
polar atoms). These methods are often biased toward both
the selection of high molecular weight compounds (due to
the contribution of the compound size'®2°) and charged
polar compounds (due to the pair-atom potentials of the
electrostatic energy and hydrogen-bonding energy).

To address the above issues, we developed a new VS
method, termed GEMDOCK (Generic Evolutionary Method
for molecular DOCKing), modified from our previous stud-
ies.'®?! GEMDOCK is an evolutionary-based approach
that was applied in some fast VS algorithms.®® Our
approach uses multiple operators (e.g., discrete and con-
tinuous genetic operators) that cooperate using family
competition (similar to a local search procedure) to balance
exploration and exploitation. Like some VS methods,822:23
GEMDOCK evolves the pharmacological preferences from
a number of known active ligands to take advantage of the
similarity of a putative ligand to those that are known to
bind to a protein’s active site, thereby guiding the docking
of the putative ligand. However, unlike existing pharma-
cophore-based docking methods, we developed and incorpo-
rated a new scoring function that evolves a pharmacologi-
cal consensus (e.g., hot spots) and ligand preferences using
the target protein and known active ligands. This scoring
function not only serves as the basis for molecular docking
but also ranks the screened ligands prior to postdocking
analysis by reducing the deleterious effect of certain
structural features within some of the ligands.

While GEMDOCK is generally applicable, in particular,
it has been validated by its application to the docking of a
number of selective estrogen receptor modulators (SERMs)
that are of great interest in cancer chemotherapy, as well
as estrogen replacement therapy in postmenopausal
women.?* 26 To evaluate the strengths and limitations of
GEMDOCK, and to compare it with several widely used
methods (DOCK, GOLD, and FlexX), we evaluated the
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screening utility of GEMDOCK by testing human estrogen
receptor (ER) with the ligand data set, as proposed by
Bissantz et al.'* We also assessed whether our new scoring
function was applicable to both the molecular docking and
ligand scoring during VS. The screening performance of
GEMDOCK on this ligand data set is superior to that of
the best available methods, and the docking accuracy is
also comparable. Thus, GEMDOCK constitutes a rapid
method that reduces the number of false positives during
the screening of large databases when both pharmacologi-
cal interactions and ligand preferences are mined from
known active compounds. When known active ligands are
not available, the screening accuracy of GEMDOCK is
somewhat influenced and is comparable to that of compara-
tive methods on this ligand data set.

MATERIALS AND METHODS

GEMDOCK was modified and enhanced from our previ-
ous tool'® for VS (Fig. 1). GEMDOCK can be sequentially
applied to prepare target proteins and ligand databases,
predict docked conformations and binding affinity using
flexible ligand docking, and rank a series of candidates for
postdocking analysis. Several programs were developed
separately for each phase, and Linux shell script was used
to integrate these programs and automate the process. In
this section, we give details of the ligand database and
target protein preparations, outline the scoring function
used in this study, describe details of mining binding-site
pharmacological interactions (e.g., hot spots) and ligand
preferences, and briefly describe the docking method.

Preparations of Ligand Databases and Target
Proteins

SERMs exert their physiological effects by binding to the
2 currently known estrogen receptors (ERa or ERB), which
are members of the nuclear receptor superfamily of ligand-
dependent transcription factors; moreover, SERMs dis-
play tissue-selective estrogen agonistic or antagonistic
profiles.?*~2¢ SERMs often beneficially affect the cardiovas-
cular and central nervous systems, and exert significant
estrogenlike effects on some estrogen targets such as bone,
lipid, breast, and uterine cells. Despite the benefits of
SERMs, long-term treatment with SERMs is often limited
by intolerable side effects, such as benign and malignant
uterine lesions. Therefore, the design of new SERMs has
become a challenging task.

We used the ligand data set and initial ligand conforma-
tion from the comparative studies of Bissantz et al.'* (e.g.,
DOCK, FlexX, and GOLD) to evaluate the screening
accuracy of GEMDOCK using the ER antagonists. The
ligand data set included the 10 known active compounds
(EST01-EST10) listed in Figure 2 and 990 randomly
chosen compounds from the Available Chemical Directory
(ACD). The data set is available on the Web at http://
gemdock.life.nctu.edu.tw/dock/download.php. For screen-
ing ER agonists, a set of 10 known ER agonists (Fig. 3,
ESA01-ESA10) used in this study was identical to that
reported earlier.?” In total, the database used for screen-
ing ligands against the ER-antagonist complex [Protein
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Fig. 1. The main steps of GEMDOCK for virtual database screening, including the target protein and
compound database preparation, flexible docking, and postdocking analysis. GEMDOCK mines a pharmaco-
logical consensus from the target protein and known active ligands when available.
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Fig.2. Tenknown ER antagonists are studied with respect to evolving the pharmacological consensus and
docking against the ER-antagonist complex. Three ligands, ESTO1-ESTO03, are obtained from the PDB and
each ligand is denoted by 4 characters followed by 3 characters, as in the PDB (e.g., 3ert.OHT, “3ert” denotes
the PDB code and “OHT” is the ligand name in the PDB).

Data Bank (PDB) code: 3ert®®] and ER-agonist complex
(PDB code: 1gwr?®) contained 1000 molecules; that is, 990
random compounds were the same for the 2 screens. In
addition, 3 ER-antagonist complexes (PDB codes: 1lerr,
3ert, and 1hj1) and 4 ER-agonist complexes (PDB codes:
1gwr, 112i, 1gkm, and 3erd) with experimentally deter-

mined X-ray structures from the PDB were selected to
evaluate not only the docking accuracy but also the
pharmacological consensuses evolved from known active
ligands (i.e., Figs. 2 and 3) and reference proteins (Fig. 4).
Each ligand from the PDB was represented systematically
by 4 characters followed by 3 characters. For example, in
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Fig. 3. Ten known ER agonists are docked against the ER-agonist complex (PDB code: 1gwr), and the
pharmacological consensus is evolved. Four ligands, ESA01-ESA04, are obtained from the PDB, and each
ligand is represented by 4 characters followed by 3 characters in the PDB.

the ligand “3ert.OHT,” “3ert” denotes the PDB code and
“OHT” is the ligand code in the PDB. These ligand
structures are shown in Figure 2 (e.g., EST01, EST02, and
ESTO03) and Figure 3 (e.g., ESA01, ESA02, ESA03, and
ESA04).

