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SUMMARY: In this paper, control systems for aircraft and missiles
are analyzed and designed using a "stability curve” method which is
particularily suitable for testing stability and adjusting parameters for

complex control systems. Design procedures are given along with
examples.

[. GENERAL INTRODUCTION

Since the first successful flight of a powered aeroplane on 17th of
December 1903, to control an aeroplane has been a challenging problem
to most engineers. Although the autopilot systems have existed since
1912, many new problems have been arisen due to the advent of high
performance aircraft. Jet aircraft and missile systems’are getting more
complex each day, the problems of testing stability and adjusting
parameters to meet specifications become more severe than ever.
Available methods for analysis and design are still limited to the
conventional frequency response analysis,’ and the root locus methods ?*
For some systems, the parameter plane and parameter space methods
can be used,”* but the number of adjustable parameters is limited and
detailed characteristics of a system can not be obtained. Most control
systems for aircraft and missiles are multiple loop with multiple ad-
justable parameters, so a new method capable of showing the effects of
all adjustable parameters and of indicating absolute as well as relative
stability would be desirable. The purpose of this paper is to present
the "stability curve” method® which is capable of multiparameter analysis
and design.

[I. STABILITY CRITERION
AND METHODS OF PREDICTING CHARACTERISTIC ROOTS

In this paper, methods of analysis and design are based upon a
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stability criterion which has been proposed by the author®’. A brief
review is given in this section, and applications are presented in the
next two sections.

Stability criterion: For a linear Nth order system to be stable, the
necessary and sufficient conditions are that all the roots of the odd
powered part (p.) and evem powered part (z,) of its characteristic
equation are on the imaginary axis of s-plane, and their absolute values
are related as

Po<21<.]31 <Z:: P2 .v-a (1)

where p, is at the origin of s-plane.
Proof: For an Nth order system, the characteristic equation can be
written as
N
F(s) = J| as'=Fu(s)+F,(s)=0 @)
i=0
where F.(s) and F,(s) are the even powered and odd powered parts
respectively.
After dividing F.(s) by F.(s), then

F.(s)/F.(s)=-1 {(3)a

which is a pro per form for plotting root loci.
From Eq.(2) a general form of Eq.(3), can be written in expanded
form as:
A Ay oM 2 Aust - ALs - AL)
(% A8 AS T+ AS A
where A=ay.,, Q=M=N-1 for odd values of N, A=az!,, Q=N-2, M=N
for even values of N.

==1 "0

The numerator and denominator polynomials in Eq.(3), contain even
powered terms only, and it is well known that the only factors of such
polynomials are conjugate imaginary factors, except for the possible
case of two pairs of complex roots with identical imaginary parts but
one pair having a real part which is the negative of the real part of the
second pair. Before proceeding the two polynomials must be factored,
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and for any combination of factors other than that of Eq.(1) the system
is unstable.

When the poles and zeros of Eq.(3), satisfy Eq.(1), the imaginary
axis is the locus of phase angle ¢ = =(3=n)x, where n is an integer.
Thus no root loci can cross the imaginary axis. The angles of arrival
and departure of the root loci at the singular points (poles and zeros
on the imaginary axis) are simply =m=zwhere m =1,3,5---- . Thus all
root loci are confined to the left half of the s-plane, and the system
must be stable.

If the sequence of poles and zeros is other than specified by Eq.(1)
at least one segment of root locus is entirely in the right half of the
s-plane. which can be checked by the angles of arrival and departure
of the loci at the singular points, and the system is unstable. If a pole
identically equal to a zero, this defines a pair of imaginary roots, and
the system is at the stability limit.

After the poles and zeros of Eq.(3) are available and the system
is proved to be stable, the rood loci can be sketched. From these loci
the characteristic roots can be predicted approximately.

