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The Three-Dimensional Impurity Distribution of a
Planar p-n Junction
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I. Introduction

In the fabrication of the modern silicon semiconductor device, such
as the passivated planar transistor or the monolithic intergrated circuit,
the p-n junction is formed by impurity diffusion through a finite diff-
usion mask opening. The diffusion mask is a layer of silicon dioxide
thermally grown by steam oxidation technique. The diffusion opéning
may be a rectangular stripe or circular dot precisely revealed by photo-
lithographic technique.

The impurity atom distribution can not be approximated by an
elementary one-dimensional diffusion process. ¢ Instead, this distribu-
tion must be determined from a detailed solution of a boundary value
problem for the structure under consideration. ‘® The purpose of this
paper is to present a full three-dimensional soution of diffusion problem
by integral transform method. The solution is based upon an instant-
aneous source diffusion process. Two different diffusion openings are
considered in the analysis. The rectangular coordinates and the multiple
Fourier transform are used for the rectangular geometry. The cylindrical
coordinates and the multiple Fourier-Bessel transform are used for the

circular geometry.

II. Analysis

The entire semiconductor surface is assumed to be covered by a
diffusion mask, except that portion of the surface from which diffusion
is to take place. It should be recognized that the present mathematical
analysisis based upon an idealization of the oxide masking technique.
For analytical purposes, it is assumed that the diffusion mask is an
impenetrable barrier for impurity atoms, thereby reducing to zero the
impurity atom flux normal to the semiconductor surface.

The diffusion of impurity atoms within a homogeneous medium is

governed by the differential equation
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where N(X, t) is the impurity concentration, D is the impurity diffusion

constant and /¢ is the Laplacian operator. In rectangular coordinates,

) N(x, t)=0

: e @ 4 & 6
(2) i’ '_'axg + ay + az-
In cylindrical coordinatesx=(r, ¢, z)
« bl BT el o).
(3) M=% o o

A two-step diffusion process is generally used in order to obtain a
good impurity profile. A suitable amount of impurity atoms is deposited
on the semiconductor surface during the first step in relatively low
temperature, and, after the removal of impurity glass, the impurity
atoms are drive in during the main diffusion process in high temperature.

For the case that the diffusion opening is a rectangle 2a wide 2b
long and is predeposited with Q impurity atoms per unit area on the
surface z=0, the initial condition for the main diffusion can be written
by means of singularity functions u,(x)‘"

(4) N (x,v,2,0)
=2Q(U-y(x+a)-u-;(x—a)] (u-,(y+b)—u_,(y—b)Jue(z)
where uy(z) is the unit impulse function

00 ;Z:U o0

(5) uo (2) =1 and j o (z)dz=1
0;2'—;-":0 =00

and u-,(z) is the unit step function |
z 1t 7

(6) u_,(z2)= ‘- u (z') d.z’:{

For the circular surface geometry with radius a, the initial condition
canbe written as
(7) N(r,z,0) =2Qu.-,(a—r)u,(z)
where the condition that the impurity concentration is constant in the
angular direction is implied.

These boundary value problems can be solved easily by integral
transform methods. By the use of integral transforms, both the diffe-
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rential equations and the boundary conditions can be transformed
directly into simple forms. These simple equations can be solved by
means of simple manipulation. Then the desired solutions can be obtained
by taking inverse transformation.

In the rectangular coordinates, the multiple Fourier transform is
used and is defined as

(8) n (ki Kk, ks, t) =J‘?}N (X,v,z,t) exp [-i(k,x+k,y+Kk’z)] dxdydz

The most important formulas®® and Fourier transforms of some special
functions'” are compiled in Table L.

The Fourier transform of the partial differential equation (1) in
rectangular coordinates (2) can easily be obtained

9) [~ kS rich— L 2 nck bkt =0

ot
where use has been made of (a) in Table L

Table I Foruier Transform Pairs

f(t)= 21ﬂ J‘L:’F(w)exp(jwt)dw | F (w) -——__J.:jf(t)exp(——jwt)dt
|

R (iw)"F (w)

b _f: f(x)dx JLW Fiow)

¢ | £ (=71} oo _ F (w) exp (z=jwT)

d | f(t)exp(=jwat) F (wFw,)

F= = =
e | u,(t) (w)"
R 4{15' exp (i:;—) exp(-a*w?)
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The transform of the initial condition (4) is
_sink,b
k!
where use is made of (c) and(e) in Table L
The solution of the first order differential equation (9) satisfied
with the initial condition (10) is

(11)

(10)  n(kkk,0) =8Q 2052

n(k, k. k;t)=8Q Sil;k’a iir;{kgb expl— (k2+k2+k )Dt)
1 2

The desired impurity distribution can be obtained by taking the
inverse Fourier transform of n(k,kskst) of (11)

(12) N (x,y.2,t) =- J'Ifn(ki,kz,kd,t) exp(j(kx+Kk,y+.2z) Jdk.dk,dk,

(2 om)" =
The inverse transform of exp (— qut) is followed directly from (f)

in Table I

co
1 2 : RIS, Sy =
(13) 27":_;];:) exp(—ngt)exp (jxaz)dkg—v, TR exp ( Dt )