The ER-antagonist complex (PDB code: 3ert) and ER-
agonist complex (PDB code: 1gwr) were selected as reference
proteins for virtual screening. These complexes were reason-
able choices, because their ligand-binding cavities are wide
enough to accommodate a broad variety of ligands and
therefore did not require binding-site modifications. As shown
in Figure 4, the structures of these 2 reference proteins
complexed with tamoxifen (3ert) or estradiol (1gwr) show
that both ligands bind at the same site within the core of the
ligand-binding domain and that each ligand induces a differ-
ent conformation of helix 12 (H12). Comparison of the
structures of these 2 complexes reveals that the H12 (blue)
sits above the ligand-binding cavity in the ER-agonist com-
plex (1gwr), thereby forming a lid. In contrast, the side-
chains of antagonists (e.g., tamoxifen and raloxifene) in the
ER-antagonist complexes prevent the agonistlike induced
conformational change of H12 (green), projecting out of the
ligand-binding pocket. When preparing the size and location
of the ligand-binding site, we considered the protein atoms
located less than 10 A from each ligand atom. The metal
atoms were retained, and all structured water molecules
were removed from the active site. GEMDOCK then as-
signed a formal charge and atom type for each protein atom
based on our previous study.®

Scoring Function

We developed a new scoring function that simulta-
neously serves as the scoring function for both molecular

docking and the ranking of screened compounds for post-
docking analysis. This function consists of a simple empiri-
cal binding score and a pharmacophore-based score to
reduce the number of false positives. The energy function
can be dissected into the following terms:

Etot = Ebind + Epharma + Eligpre: (1)

where E;,,,, is the empirical binding energy, E,,;, .., is the
energy of binding site pharmacophores (hot spots), and
E);qpre is a penalty value if a ligand does not satisfy the
ligand preferences. E,,;,,,,,, and E,,.,,,. (see subsection on
mining pharmacological consensuses) are especially useful
in selecting active compounds from hundreds of thousands
of nonactive compounds by excluding ligands that violate
the characteristics of known active ligands, thereby improv-
ing the number of true positives. The values of E,,,,,,.,,, and
E);qpr. are determined according to the pharmacological
consensus derived from known active compounds and the
target protein. In contrast, the values of E,,,,,,, and
E);.pre are set to zero if active compounds are not available.
The empirical-binding energy (E,,,,) is given as

Ebind = Einter + Eintm + Epenal’ (2)

whereE,,,..and E;,,,, are the intermolecular and intramo-
lecular energies, respectively, and E,,.,,,; is a large penalty
value if the ligand is out of the range of the search box. For
our present work, E, . ., was set to 10,000. The intermolecu-

'pena.

lar energy is defined as

lig pro

Eiier = 2, 2, [F(rsff) +332.0 if;], (3)
i=1j=1 E
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Fig. 4. Comparing the binding sites of the ER reference proteins by
superimposing the complexes of the ER agonists (yellow; PDB code:
1gwr) and ER antagonists (blue; PDB code: 3ert). The bound ligands
(estradiol and tamoxifen) are shown in red. In the ER-agonist complex,
helix 12 (H12) (blue) sits above the ligand-binding cavity, forming a lid.
H12 in the ER-antagonist complex protrudes from the pocket.
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Fig. 8. Docking energy is influenced by ligand structures generated by
CORINA. (a) The fraction of polar atoms in ESA01-C is the smallest
among these 3 ligands, whereas that of ESA01-COO is the largest.
(b) The docked positions are similar, but the docking energies differ:
—91.32 for ESA01, —76.86 for ESA01-C, and —99.64 for ESA01-COO.

where r;is the distance between the atoms i and j, ¢, and g,
are the formal charges, and 332.0 is a factor that converts
the electrostatic energy into kilocalories per mole. The lig
and pro denote the numbers of the heavy atoms in the
ligand and receptor, respectively. F(r;;%) is a simple atomic
pairwise potential function (Fig. 5), as defined in our
previous study,'® where r77 is the distance between atoms
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Fig. 9. The influence of molecular weight on docking energy. (a)
ESAO01 (blue) and ESTO3 (yellow) have a common group A, and EST03
has an additional substructure group B. (b) The docked conformations
(into reference protein 3ert) are similar, and the docking energies are
—82.82 for ESA01 and —127.27 for EST03.

i and j with interaction type B;; formed by pairwise heavy
atoms between ligands and proteins, and B;; is either a
hydrogen bond or a steric state. In this atomic pairwise
model, these 2 potentials are calculated by the same
function form but different parameters, V;,..., Vg, given in
Figure 5. The energy value of a hydrogen bonding should
be larger than that for steric potential. In this model,
atoms are divided into 4 different atom types'®: donor,
acceptor, both, and nonpolar. A hydrogen bond can be
formed by the following pair-atom types: donor—acceptor
(or acceptor—donor), donor—both (or both—donor), acceptor—
both (or both—acceptor), and both—both. Other pair-atom
combinations are used to form the steric state. We used the
atom formal charge to calculate the electrostatic energy,®
which is set to 5 or —5, respectively, if the electrostatic
energy is more than 5 or less than —5. These parameters,
V. to V4, and the maximum electrostatic energy were
refined according to the docking accuracies of our previous
work'® on a highly diverse data set of 100 protein—ligand
complexes proposed by Jones et al.®
The intramolecular energy of a ligand is

lig lig
Bun=3 3 [rit v a220%9]
i=1 j=i+2 Ty
dihed
+ E A1 — cos(mb, — 0y)], (4)
k=1

where F(rg-if) is defined as for Eq. (3) except the value is set
to 1000 when 757 < 2.0 A, and dihed is the number of
rotatable bonds in a ligand. We followed the work of
Gehlhaar et al.'® to set the values of A, m, and 6,. For the
sp3—sp3bond, A = 3.0, m = 3, and 0, = ; for the sp®— sp?
bond,A = 1.5,m = 6, and 6, = 0.
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Interactive type V, V, V, V, V; Vg
H-bond (polar) 2.3 2.6 3.1 3.6 -25 20
Steric (van-der) 3.3 3.6 45 6.0 -0.4 20

Energy

- Electrostatic

Distance (1)

Fig. 5. The linear energy function of pairwise atoms for steric interactions (light line), hydrogen bonds (bold

line), and electrostatic potential in GEMDOCK.
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Fig. 6. The binding-site pharmacological consensuses are identified by overlapping the docked conforma-
tions of (a) 10 known ER antagonists and (b) 10 known ER agonists against the reference proteins 3ert and
1gwr, respectively. (a) Four pharmacological interactions were identified and circled as A (phenolic hydroxyl
group), B (phenolic hydroxyl group), and C (piperidine nitrogen). (b) Three pharmacological interactions were
identified and circled as A’ (phenolic hydroxyl group) and B’ (phenolic hydroxyl group). The dashed lines
indicate the hydrogen bonds formed between the ligand and the target protein. These pharmacological
interactions are consistent with those evolved from X-ray structures.

