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Stability Analysis of Nonlinear Reactor Control Systems
Y. L. Chen* (BR3t) K. W. Han®* ($§58)

SUMMARY: A method for testing control system stability is presented,
which is useful ror finding the limit cycles of high order systems with
multiple nonlinearities. The presented method is applied to the analysis of
the control system of a material testing reactor, and a comparison with
the method in a current literature is given.

I. INTRODUCTION

It is well known that a nuclear reactor control system usually consi:ts
of several nonlinearities such as saturation, bachlash etc. The commonly
used method for analysis is Nyquist diagram, which is not suitable
for analyzing control systems with multiple nonlinearities, and also not
suitable for finding the effects of the adjustable paramters. The main
purpose of this paper is to present a stability-equation method and to
apply this method to the analysis of a nonlinear reactor control system.

II. STABILITY-EQUATION METHOD FOR NONLINEAR
SYSTEM ANALYSIS

The method proposed in this section is based upon a linearization
technique; i. e., to replace the nonlinearities by their describing functions,
and then a linearized characteristic equation can be obtained. After the
characteristic equation is separated into two parts as

F(s)=Fs+F,=0 (1)
where Fr and F. are the real and imaginary parts of F(s) respectively
(after the substitution s=jw), then a standard root-locus form can he

written as

Fr/Ei=—1 (2)
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It is readily shown that for all the characteristic roots in the left half of
s-plane, all the poles (p:) and zeros (z:;) of Eq. (2) must lie on the ima-
ginary axis of s-plane and their absolute values are related as

P 2L Dol 21 Py 2+ (3)

From Eqs. (2) and (3), it can be seen that the stability limit is reached
when a pole is equal to a zero; thus to test system stability becomes simply
to find the real roots of Fr and F. (In a later part of this paper, these
two equations are called stability equations.) The following example is used
as an illustration.

Example 1. Consider the system in Fig. 1, where N, and N, are the
describing functions of the nonlinearities, the characteristic equation is

s +s*+N, (g—ib) s+0.05N, (g—jb)=0 (4)

After the substitution s=jw, the stability equations are

Fa=—w*+N,bw+0.05N,g=0 (5)

Fi=—w*+N;gw—0.05N;b=0 (6)
which gives

N, = (0.05+w*) w* _ 0.95w* (7)

T g(0.0025+w") b (0.0025+w?)

Let R=—2 where g is the amount of backlash and |0./| is the magnitude

(0.1
of the input signal to the backlash, then for each value of g, the corres-
ponding values of w, R, g. b, and E for making the system have a limit
cycle can be found, and their relations can be represented by various
curves. For example, the relations among E, w and g are given in Fig. 2,
which indicates that, for the considered system, if the amount of backlash
is increased, the frequency of the limit cycle will be reduced and its
magnitude will be increased.

Fig. 2 also indicates that the presented method is useful for adjusting
parameters. In the considered system, if the open loop gain (k) is adjus-
table, then for any fixed value of g the relations among w, E and k can
be found using the same method
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LIMIT CYCLE STABILITY ANALYSIS

After a limit cycle is found, its stability characteristics should be
defined. The main purpose of this section is to present a method for finding
the stability characteristics of a limit cycle using the stability-equation
method.

As mentioned before, a limit cycle exists whenever there is a pole
(p:) equal to a zero (z); thus the stability characteristics of a limit cycle
can be defined if the variations of the pole and zero in the neighbourhood
of the limit cycle (due to the variation of E) can be defined. On the other
hand, since the stability equations are functions of frequency, the effect
of w should be considered also. A method of using partial derivatives to
find the effects of the variations of E and w upon the real roots of stability
squations is given as follows:

Using Taylor’s series, for incrementals of E (AE) and w (Aw), the
stability equations can be written approximately as

Fa(w+Aw, [E| +AE)=Fx(w, [E| )
+o8 Aw+ e AR =0 (8)
Fi(w+Aw, [E| +AE)=Fy(w, |E| )

-+ gF‘ A + aF‘ LAE=0 (9)

Since Fx(w, |[E| )=0 and Fy(w, |[E| )=0 at the limit cycle, thus

__OFa !BFR
_ _ 0F; ,p| 0F,
—Awl— oE AEI 5 (11)

where Aws & Aw; represent the variations of the roots of Fr and F; in
the neighbourhood of the limit cycle respectively.