Because of the alternating sequence of poles and zeros the root loci
are "lobes"” extending into the left half of s-plane. Each lobe contains
one root for which the magnitude of w, is bounded (approximately) by
the magnitudes of the pole and zero which terminate that segment of
locus. The lobes are roughly semicircles so the maximum real part of
the root is approximately ¢=2%| P-z |. For each such lobe the maximum
available damping ratio (o) may be determined by constructing a radial
line from the origin tangent to the lobe. For closer approximations to
the root values it is noted that for small values of the gain constant A
in Eq.(3), the roots are near the poles, and for larger A the roots are
near the zeros. For still closer approximation a point may be selected
on a locus segment and the gain number evaluated to provide a refer-
ence point.

Using the proposed stability criterion, the analysis and design of
control systems with multiple adjustable parameters becomes simply the
problem of finding the real roots of F.(s) and F.(s). These ave called
stability equations in a later part of this paper, and the curves which
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represent the distributions of the real roots (z; and p) are called
stability curves. .

III. ANALYSIS AND DESIGN OF AIRCRAFT CONTROL SYSTEMS

In this section, three control systems for aircraft are considered,
and each one represents a different kind of application. The block
diagrams of these systems are assumed available, and they are re-
garded as linear and time invariant.’

(A). Displacement autopilot.

The first system to be considered is a displacement autopilot of a jet
transport flying at 600ft/sec and at 40,000 ft altitude. Its block diagram
is given in Fig.1, where 6 is the pitch angle, s, is the sensitivity of the
rate gyro and S.., is the gain of the main amplifier.” It is required to
know the characteristics of this system under the adjustments of the
rate gyro feedback and the main amplifier gain.

From Fig.1, let K,=s,., and K,=S,. The characteristic equation is

5*+10.805s°+ (9.375+13.9K,)s*+

(13.25+4.25K,+ 139K, )s +4.25K,=0 (4)
Let y=s and »=4.25K,, the stability equations are

v+ (9.375+139K,) v +5=0 (5)

y-+0.393K,+1.221+0.3027=0 (6)

The stability curves are plotted in Fig.2, in which for each value of 7
a vertical line can be drawn, a set of p’s and z/'s can be found, and
a set of root loci can be sketched, thus the effects of the adjustable
parameters can be defined. For K.,=1, the following observations can
be made:

(1). For »=0, using the pole and zero locations in Fig.2, the root
loci can be sketched as in Fig.3, where the characteristic roots (r;) can
be predicted as indicated.

(2). From Fig.2, for larger values of #, the magnitudes of p, and z
are increased but z, is decreased, thus the frequency of r, and r, will
be increased while their damping ratio is decreased.

(3). At =60, the system is at its stability limit, and has a pair of
pure imaginary characteristic roots at w,=4.46.
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Similar observations can be made for other values of K,. In short,
all the information needed for analysis and design can be obtained from
the relative positions of the stability curves, and all the effects of the
adjustable parameters can be determined.

(B). Pitch control system for longitudinal autopilot.

The block diagram of a pitch control system for longitudinal auto-
pilot is given in Fig.4. The main problem is to make the system stable
at high angle of attack, (i.e. to design an aircraft which has better
performance), without producing instability at low angle of attack.

From Figd, let K,=5S;; and K,=S,. The characteristic equation at

low angle of attack, is

s'+10.9s°+ (174 150K, ) s+ (BO+60K,+ 150K ,)s +60K,=0  (7)
Let »=60K,, the stability equations are

yi4 (174 150K;) y+5=0 (8)
v+ (7.35+5.5K,) +0.237=0 (9)
Egs.(8) and (9) represent a family of parabolas and a family of straight

lines with a constant slope, respectively.
At high angle of attack, the characteristic equation is

$'4+10.98°+ (90K.—2) s+ (27K, +90K,—110)s + 27K ,=0 (10)

and the stability equations are
v (90K, —2)y+0.455=0 (11)
y+ (2.475K,—10.1) +0.1387=0 (12)

For K,=0.5, the stability curves for both high angle and low angle
of attack are plotted in Fig.5, from which the following observations
can be made:

(1). The upper limit of 5 is at 320, which places the system at its
stability limit at low angle of attack; and the lower limit of 7 is at 60,
which places the system at its stability limit at high angle of attack.