Mining Pharmacological Consensuses

GEMDOCK evolves the binding-site pharmacological
consensus and ligand preferences from both known active
ligands and the target protein to improve screening accu-
racy. We used the premise that previously acquired inter-
actions (hot spots) between ligands and the target protein
can be used to guide the selection of lead compounds for
subsequent investigation and refinement. When known
active ligands were available, GEMDOCK used a pharma-
cophore-based scoring function [Eq. (1)]. On the other

hand, LP,,,. and LP,, were set to zero, and GEMDOCK
used a purely empirical-based scoring function [Eq. (2)] if
known active compounds were not available.

For each known active ligand, GEMDOCK first yielded 5
docked ligand conformations by docking the ligand into the
target protein, and only the docked ligand conformation
with the lowest energy was retained for pharmacological
consensus analysis. The protein—ligand interactions were
extracted by overlapping these lowest energy docked con-
formations, and the interactions were classified into 2
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different types, including hydrogen-bonding and hydrogen-
charged interactions. After all of the protein-ligand inter-
actions were calculated, and the atom interaction-profile
weight of the target protein representing the pharmacolog-
ical consensus of a particular interaction was given as

fi
k1
Qj_N’ (5)

where N is the number of known active compounds and ﬂ"
is the total interaction number of an atom j (in a protein)
interacting with an atom of known active ligands with the
interaction type % (e.g., hydrogen-bonding or hydrogen-
charged interactions). In this work, an atom j (in a protein)
was considered to interact with an atom i (in a ligand) if
the distance between the atoms j and i ranges from (V; +
V)2 to (Vg + V,)/2, where V,..., V, are given in Figure 5.
An atom j in the reference protein was considered a
hot-spot atom when jSg was more than 0.5.

The pharmacophore-based interaction energy (E,,;,,,q)
between the ligand and the protein is calculated by
summing the binding energies of all hot spot atoms:

lig hs

Epharma = E E CW(BL‘])F(,‘gu)’ (6)

i=1j=1

where CW(B,)) is a pharmacological weight function of a
hot spot atom j with interaction type B;;, F(rg-"f) is defined
asin Eq. (3), lig is the number of heavy atoms in a screened
ligand, and As is the number of hot spot atoms in the
protein. The CW(B,)) is given as

1.0 ifQ'=050rB;#k
1.5+5@Q —0.5) if@ >05andB,;=Fk -

(7

QJ’-e is the atomic pharmacological profile weight [Eq. (5)]
and % is the interaction type of the hot spot atom j.

We evolved the ligand preferences (E,,,,,..) from known
ligands to reduce the deleterious effects of screening ligand
structures that are rich in charged or polar atoms. Docking
methods using energy-based scoring functions are often
biased toward such compounds, which abound with charged
and polar atoms (i.e., hydrogen donor or acceptor atoms)
because the pair-atom potential of the electrostatic energy
and hydrogen bonding energy is always larger than the
steric energy. For example, the atomic pairwise potential
energies of the electrostatic, hydrogen bond, and steric
potential were set to —5, —2.5, and —0.4 in this work. The
ligand preference (E,,,,,) is a penalty value for those
screened ligands that violate the electrostatic or hydro-
philic constraints. The E;;,,,. is given as

CW(B,) = {

Eligpre = LPelec + LPhba (8)

where LP,,,. and LP,, are the penalties for the electro-
static (i.e., the number of charged atoms of a screened
ligand) and hydrophilic (i.e., the fraction of polar atoms in
a screened ligand) constraints, respectively. LP,,,. is de-
fined as

211

_ 10NAelec if]\Lqelec > UBelec
LPelec - { 0 if]\LAelec = UBelec ’ (9)

Where UBelec = 6elec + Oelec

NA,,.. is the number of charged atoms of a screened ligand
and UB,,,. is the upper bound number of charged atoms
derived from known active compounds. 6,,,. is the maxi-
mum number of charged atoms among known active
compounds, and o,,,. is the standard deviation of the
charged atoms of known active compounds. LP,, is defined
as

_ 5NAhb ifrhb> Urhb
LPy = { 0 i =< Uryy ° (10)
NA,,
where Ty = NT and Urhb = Ohb + Opp-
t

'4p 18 the fraction of polar atoms (i.e., the atom type is both,
donor, or acceptor) in a screened ligand, and Ur,, is the
upper bound of the fraction of polar atoms calculated from
known active ligands. NA,, and NA, are the number of
polar atoms and the total number of the heavy atoms of a
screened ligand, respectively. 6,, and o,, are the maxi-
mum ratio and the standard deviation of the ratios of polar
atoms evolved from known ligands, respectively.

In order to reduce the deleterious effects of biasing
toward the selection of high molecular weight compounds,
we formulate a normalization strategy defined as

EMV = (ﬁbﬁ{ , where K
0.5 if o = 15
-{ 05 _W if15 < e =40 | (11)
0.05 if o > 40

where E,,, ; is the empirical binding energy [Eq. (2)], NA,
is the total number of the heavy atoms in a screened
ligand, and p.,,,,, is the mean of the number of heavy atoms
in known active compounds. When the normalization
strategy is applied, the energy function [Eq. (1)] is given as

Etot = E]b‘{r% + Epharma + Eligpre- (12)

Flexible Docking Algorithm

Here, we present the outline of our molecular docking
method that is a generic evolutionary method enhanced
from our original technique.'® The core idea of our evolu-
tionary approach was to design multiple operators that
cooperate using the family competition model, which is
similar to a local search procedure. The rotamer-based
mutation operator, a discrete operator, is used to reduce
the search space of ligand structure conformations. The
Gaussian and Cauchy mutations, continuous genetic opera-
tors, search the orientation and conformation of the ligand
relating to the center of the target protein.