For the example in the last section, if §=0.2075, then as indicated by
the dotted lines in Fig. 2, a limit cycle with w=3.14 R=0.2573 and |[E} =0.1033
exists. The partial derivatives are found as

OFx b D +0.05N, 2 3g (12)

B —2w+N;b+N1w
W
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Awn=—27,2 AE

Aw,;=—15.8 AE

s

(14)

(15)

(16)

an)

(18)

(19)

(20)

‘0g
e 3w+ Nig + Niw-& —0.05N, 2>
OFw _ 1. 0Ny ON g
BE] bw 5|El +N1W6lE] —+ 0.05¢ o] —=+0. OL")I\II(,),”:I
oF; - N, b N,
olF ~E ol N gl 00Ny =005y
dg _ 0g OR 90O DR '
FEer Pw_OR 9w’ OE OR OE
ob._ ab 4R 8b _ ob 6R
ow _ OR 0w’ O|E| OR O[E|
B B
and where R= AL A 8“7]/1
41E|2
R . _p=
gw — Bw*
R . '=8
GlE|T 32w |E|*®
" For the considered limit 'cycle, the results are
) S a . R
aR == 1.15, W_TO‘G' ‘—a:v = 000826,
R oN, . _
W_I 0.09236 3E — 120
og _ — 3, _ab_____ -3
ob _ .
E = 1.41 X10 :
0Fn _ _ OF% .
thus o 3.49, ‘IEI“ 95
oF, . oF; _
B 19.2, E —303"
~ which give

(21)
(22)

Hence for a positive incremental A E in E, the pole and zero distribution
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of the stability equations becomes
p.;,=-3.165, z.,=—0.16, p,=—0.025, 2,<3.14, p,>3.14

which represents a stable system; i. e., E will be brought back to its original
walue (0.1033). Therefore, the limit cycle is stable.

The considered example has been simulated with a digital computer,
and the results are checked with those obtained from theoretical analysis.

STABILITYANALYSIS OF A NONLINEAR REACTIOR
CONTROL SYSTEM

The design of a nonlinear reactor control systm has been stated to
some detail in reference 3, where a system with two nonlinearities separated
by a linear section has been analyzed using Nyquist diagram and describing
function methods; and for avoiding the complexiety in analysis, the authors
always approximate the ON-OFF element with a pure gain. Even so, the
analyses show great complexiety, especially when the effeccts of the
adjustable parameters are considered.

In this section, the stability—equation method is applied for the analysis
of the aforementioned system.

The considered system is given in Fig. 3, where the transfer functions are

(a) Reactor:

1 R Gel on_E
nu'RRGH—'a 6_]{ = ak
_104(s+3.01) (s+1.14)(s+0.301 ) (s +0.111 ) (s +-0.0305) (s +0.0124)
" s (s+64.4) (s+29) (s+1.02) (s+0.195) (s+0.0681) (s+0.0143)
] (Z3)
(b) Motor:
KIrG;‘.l: i’ = hf{u (2‘1)

#lp, s(s+7s)
where M, is the reactivity ramp for the motors and 7=0.05 second is the

motor time constant.
(c) The ON-OFF error unit

o blp_ 4 e
Ky Ge=! E _E,;WR’-'/l_R! (25)
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where ¢, is the dead zone amplitude, and R’=¢,/ |[E| is a parameter.
(d) The backlash

KsGp=g—jb (26)

where g and b are the real and imaginary parts of the describing function
of the backlash respectively.
The characteristic equation is

14 HLKBGRKUGCKDGDKBGB =0 ( 27 )
0

Let K=MoKoGoXx 104, then Eq. (27) gives

574 88.65° + 16475+ (20K g + 5750 — j20K b)s®+ (92.2K g
+5310—j92.2Kb) % + (107.4Kg+1146— 107.4Kb) s*
+(35.5Kg+65.9— j35.5Kb)s* + (3.67Kg +0.72

— j3.67Kb)s?+ (0.1098K g — j0.1098Kb)s + (0.000866K g
— j0.000866Kb)=0 (28)

Thus the stability equations are
Fi=w*—146Tw™+20Kbw*+(92.2Kg+5310) w® —107.4Kbw*
—(3.5Kg+66 )w*+3.67Kbw*+0.1098Kgw—0.000866K b
=0 (29)

K:=88.6w*—(20Kg+5750)w°®+92.2Kbw*+(107.4Kg+1146) w*
—35.5Kbw*—(3.67Kg+0.72)w*+0.1098Kbw +0.000866 K g
=0 (30)

In order to determine a limit eycle, Eqs. (29) and (30) should be solved
simultaneously. Rewrite these two equations as

i w®—1467w" +5310w° — 66w* i
(92.2w* —35.5w*+0.1098w ) g + ( 20w*—107.4w* +3.67w*—0.000866 ) b
- A
=Ceg+Db L)
and
K= | 88.6w* —5750w* +1146w* —0.72w*
—(20w*—107.4w*+3.67w*—0.000866)g +(92.2w° — 35.5w* +0.1098w)b
. B (32)

Cb—Dg
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Since g and b are functions of |0’ ; i. e.,?

g=g( 10" ) (33)
b=Db( 5 ) (34)
i JOE
where 167, T |E] (35)
and K=10MKGo=10"M; /1 (- ) (36)
E| = |E]

thus for different values of M,, E, and g, the values of w, |E|, g, b and
K which satisfy Egs. (21) to (36) simultaneously can be found using a
digital computer. A flow chart for doing this is given in Fig. 4, and some
of the computed results are given in Fig. 5.