(2). At the lower limit of 7, the system is well damped, except that
the small characteristic roots near the origin of the s-plane may not

be damped. For =100, the root loci are plotted in Fig.6, where the
characteristic roots are located approximately. For larger value of #, the
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value of frequency (w,) will be increased while the damping ratio (o)
is decreased.

(3). For the same value of 7 increasing K, will increase the fre-
quency, and the damping ratio will be reduced accordingly. In order to
increase the upper limit of » the value of K, should be increased, but
the lower limit of 7 is actually not affected by the adjustment of K

f4). At low angle of attack the frequencies of the complex char-
acteristic roots (r,r,) are approximately equal to the average value of
z, and p,, because all the loci which contain r, and r, are terminated
at z, and p;. At high angle of attack, the frequencies of r, and r, are
approximately equal to the average value of z, and p,, which can be
seen by sketching the root loci, (for =100 see Fig.6).

In the commonly used design methods,® several root loci are required,
and the general procedure is to analyze the inner loop first and then
to design the outer loop. Since the information obtained from the inner
loop can not guarantee the characteristics of the system, a method of
trial and error must be used, and a computer simulation is usually
required. But using the stability curve method, the stability character—
istics of the system can be defined exactly from the relative positions
of the stability curves, and all the characteristic roots, can be predicted
approximately for all combinations of the adjustable parameters.

(C). Automatic beam guidance system.

The geometry and the block diagram of an automatic lateral beam
guidance system are given in Figs.7 and 8. The effects of all the ad-
justable parameters and the design procedure will be considered.

From Fig.7, let K,=S,, K,=S., K,=S._ and K,=S,., the characteristic
equation is

§°+12.387 4 (234 92K, ) s*+ 92K ,s*+ 28 K2K352+-9§g K.K.K,s
b 1

+ 92 KKK, =0 (13)
Assume V,=440ft/sec, g=32.2, and let a=297K,K,K,/R, p=6.7K,K,, Eq,(13)
becomes

s°+412.38"+ (23+ 92K, ) s' +92K ;8 + fs* + 10as +a=0 (14)

and the stability equations are
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vi+(23+92K,) y*+By+a=0 (15)

¥+ 7.49K;+0.812a=0 (16)
Eq.(15) can be separated into two parts, such as®

0=y’ + (234+92K,)y* (17)

019=—fy—a (18)

Eqgs.(17) and (18) represent a family of curves and a family of straight
lines respectively, and their intersections are the real roots of Eq.(15).
For several values of K,, the results of Eq.(17) are plotted in Fig.9,
which indicates that the upper limit of the frequency (o.) of the complex
characteristic roots is decided by the value of K, For example, if K,
is chosen at 0.564, the maximum value of w, for all values of the other
adjustable parameters will be less than 8.65.

For having a clear view about how to use these stability equations
and the related curves, the following design procedure is proposed.

Step 1. For a pair of desirable complex characteristic roots sketch a
root locus and estimate the required upper and lower limits of frequency
(w,) on the imaginary axis of s-plane.

Step 2. Select the value of K, according to the upper limit of ..

Step 3. Select two roots from Eq.(16), such that the larger root (p.)
is the lower limit of @, and the smaller one (p,) is near the value of
frequency which the other characteristic roots are desirable. Thus the
value of a in Eq.(16) is found at a=p,*p.*/0.812.

Step 4. From Eq.(18), using the value of « in Step 3, a straight line
can be drawn which gives the most desirable intersection points (z;*’s)
with the curves represented by Eq.(17).

Step 5. Using the results in Steps 3 and 4, the root loci can be
sketched, and the locations of the characteristic roots can be found.