After the ligand database and the target protein were
prepared and the pharmacological preferences were
evolved, we first specified the crystal coordinates of the
protein atoms from the PDB and assigned a formal charge
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and atom type for each protein atom. GEMDOCK then
automatically decides the search cube of a binding site
based on the maximum and minimum values of coordi-
nates among these selected protein atoms. For each ligand
in the database, GEMDOCK takes the atomic coordinates
from the ligand database and assigns a formal charge and
atom type for each atom. It then sequentially predicts the
binding conformation and estimates the binding affinity
for each ligand. Finally, GEMDOCK ranks these docked
ligand conformations for use in the postdocking analysis.

Our docking method works as follows: It randomly
generates a starting population with N docked structures
by initializing the orientation and conformation of the
ligand relating to the center of the target protein. Each
solution is represented as a set of 3 n-dimensional vectors
(%, o’, U"), where n is the number of adjustable variables of
a docking system and i = 1,...,N, where N is the population
size. The vector x is the adjustable variables representing
a particular orientation and conformation space of a ligand
to be optimized, in which x;, x5, and x5 are the three-
dimensional (3D) location of the ligand relating to the
center of the target protein; x,, x5, and x4 are the rotational
angles of the ligand relating to axes; and x, to x,, are the
twisting angles of the rotatable bonds inside the ligand. o
and s are the step-size vectors of decreasing-based Gauss-
ian mutation and self-adaptive Cauchy mutation. In other
words, each solution x is associated with some parameters
for step-size control. The initial values of x4, x5, and x5 are
randomly chosen from the feasible box, and the others,
from x, to x,,, are randomly chosen from 0 to 2 in radians.
The initial step size o is 0.8 and s is 0.2. After GEMDOCK
initializes the solutions, it enters the main evolutionary
loop, which consists of 2 stages in every iteration: decreas-
ing-based Gaussian mutation and self-adaptive Cauchy
mutation. Each stage is realized by generating a new
quasi-population (with N solutions) as the parent of the
next stage. These stages apply a general procedure “FC-
_adaptive” with only different working population and the
mutation operator.

The FC_adaptive procedure employs 2 parameters,
namely, the working population (P, with N solutions) and
mutation operator (M), to generate a new quasi-popula-
tion. The main work of FC_adaptive is to produce offspring
and then conduct the family competition. Each individual
in the population sequentially becomes the “family father.”
With a probability p., this family father and another
solution that is randomly chosen from the rest of the
parent population are used as parents for a recombination
operation. Then the new offspring or the family father (if
the recombination is not conducted) is operated by the
rotamer mutation or by differential evolution to generate a
quasi-offspring. Finally, the working mutation is operates
on the quasi-offspring to generate a new offspring. For
each family father, such a procedure is repeated L times,
called the family competition length. Among these L
offspring and the family father, only the one with the
lowest scoring function value survives. Since we create L
children from one “family father” and perform a selection,
this is a family competition strategy. This method avoids
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the population prematureness but also keeps the spirit of
local searches. Finally, the FC_adaptive procedure gener-
ates N solutions because it forces each solution of the
working population to have one final offspring. In the
following, genetic operators are briefly described. We use
a = (x%, 0%, %) to represent the “family father” and b = (x?,
o®,®) as another parent. The offspring of each operation is
represented as ¢ = (x%, ¢°, ). The symbol x} is used to
denote the jth adjustable optimization variable of a solu-
tion s, Vj € {1,..., n}.

Recombination operators

GEMDOCK implemented modified discrete recombina-
tion and intermediate recombination. A recombination
operator selected the “family father (a)” and another
solution (b) randomly selected from the working popula-
tion. The former generates a child as follows:

c

x{ with probability 0.8
ij with probability 0.2

The generated child inherits genes from the “family
father” with a higher probability 0.8. Intermediate recom-
bination works as

wi = wi + B(wjl-’ —wj)/2,

where w is o or { based on the mutation operator applied
in the FC_adaptive procedure. The intermediate recombi-
nation only operated on step-size vectors and the modified
discrete recombination was used for adjustable vectors (x).

Mutation operators

After the recombination, a mutation operator, the main
operator of GEMDOCK, is applied to mutate adjustable
variables (x). Gaussian and Cauchy Mutations are accom-
plished by first mutating the step size (w) and then
mutating the adjustable variable x:

wi=wA(C)

x;=x;+ wiD(),

where w; and x; are the ith component of w and «x,
respectively, and w; is the respective step size of the x;,
where w is o or §. A(- ) is evaluated as exp[t'N(0, 1) + N0,
1)] if the mutation is a self-adaptive mutation, where N(0,
1) is the standard normal distribution, N (0, 1) is a new
value with distribution N(0, 1) that must be regenerated
for each index j. When the mutation is a decreasing-based
mutation A( - ) is defined as a fixed decreasing rate y =
0.95. D(-)is evaluated as N(0, 1) or C(1) if the mutation is,
respectively, Gaussian or Cauchy. For example, the self-
adaptive Cauchy mutation is defined as

U = jexp[r'N(0, 1) + TN(0, 1],
x5 = xf + PiC(2).

We set T and 7' to (V2n) ™t and (V21/2n) 7, respectively,
according to the suggestion of evolution strategies. A
random variable is said to have the Cauchy distribution
[C(®)] if it has the density function: Ay; t) = /w2 + y?),
—oo <y < oo, In this article, ¢ is set to 1. Our decreasing-
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TABLE I. Pharmacological Weights of Hot Spot Atoms of the ER-Antagonist and ER-Agonist Complexes Evolved by
Overlapping Docked Conformations of Known Active Ligands

Hot spots weight [CW(B,))]

Residue ER-antagonist ER-agonist

ID* Atom IDP complex complex Interaction type (hot spots)

E353 OE2 3.0 3.1 H-bond (OH <> O) (phenolic hydroxyl)?¢-2°-32

R394 NH2 2.9 3.1 H-bond (OH <> N) (phenolic hydroxyl)?5-29-32

H524 ND1 2.4 34 H-bond (OH <> N)?6:29-32

D351 OD1 2.2 —c H-bond (N <> O) (dimethylamino group?®3! and piperidine nitrogen®°-°)

20ne-letter amino acid code, with the residue sequence numbered as in the PDB.

PAtom name in the PDB.

°D351-0OD1 is not a hot spot atom in the ER-agonist reference complex.