For example, if M;=1.5X10", ¢,=0.005, 8=0.23°, which define point
M in Fig. 5, then the corresponding values of w, |[E|, g, b and K are

w=0.066, [E| =0.43, K=4.44, g=0.258, and b=0.269

The pole-zero bistribution of the stability equations is given in Fig.
6, which indicates that the considered system has a limit cycle at w=0.066.
In order to test stability of this limit cycle, the method presented in the
last section is applied. The calculations of the partical derivatives are given
in the appendix, and the results are

1.211 Awz—0.1391 AE=0 (37)

—4.417 Aw;—0.0288 AE=0 (38)

It can be seen that, for an incremental of |E|, the zero of Fe=0 ( originally
at w=0.066) tends to increase, and the zero of F;=0 (originally at w=0.66)
tends to decrease; thus the pole and zero distribution becomes alternative
in sequence, and the system is stable. Therefore, the considered limit cycle
is stable.

Since the effects of the adjustable parameters on system stability can
be found using a digital computer and the stability characteristics of any
limit cycle can be defined, the presented method is useful for the analysis
and design of control systems with a digital computer.
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CONCLUSIONS

The method of testing stability in high order systems with multiple
nonlinearities, presented in this paper, has the advantage of reducing the
required work for finding the limit cycles and its stability characteristics.
The presented method is suitable for use with a digital computer to find
the effects of various adjustable parameters on system stability. In com-
perasion with the commonly used graphical method,® the superior charac-
teristics of the presented method are quite evident.

Since the basic approach used in this papeir is linearization, same
limitations are uncountered as the use of describing function method; i e.,
the nonlinearities must be separated by linear transfer functions with
enough low pass characteristics.

APPENDIX

From Eqs. (8) and (9)
Fa(wo+Aw, |[E| o+ AE)=Fa(w,, [E]| o)

GFR 0Fy
+ L Aw +6]E]AE =0 (A)

Fi(wo+Aw, IEl o +HAE)=F:(w,, |El 0)

OF: Ao OFr - :
+6 Aw +5]EIAE 0 (B)

The partial derivatives are

681“;;1 — 8 X 88.6w" — 6(20K g -+ 5750)w -+ 5% 92.2Kbw*-+4(107.4Kg
+1146)w —3 % 35.5Kbw? — 2(3.67Kg +0.72)w+0.1098Kb
—20w* 2N8 92 23 D 1 1074w1 T8 —35.5 wi 2Kb

W w
—3.67w LB -+ 0.1098w E”Kb +0.000866 1% (C)

(,?I}%I: —20w g{%’l’ +92.2w" g%’-ﬂmw aa% —35 5w3'%1|<Eb|-

—367w> 7K€ 1 0.1008w- KL | 0000866 25D ' (D)

a[E| I|E| 9|E|
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OF: _ gws 7 x 1467w 46 X 20Kbw? +5(92.2K g +5310) wé—4

w

x107.4Kbw?®—3(35.5Kg+66)w>+3.67 x 2Kbw+0.1098Kg

+20we5-—+92.2w

aaKb aKg e ¢6Kb 355w 8aKg
aw

+3.67w* 750 10,1008 w%%g- — 0000866 %> (k)

OF: _ og.0 KD s IKg L 9KD aKg
JIE] =20V 5 922w B —107.4w! 751 —35.5w 36‘|E]

, 3Kb oKg Kb
+367w 5 b+ 01098 w 5 1 — 0000866 50 (F)

For the considered limit cycle at M (i. e, w=0.066, |E| 0=0.43, #=0.23",
M,=1.5x10", K=4.44, g=0.258, b=0.269),

then

Since

thus

whioch gives

and

g . 10*wp
R= @y =2F K =

dR _ 108 _
W _ZIEK =10.52

og _dg @GR _ _ o
R T 1.3x10.52=—13.7

b _ ob 8GR _ -
S e 0.5x10.52= —5.26

K=10‘Mo-ﬁ1/ i—RZ,

_—10&M0

IEI
Bwx
R=-aM,
R _, 9g —9g R _,
AE[.’ 3BT @R OE
JK _  4x10*x1.5x10* _ K _
SE S =—10.37, 5 >-=0
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ob

similarily TE 0
Thus OTKQ_ = K£= —13.7K
W ow

Kb _g b __5osx
dw  ow {
W, €
T £ B 10.37g
Kb _ ans - i,
B =b =103

Substituting into Egs. (C) and (F), then

oFs _ oFs _ _ oF; _
=121, ot =—0130, F=—4417,

Hence Eqgs. (37) and (38) are obtained.
SYMBOLS

s Laplace operator

w  frequency

c output quantity

r input quantity

K gain of transfer function

P zero of E;

z  zero of Fy

Fr real part of characteristic equation

F. imaginary part of characteristic equation
M, the velocity ramp of motors

¢,  dead-zone amplitude of the ON-OFF error unit

R=pg/2 |¢#.] parameter
'=¢,/ |E|

g-jb describing function of a backlash-type nonlinearity

aF;

SE

—0.0288
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N describing function of ON-OFF nonlinearity '
#. input signal to backlash ;

E  input signal to the ON-OFF element, E= |E| sinwt
n, steady-state power of reactor

2] magnitude of backlash
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