For example, if the main purpose is to design a system which has
a pair of characteristic roots near p=05 and ®,=6, and all the other
roots are near the origin of the s-plane or have large and negative
values, then from Step | the root locus is sketched in Fig.10, where the
required upper and lower limits of frequency are found at 9 and 4.5
respectively.
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Following Step 2, from Fig9, the curve for K, is selected which
gives a maximum upper limit of w, at 8.7 providing that the value of
g in Eq.(18) is small.

For Step 3, the larger root (p,) is at 4.5, which is decided by Step
1, and the smaller root (p;) is selected at 0.7, thus the value of « is
12.2, which is indicated by point A in Fig.9,..

According to Step 4, the dotted line (B) is drawn, and the values of
z"'s are found, which indicate that the system is stable and all the
characteristic roots are located near the desirable places.

For the final step, the root loci are plotted in Fig.10, where the
locations of the complex characteristic roots (r,, r.) have been checked
with a spirule.

For this system, the ratio of K,/R can be regarded as a parameter
which depends upon the value of @, thus the minimum value of R is
decided by K,.

While the operating range (R) is large, the value of @ becomes
small,it can be represented by the parallel motion of line B in Fig.0,,
which indicates that the system is stable when the range (R) becomes
infinity.

To design a system with a pair of desirable characteristic roots can
be accomplished by .other methods.””® The main contributions of the
proposed method are that (1) all the effects of the adjustable parametrs
can be considered separately; (2) all the characteristic roots can be
predicted approximately while adjusting parameters: (3) for an Nth
order system only two stability equations of equal or less than /,Nth
order need to be analyzed,and (4) all the analyses are analytical except
the final sketch of the root loci which are all in a similar shape.

IV. ANALYSIS AND DESIGN OF MISSILE CONTROL SYSTEMS

Since the transfer functions of the control systems of missiles (rigid)
are the same as that of aircrafts,” only one system, for roll stabilization,
is considered in this section, and its block diagram is given in Fig.11.
The main purpose is to find the effects of the lead network and the
gain of the amplifier (Sumy).

From Fig.11 since the value of "¢" is small for both aerodynamic



20

and ballistic missiles,® the system will be analyzed for the worst con-
dition, i.e.c=0. The characteristic equation is

s°+ (84+b)s*+ (84b+4-2750) s*
+2750bs*+2750K, + 2750K,a=0 (19)

where K,=S,.,. The stability equations are

., 2750b _ , 2750K,a_ ..
Y 5eb Wlimeet., (20)
v+ (84b+2750) y +2750K, =0 (21)

The stability curves are plotted in Fig.12, which indicates that for each
set of values of K, and b there is an upper limit of "a” for stability.
For example, if K,=100 and b=30, the dotted ling (A) indicates that
the maximum value of "a” is 16. Fig.12 also indicates that for each set
of values of "a” ond "b"” there is an upper limit of K,, For. b=30 and
a=2, the maximum value of K, is at 1150 Which is indicated by the
dotted line (B).

In Fig.12,, since the magnitude of p, is quite large, it can be pre-
dicted that a pair of characteristic roots with large frequency may exist.
If this kind of characteristic roots are desirable, the difference between
p: and z, should not be too small, otherwise a pair of complex charac-
teristic roots decided by p, and z, (with lower frequency) will dominate
the characteristics of this system. For a=2, b=30 and K,=100 the results
are given in Fig.13.

If the values of "a” and "b"” are assumed equal, i.e. to eliminate
the lead network, the stability curves indicate that the system is unstable
for any value of K,, which means that the compensation network is
required. '

CONCLUSIONS

In view of all the systems considered in this paper, it is apparent
that the stability curve method is a powerful tool for the analysis and
design of aircraft and missile control systems. By this method, all the
effects of adjustable parameters can be represented in one plane, and
the locations of all the characteristic roots can be predicted approxi-
mately for any combination of adjustable parameters.
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LIST OF SYMBOLS

Laplace operator

root of odd part of characteristic equation (absolute
value)

root of even part of characteristic equation (absolute
value)

coefficient of characteristic equation

v, 7, Ky, K, @, § transformed variables

natural frequency
] damping ratio
F, (s); Ei(s) two parts of characteristic equation