TABLE II. Ligand Preferences Evolved from Known Active Ligands Screen Lead Compounds for
the ER-Antagonist and ER-Agonist Complexes

Molecular
Electrostatic preferences Hydrophilic preferences weight
[Eq. (9)] [Eq. (10)] [Eq. (11)]
ngand name eelec Oelec UBelec ehb Onb Ur, hb Moz K
ER antagonist 2.0 0.63 2.63 0.15 0.02 0.17 34.0 0.16
ER agonist 0 0 0 0.25 0.06 0.31 214 0.38

based Gaussian mutation uses the step-size vector o with
a fixed decreasing rate y = 0.95 and works as ¢° = yo® and
x5 = xf + 0°N0, 1).

Our rotamer mutation is only used for x to x,, to find the
conformations of the rotatable bonds inside the ligand. For
each ligand, this operator mutates all of the rotatable
angles according to the rotamer distribution and works as
X; = Yy; with probability p,,, where v;, and p,; are the angle
value and the probability, respectively, of ith rotamer of
kth bond type including sp®—sp® and sp®—sp? bond. The
values of vy,; and p,; are based on the energy distributions
of these 2 bond types.

RESULTS AND DISCUSSION
Parameters of GEMDOCK

In our studies, GEMDOCK parameters in the flexible
search phase included the initial step sizes (¢ = 0.8 and
¢ = 0.2), family competition length (L = 2), population size
(N = 200), and recombination probability (p, = 0.3). For
each ligand screened, GEMDOCK optimization stopped
either when the convergence was below a certain threshold
value or the iterations exceeded the maximal preset value
of 60. Therefore, GEMDOCK generated 800 solutions in
one generation and terminated after it exhausted 48,000
solutions for each docked ligand. The average GEMDOCK
docking run took 135 s using a Pentium 1.4-GHz personal
computer with a single processor.

Mining the Pharmacological Consensus

Figure 6 and Table I show the pharmacological interac-
tion preferences (hot-spot atoms), and Table II shows the
ligand preferences. We evolved these pharmacological
consensuses and steric binding interactions by overlap-
ping the docked ligand conformations, yielded by GEM-
DOCK, of all known active compounds. Figure 6(a and b)

shows the overlap of 10 docked poses of 10 known active
ligands in the vicinity of the ER-antagonist target protein
and ER-agonist target protein, respectively. The dashed
lines indicate the hydrogen bonds formed between the
ligand and the reference proteins. For the ER-antagonist
target protein, 4 binding-site pharmacological interactions
were identified and circled as A (hydroxyl group%2°—32) B
(hydroxyl group?%2°—1), and C (dimethylamino group
or piperidine nitrogen®®°). These interactions, evolved
from docked conformations, are consistent with the inter-
actions evolved from superimposing 3 X-ray structures
with that from related studies.?%2°731 As shown in Table I,
the pharmacological weights [CW(B,;) defined in Eq. (7)]
and the interaction type for the ER-antagonist complex
included E353-OE2 (3.0), R394-NH2 (2.9), H524-ND1 (2.4),
and D351-OD1 (2.4). For the ER-agonist target protein, 2
binding-site pharmacological interactions were identified
(e.g., A’ hydroxyl group and B’ hydroxyl group). The
pharmacological weights and the interaction type for the
ER-agonist complex included E353-OE2 (3.1), R394-NH2
(3.1), and H524-ND1 (3.4). These interactions are also
consistent with those evolved by superimposing 4 X-ray
structures [Fig. 6(b)].

For screening ER antagonists and agonists, Table II
shows the parameter values of ligand preferences evolved
from known ER antagonists (Fig. 2) and agonists (Fig. 3).
These ligand preferences improve the screening accuracy
by reducing the deleterious effects of ligand molecular
weights and ligand structures that are rich in charged or
polar atoms. The electrostatic parameter values [see Eq.
(9)] for ER antagonists included the maximum number of
charged atoms (o,,. = 2.0), standard deviation of the
charged atoms (o,,,. = 0.63), and upper bound number of
charged atoms (UB,,,. = 2.63). For the hydrophilic prefer-
ences [see Eq. (10)], the maximum ratio (,,) was 0.15, the

26,31
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TABLE III. Comparing GEMDOCK and GOLD With Respect to Docking 7 Ligands Back Into Respective
Complexes and Reference Proteins

GEMDOCK
Reference
Native protein® protein® GOLD
Ligand ID E,° E,... E,, E,u Native protein® Reference protein®
ESTO01 (1err.RAL®) 0.66 0.65 1.37 1.36 1.02 1.68
ESTO02 (3ert.OHT) 0.60 0.75 0.60 0.75 115 1.15
EST03 (1hj1.AOE) 141 1.05 3.27 3.35 5.07 3.92
ESAO01 (1gwr.EST) 0.66 0.64 0.66 0.64 0.54 0.54
ESA02 (1121 ETC) 0.61 0.48 0.62 0.69 0.55 0.76
ESA03 (1gkm.GEN) 0.69 1.53 3.32 4.83 0.24 7.16
ESA04 (3erd.DES) 0.67 0.51 144 143 1.10 1.76

aFour characters followed by 3 characters (separated by a period) denote the PDB code and the ligand name in the PDB,

respectively.

PThe RMSD value for docking each ligand back into its respective complex.
“The RMSD value for docking each ligand into its reference complex, 3ert for ER antagonists (e.g., EST01 ~ EST03) and 1gwr

for ER agonists (e.g., ESA01 ~ ESA04).
dE, . and E,,, , are defined in Eq. (1).

standard deviation (o,,) of the ratios was 0.02, and the
upper bound ratio (Ur,,) of polar atoms was 0.17. For
molecular weight [see Eq. (11)], the mean of heavy atoms
(M) Was 21.6 and linear normalization parameter K was
0.16. In contrast, for ER agonists the values of UB,,,. and
Ur,,, were 0 and 0.31, respectively, and K was 0.38.

Evaluation of Virtual Screening Accuracy

Some common factors were used to evaluate the screen-
ing quality, including coverage (the percentage of active
ligands retrieved from the database), yield (the percentage
of active ligands in the hit list), false-positive (FP) rate,
enrichment, and goodness-of-hit (GH). The coverage (true
positive rate) is defined as A,/A (%),A, /T, (%) is the yield
(hit rate), and the FP rate is defined as (T, — A))/(T — A)
(%). The enrichment is defined as (A,/T,)/(A/T). A,, is the
number of active ligands among the T, highest ranking
compounds, which is called the hit list, A is the total
number of active ligands in the database, and T is the total
number of compounds in the database. The GH score is
defined as®®

A,(3A + Th)>< T, — Ah>. (13)

GH:( AT,A T T-A

The GH score contains a coefficient to penalize excessive
hit list size and, when evaluating hit lists, is calibrated by
weighting the score with respect to the yield and coverage.
The GH score ranges from 0.0 to 1.0, where 1.0 represents
a perfect hit list (i.e., containing all of, and only, the active
ligands). In the data sets for screening the ER agonists or
ER antagonists, A and T are 10 and 1000, respectively.
Here, we also took the averages of hit rates, enrichments,
GH scores, and FP rates. For example, the averages of the
hit rates and enrichments are defined as (52, i/T%)/A and
(A GIT)I(AIT)Y/A, respectively, where T¢ is the number
of compounds in a hit list containing i active compounds.

Molecular Recognition of ER-Antagonist and ER-
Agonist Complexes

We tested GEMDOCK?® on a highly diverse data set of
100 protein-ligand complexes proposed by Jones et al.®
and on 2 cross-docking ensembles of protein structures.
Upon consideration of the solutions at the first rank, in
79% of these complexes, the docked lowest energy ligand
structures had root-mean-square deviations (RMSDs) be-
low 2.0 A with respect to the corresponding crystal struc-
tures. The success rate increased to 85% if the structured
water molecules were retained. In contrast, GOLD® yielded
a 71% success rate in identifying the experimental binding
model based on the GOLD assessment categories, and the
rate was 66% if based on the top-ranked solutions with
RMSD values of less than 2 A. FlexX” achieved 70% and
46.5% success rates for solutions at any rank and the first
rank, respectively.

The main objective of this study was to evaluate whether
the new scoring function was applicable to both molecular
docking and ligand scoring during VS. First, GEMDOCK
was evaluated by docking each ligand of 7 ER complexes in
the PDB into its respective complex and into its reference
protein. Table III shows the overall predicted accuracies of
GEMDOCK and GOLD. Ten independent docking runs
were performed for each active compound, and the docked
ligand conformation with the lowest energy was used to
calculate RMSD values for ligand heavy atoms between
the docked conformation and the crystal structure. The
RMSD values of 7 docked conformations (docking each
ligand back into its respective complex) were less than 2.0
A. When these ligands were docked into the reference
protein using GEMDOCK, all docked conformations had
an RMSD of less than 2.0 A except for EST03 and ESA03
(genistein). EST03 docked well in the binding site, with
the exception of the long acyclic side-chain. The agonist
ESAO03 could not be docked into its corresponding pose in
the reference protein (1gwr) due to a fundamental differ-
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Fig. 7. GEMDOCK screening accuracies of ER antagonists and ER agonists assessed by (A and B) true
hits, (C and D) GH scores, and (E and F) the false-positive rates against different true-positive rates ranging
from 50% to 100%. The performance of GEMDOCK was consistently superior when using both ligand
preferences and pharmacological-interaction preferences.

TABLE IV. GEMDOCK Screening Accuracies Using Different Combinations of Pharmacological Preferences on the Data
Set Proposed by Bissantz et al.*

ER antagonists (reference protein: 3ert)

ER agonists (reference protein: 1gwr)

Pure Interaction Ligand Pure Interaction Ligand
Measure factor binding? preference® preference® Both binding? preference® preference® Both
Average hit rate (%) 34.88 57.93 71.58 92.19 6.94 7.52 25.02 45.66
Average enrichment 34.88 57.93 71.58 92.19 6.94 7.52 25.02 45.66
Average false- 1.32 0.94 0.56 0.13 7.83 6.34 2.56 0.75
positive rate (%)
Average GH score 0.39 0.57 0.67 0.83 0.17 0.18 0.32 0.48
>PetUsing By Eping + Epharmar Eving + Ejigpre and E,,,, respectively, for the scoring function. These energy terms are defined in Eq. (1).

ence between the binding site of ERa (1gwr) and ERB
(1gkm). As shown in Table III, GEMDOCK and GOLD
yielded results of equal quality, and GEMDOCK yielded
similar results regardless of whether the pharmacological
preferences (i.e., K, and E;,,,,,.) were considered.

Virtual Screening of ER Antagonists and ER
Agonists

We compared the overall accuracy of GEMDOCK using
4 variations of energy terms to screen ER antagonists and
agonists from a data set of 1000 compounds proposed by
Bissantz et al.'* (Fig. 7 and Table IV). Each variation
combined 3 scoring terms applied in GEMDOCK: binding
energy (E,,,,), pharmacological interaction preferences
(Epharma)» and ligand preferences (E,,,,.). For example,
the approach “Pure binding” used only the binding energy
(Ep;na) as the scoring function; the approach “Interaction
preference” integrated E,,,, and E ..., for the scoring

function; “Ligand preference” integrated E,,,; and E,,,,.,
for the scoring function; and “Both” integrated E,;,,,
Eiiepre» and E ;... for the scoring function. The parame-
ter values for interaction preferences (E,,,,,.,.,) and ligand
preferences (E,,,,,,.) are shown in Tables I and II, respec-
tively. The various ranks of 10 known active ligands in the
ligand screening database are shown in Table V, and the
comparison of results obtained with other methods is
shown in Table VI.

As shown in Table IV and Figure 7, GEMDOCK gener-
ally improves the screening quality when both interaction
preferences and ligand preferences are considered. The
latter was more important than the former for this data
set. For the ER antagonists that were screened, average
hit rates were 92.19% (Both), 71.58% (Ligand preference),
57.93% (Interaction preference), and 34.8% (E,,,,). The
average GH scores were 0.83 (Both), 0.67 (Ligand prefer-
ence), 0.57 (Interaction preference), and 0.39 (E,,,,). Fig-
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TABLE V. Ranks of 10 Known ER Antagonists and 10 Known ER Agonists Using GEMDOCK With Different Combinations
of Pharmacological Preferences on the Data Set Proposed by Bissantz et al.'*

ER antagonists (reference protein: 3ert)

ER agonists (reference protein: 1 gwr)

Pure Interaction Ligand Pure Interaction Ligand
Ligand ID* binding” preference® preference? Both® Ligand IDf binding preference preference Both
ESTO01 9 3 3 3 ESA01 87 57 33 8
EST02 23 31 21 13 ESA02 25 49 7 6
EST03 10 20 20 8 ESA03 31 32 3 3
EST04 15 12 7 4 ESA04 220 116 99 29
EST05 6 6 1 1 ESA05 128 97 53 20
EST06 7 5 4 6 ESA06 101 73 41 14
EST07 32 21 9 7 ESA07 53 53 16 7
EST08 18 4 11 5 ESA08 45 102 9 26
EST09 5 1 2 2 ESA09 43 38 10 5
EST10 61 45 32 19 ESA10 97 66 37 11

“Defined in Figures 2 and 3, respectively.
> Using Eyina Epina + E,

'‘pharma

Eyina + Ejigprr and E,,, respectively, for the scoring function. These energy terms are defined in Eq. (1).