0115 O1a two parts of a stability equation

elevator deflection
pitch angle
distance

e main amplifier gain

sensitivety of rate gyro



S sensitivity of directional gyro

Diny Duy sensitivity of vertical gyro and roll rate gyro
& gain of coupler

Vo true airspeed

g gravitational constant

o pitch rate

T characteristic root

A angular error

d lateral distance of the aircraft off course

& roll angle

LIST OF CAPTIONS

Fig. 1 Block diagram of a displacement autopilot of a jet transport.
Fig. 2 Stability curves of a displacement autopilot.

Fig. 3 Root loci of a displacement autopilot.

Fig. 4 Block diagram of a pitch control system for longitudinal autopilot.
Fig. 5 Stability curves of a control system for longitudinal antopilot.
Fig. 6 Root loci of a control system for longitudinal antopilot.

Fig. 7 Geometry of lateral beam guidance,

Fig. 8 Block diagram of a lateral beam guidance system.

Fig. 9 Stability curves of a lateral beam guidance system

(a) for large value of frequency

(b) for small value of frequency.
Fig.10 A sketch of the root loci for a lateral beam guidance system.
Fig.11 Block diagram of a missile roll stabilization control system.
Fig.12 Stability curves of a missile roll stabilization control system.
Fig.13 Root loci of a missile roll stabilization control system.



0“, £ S O
’, +~ e 10 2 Sl
—‘ﬁz—‘ Sawp % S+10 i s
Ske
e 1.39(S+0.306)
s% 0.805S +1.325
Fig.1
24
-7_":'-3; P Pz
40
"6
K2 %
2 ]
23071 2
P
- 5
204 K =1 K,=2
LD Ko
e [ 2 \[2
10- |
|
iKzzo 1Z‘Iz Z":-
; P
0 100 200 M = 425K

Fig.2



£l
T =g -4 -3 -2-1?‘5‘ T

Fig 3

ec?-"" S_' i3 + ~ %5 10 Se__ G ©
- S i S+|0 |
e S G=_ 2AS+03)
I s*+09s5+8 I (5+3.8)(5-2.9)
LOW ANGLE OF ATTACK HIGH ANGLE OF ATTACK

Fig.4

_— T



(a)

< 1 ~—= HIGH ANGLE OF ATTACK
z°-y, p2 — LOW ANGLE OF ATTACK
80 I
5 [ é KZ-O.S
A
v |
€0t |
I
=
40 4
t 0.5
R f{ Zé\<\2
A \
20 ,I | )
| z?2 27
/ I
/ / | ;Po Tl
o/, 200 600 1000 1400 1800
" =60k,
MIN T\ MAX
5 W
'3'2
HIGH ANGLE OF ‘o
TTACK 9 8
A 1
7
6
3 1>'

LOW ANGLE |°
OF ATTACK |4
3
2

-'ll=|00

13}

25

Fig5

Fig6



26

4

NORTH
R 4
BEAM
WIDTH
STATION
Fig.7
COUPLER SERVO
Acoun Y o0 R [ T T AT ¢ 13 [¥lvp
-‘(;}-Qim% nrd Sve PO seio [ | 5423 V.5 T|rs
I S"’
Fig.8
Snglds

40

3e

20

o -
o



REF

ESTIMATED

2

SH 512

120
100
80
60

40

20
0

Id.lz.z s Fig.9b

.9

S+Q

%a

St

S+hb

2750

%4845+ (525]




28

AR |

(q)
ko 00Z-  00b- 009- 008- O00OE-  000S-
m IS . o¢ ¥ S0 4
|
I
|
008] |
0
] m.—.
| OM- ﬂ
0001 " e
e, s W SRR E LA
| (g
y |
00GI{ I h
I(w) I (g)
|
-x _ _
b |
_ (v) |
J |
§ ol , ©00z- o0O¥- | 008~
_

eI o1,

Ob-