TABLE VI. Comparing GEMDOCK With Other Methods on Screening the ER Antagonists by False-
Positive Rates (%) on the Data Set Proposed by Bissantz et al.'*

True positive (%) GEMDOCK* GEMDOCK" Surflex® DOCK® FlexX* GOLD¢
80 1.5 (15/990)¢ 0.0 (0/990) 1.3 13.3 57.8 5.3
90 2.3 (23/990) 0.4 (4/990) 16 174 70.9 8.3

100 5.2 (51/990) 0.9 (9/990) 2.9 189 —° 23.4

2GEMDOCK without pharmacological interactions and ligand preferences (e.g., E,, ,, for the scoring function).
YGEMDOCK with pharmacological interactions and ligand preferences (e.g., E,,, for the scoring function).

“Directly summarized from the references.-*°

9The false-positive rate from 990 random ligands (percentage).

°FlexX could not calculate the docked solution for EST09.

ure 7(C and E) shows that the GH scores and FP rates of
the true positive rates ranged from 50% to 100%. For the
ER agonists that were screened, average hit rates were
45.66% (Both), 25.02% (Ligand preference), 7.52% (Interac-
tion preference), and 6.94% (E,;,,). The average GH scores
were 0.48 (Both), 0.32 (Ligand preference), 0.18 (Interac-
tion preference), and 0.17 (E,,,,,). Figure 7(D and F) shows
the GH scores and FP rates with different true positive
rates ranging from 50% to 100%.

The screening accuracy of GEMDOCK for ER antago-
nists was better than that of ER agonists on this data set.
These results might be caused by using the same 990
random compounds proposed by Bissantz et al.'* for these
2 screens. When they prepared the random ligand set, only
the chemical reagents of the ER-antagonist complex were
eliminated and therefore the ER-agonist-like compounds
might be selected. For example, GEMDOCK screened two
ligands, MFCD00012742 and MFCD00002206 (Table VII),
which are similar in structures to ESA03 and ESA04 (Fig.
4), respectively. At the same time, the numbers of the
ligands that violate the ligand preferences (e.g., LP,,,. and
LP,, shown in Table IT) of ER antagonists and ER agonists
are 400 and 289 compounds, respectively. The MFCD
compounds were the random ligands in the data set.

GEMDOCK was superior to other approaches (Surflex,
DOCK, FlexX, and GOLD) for screening the ER antago-
nists (Table VI). All of these methods were tested using the
same reference protein and screening database with true-
positive rates ranging from 80% to 100%. When the true

positive rate was 90%, the FP rates were 2.3% (GEM-
DOCK without pharmacological preferences), 0.4% (GEM-
DOCK with pharmacological preferences), 1.6% (Surflex),
17.4% (DOCK), 70.9% (FlexX), and 8.3% (GOLD).

The Influences of Pharmacological Preferences

When using interaction energy scoring alone for choos-
ing ligands, docking methods (e.g., GEMDOCK and GOLD)
favor the selection of not only highly charged polar com-
pounds but also high molecular weight compounds. Fig-
ures 8 and 9 show the influences of the ligand structures
and molecular weight, respectively, when the binding
scoring (E,;,,) alone was used in GEMDOCK. The docking
energy of a ligand with charged or polar atoms is often
lower than the energy of a noncharged ligand when the
docked conformations are similar. For example, the dock-
ing energies are —76.86 for ESA01-C (r,,, is the smallest),
—91.32 for ESA01, and —99.64 for ESA01-COO (with
charged atoms, and r,,, is the largest) when the docked
positions of these ligands are similar (Fig. 8). At the same
time, ESA01 and ESA01-COO form the pharmacological
interactions shown in Figure 6(B) (e.g., A’ phenolic hy-
droxyl group and B’ phenolic hydroxyl group). In contrast,
ESAO01-C has no polar atoms to form these pharmacologi-
cal interactions. We obtained these ligand structures
(EAS01-C and ESA01-COO) using the 3D structure genera-
tor CORINA.3*

Tables VII and VIII show the effect of pharmacological
preferences of some typical ligand structures on screened
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TABLE VII. GEMDOCK Ranks Using Different Combinations of Pharmacological Preferences for Some Typical Ligands
on Screening ER Agonists on the Data Set Proposed by Bissantz et al.'*

Pure Interaction Ligand
Ligand ID in ACD Ligand structure NA,,.2 T binding® preference? preference® Both!
MFCD00006630 ”%ljj;?“ 0.00 0.47 5 172 911 850
\/\F‘ .
o
MFCD00006616 AT 3.00 0.45 3 1 900 828
Q o —n
MFCD00005746 . ,?\\[J’" " 3.00 0.52 4 2 925 889
Pt o N AN
)
MFCD00003783 0.00 0.15 54 270 13 165
MFCD00012742 . O 0.00 0.24 10 6 2 1
o
MFCD00002206 °° 0.00 0.18 13 11 1 4
[+]

“Number of charged atoms in a screened ligand [Eq. (9)].
PThe fraction of polar atoms in a screened ligand [Eq. (10)].
e Using By Eping + E, E,..tE

bin harma = bin ligpre>

ER agonists and antagonists, respectively. When the bind-
ing energy (E,;,,) alone was used to screen ER agonists,
GEMDOCK selected 2 ligands, MFCD00012742 (first) and
MFCD00002206 (fourth), which are similar in structure to
ESA03 and ESA04, respectively, and satisfy the ligand
preferences. Due to higher numbers of polar atoms at
critical sites, these ligands formed greater numbers of
pharmacological interactions compared with known active
ligands. At the same time, GEMDOCK was able to exclude
ligands such as MFCD00006630 (r,, = 0.47),
MFCDO00006616 (r,, = 0.45 and NA,,.. = 3), and
MFCDO00005746 (r,, = 0.52 and NA,_,.. = 3) that violate
the ligand preferences of known ER agonists (Table II).
For example, their r,, values were larger than the upper
bound ratio (Ur,, = 0.31) of polar atoms or the upper
bound number (UB,,,, = 0) of charged atoms. When the
penalty for the ligand preferences (E,,,,,.) was considered,
the ranks of MFCD00006630 (911th), MFCD00006616
(900th), and MFCD00005746 (928th) lagged substantially.
Ligands such as MFCD00003783 lagged (244th), since it is
unable to interact with 3 important residues [Glu353,
Arg394, and His524; Fig. 6(B) in the reference protein].
GEMDOCK yielded similar results when the ER antago-
nists were screened (Table VIII). When the binding energy
(Eping) alone was wused, the ranks of ligands

and E, ,, respectively, for the scoring function. These energy terms are defined in Eq. (1).

MFCD00016941 (r,,, = 0.35), MFCD00016787 (r,, = 0.32),
and MFCDO00001218 (r,,,, = 0.34) were 8th, 51st, and 13th,
respectively. When both E,;,, and ligand preferences
(E};gpre) were considered for the scoring function, the ranks
of these ligands were 661st (MFCD00016941), 747th
(MFCD00016787), and 954th (MFCD00001218) since their
r,, values were larger than the upper bound ratio (e.g.,
Ur,, = 0.17 in Table II) derived from known ER antago-
nists. These total scoring values were penalized by hydro-
philic preferences [i.e., LP,, in Eq. (10)]. Ligand
MFCDO00001218 was also penalized by the electrostatic
preferences [i.e., LP,,,. in Eq. (9)], because the number of
charged atoms (NA,,.. = 6) was larger than the upper
bound (Ur,,,. = 2.63 in Table II). The screening of ligand
MFCDO00010009, which has no polar atoms to form phar-
macological interactions [Fig. 6(A)], often fell behind when
GEMDOCK used both E;,; and E,,,,,, for the scoring
function. In contrast, ligands MFCD00002371 and
MFCDO00002206 yielded good ranks for various combina-
tions of energy terms, since they are able to form binding-
site pharmacological interactions and satisfy the ligand
preferences.

Figures 9 and 10 show the effect of molecular weight on
screening accuracy. A docking method using energy-based
scoring alone is often biased toward large molecular
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TABLE VIII. GEMDOCK Ranks Using Different Combinations of Pharmacological Preferences for Some Typical Ligands
When Screening ER Antagonists on the Data Set Proposed by Bissantz et al.'*

Pure Interaction Ligand
Ligand ID in ACD Ligand structure NA,..2 binding® preference? preference® Both!
°0~°1C°(0 s}
el
MFCD00016941 j:.f“’ °QQ/O 0 0.35 8 2 661 260
MFCDO00016787 \(;(;;)/Q 0 0.32 51 8 747 319
L
%o
MFCDO00001218 O d— o 6 0.34 13 17 954 937
ol o"'\::
48RS
MFCD00010009 N 0 0.00 88 430 5 57
SRe
MFCD00002371 0 0.13 40 19 16 12
(G-
MFCD00002206 W o5 - 0 0.18 37 30 46 20

“Number of charged atoms in a screened ligand [Eq. (9)].
PFraction of polar atoms in a screened ligand [Eq. (10)].

o USING B Eping T Epnarma Eoina T Eligpre a0d E,,,, respectively, for the scoring function. These energy terms are defined in Eq. (1).
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Fig. 10. The accuracy of GEMDOCK for screening ER agonists,

assessed using scoring functions with molecular-weight normalization
(solid line) and without molecular-weight normalization (dash line).

weight ligands, because the overall van der Waals interac-
tion energy is summed over all pairs of ligand and target
protein atoms within a specified cutoff distance. Figure
9(a) shows that ESA01 (blue) and EST03 (yellow) have a

common group A, and that EST03 has an additional
substructure group (side-chain B). The van der Waals force
of a large ligand (e.g., EST03) is often larger than that of a
small ligand (e.g., ESA01). In this case, EST03 acquires
additional van der Waals force from side-chain B, as
shown in Figure 9(b). For example, when using E,;,; alone
for docking a ligand into the reference protein (3ert),
GEMDOCK yielded docking energies of —127.27 for EST03
and —82.82 for ESAO1. Figure 10 shows the true hits
obtained by GEMDOCK when screening ER agonists
without (dashed line) or with molecular weight normaliza-
tion [solid line; defined in Eq. (11)]. When GEMDOCK
applied molecular weight normalization and pharmacolog-
ical preferences to screen ER agonists, the average hit rate
was 45.66%, the average FP rate was 0.75%, and the GH
score was 0.48. In contrast, these averages were 21.18%,
2.02%, and 0.29, respectively, when molecular weight
normalization was not considered.

Figure 11 shows the true hits of GEMDOCK using the
cleaned lists and the original data set proposed by Bissantz
et al.'* For each test case (ER antagonists and ER ago-
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The accuracy of GEMDOCK for screening (a) ER antagonists and (b) ER agonists, assessed using

the cleaned ligand sets (C-Pure binding and C-Interaction preference) and the ligand set proposed by Bissantz

etal.’ (W-Ligand preference and W-Both).

nists), we prepared the cleaned list by filtering the original
set in order to eliminate the ligands that violate the
electrostatic (LP,,,.) or hydrophilic constraints (LP,,).
These two cleaned lists, including the known active com-
pounds, consist of 590 and 701 compounds for screening
the ER antagonists and ER agonists, respectively. As
shown in Figure 11, the true hits (gray lines) of GEM-
DOCK using E,;,,;, (C-Pure binding) and E;,,.; + E,50rma
(C-Interaction preference) as the scoring functions on the
cleaned lists are similar to those (black lines) of GEM-
DOCK using E,;,; + Ej;gp,,. (W-Ligand preference) and
Eyina t Eligpre + Epparma (W-Both) as scoring functions, on
the original set, respectively. Using GEMDOCK on the
cleaned sets, average GH scores were 0.82 (Interaction
preference) and 0.66 (Pure binding) for ER antagonists,
and average GH scores were 0.41 (Interaction preference)
and 0.29 (Pure binding) for ER agonists. These experi-
ments indicated that the pharmacological interaction pref-
erences were able to improve the GH scores for both the
cleaned lists and original set; moreover, the ligand prefer-
ences might improve the screening accuracy of a scoring
function and become the filters to prepare a ligand data-
base.

In summary, we developed a near-automatic tool with a
novel scoring function for VS by making numerous modifi-
cations and enhancements to our original techniques. By
integrating a number of genetic operators, each having a
unique search mechanism, GEMDOCK seamlessly blends
the local and global searches so that they work coopera-
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