The inverse transform of -S";\k ag exp(—k%Dt) can be derived by

means of (f), (b) and (c¢) in Table L

(14) 1 J 5‘““ K2 exp(—K2D) exp(ik,x)dk,

oo

=__1_.J. exp(jkia) —exp(—jKia) oy k2 1Dt exp(jk,x)dk,

21 oo 2jk,

=3 _jh.:ﬂi/' T 2% )dx,_fi-a Ve
exp 4[;{ ) dx’

:TH T/Z'EJ_X: aTlli)t eXpis 4‘[T) dx"

e x-[-a xX—a
l[erftz FA) —erf( X2 Dt)]

Similarly
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1 sink,b 2 ;
(15) T i N exp(—k;Dt)exp(jk.y) dk,
= y+b ., —b
[erf(21/D )—er (21/D )J

The multiple integral (12) is therefore reduced to the product of the
error functions (14), (15) and the Gaussian function (13)

sav—  Q x+a 0
(16) N (x,y,z,t)—h/xD [erf(zT/ Dt) —erf (21/D )]

y+b ] =2
[erfcwD) erf(ZV,D) exp( 4DtJ
In the cylindrical coordinates, the Fourier-Bessel integral must be used®,
and the transform of a function N(r,z,t) can be defined as

o3 (o8]
(E7) n (kkst) = [- rdr I- dz N(rzt) Jo(kr)exp(-jksz)
0 -0
where
(=o]
(18) n (k,z,t)=,l- rdr N(r,z,t) Jo(kr)
(6}
is known as zero-order Hankel transform.®® It is easy to show that‘™
o0
£l g g 2 anss 3
(19) (_)‘- rdr L ;al-_-rWN(r.z.t) Jlkx)= kn(k,z,t)']
and

(20)

o
The Fourier-Bessel integral transform (17) of the differential equ-

ation (1)with operator (3) is simply

i 2 19 =
(21) k (—k*—5— 5 —) n(kks)=0

where use is made of (a) in Table I and (19). The Fourier-Bessel

l rdr u-y (a=r) Jo (kt‘)=—§ J, (ka)

integral transform of the boundary condition (7) is
(22)  n(kks0) =2Q 1 -Ji(ka)

where use is made of (e) in Table I and (20)
The solution of the first order differential equation (21) satisfied

with the initial condition (22) is
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(23) 1 (kkt) = 2Q%J1(ka)exp[ — (k*+kD) Dt

The desired impurity distribution N(r,zt) can be obtained by taking
the inverse transform of n(kkst)

(24) N(rzt)——-l J dik, f kdk n(kk,t) Jo(kr)exp(ikez)

T =0

It is easy to show that

S | e 2 3 Ji(ka)exp(—k*Dt) Jo(kr)
0
' \2‘0 g (m—|—ﬂ_%! ( _S )rn+1(_—ng)£
£ ! 1)2 3

where use is made of the series expansion of the Bessel functions J,(ka)
and Jo(kr)and the definition of the Gamma function. By means of (f)
in Table I and(25), the multiple integral (24) becomes

(26) N (r,z,t)
e - T - S Y Rl gl o ard o ooy
—1'7‘;{? L ﬂz (m+1)1m! (L1)* “4DP (4Dt) exp(py)
1—=0 O
or
(27) N (r,z,t)
S _Q ? 1 m-1
~VaDt L (m—i—l)’(ﬁlDt) PaFmELl o )EXD( 4Dt)
m=0
where
R Clati-t
(28) .trl (gahw\) _‘Ll h1 1'!" g (g 1)[
1=0

is the confluent hypergeometry function.®

1. Discussion
From the rigorous mathematical solution in the rectangular coordin-
ates (16), it is interesting to note that the surface concentration at the
center of the diffusion window
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a b

(30) N (o,o,o,t)=V§Dt erf ;A erf 2

depends upon the dimension of the rectangle, if a and b are comparable
with the diffusion length 24/Dt.

The constant concentration surfaces can be calculated from (16).
The contour in the yv-z plane is

f(YED ) _erf (3
e er (21/D —er (21/D_ e
0,0,0,t) exp (—-d_Dt—; = const.
2 erf (
21/ D

and is shown in Fig. 1, and the contour in the surface z=o is

(31)

(32)

XAy ppeX—=2 y+b yaxb
erf(5—= ) —erf( ...t) erf(QVD) —erf (=)

=const.
and are shown in Fig. 2. These two configurations illustrate the ina
dequacy of the one-dimensional approximation for the deep diffusch
as the isolation process in the fabrication of integrated circuits.t
The impurity distribution along x-axis is

+a
erf(: 2
(33) N (x,0,0,t) _ 2y/ Dt Dt
i N (0,0,0,t) 2 erf ( ___)
2v Dt
and is shown in Fig. 3, and the distribution along z-axis is
N(o0,0,z,t) _

B Nooad G

and is the Gaussian distribution and is shown in Fig. 4.
The constant concentration contours for the circular geometry can
be calculated from (28). Using the fact that
(35) Fai(giho)=1
it is easy to show that the concentration at the center of the diffusion

opening is
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and

and

(36) B T
MRSt R e

the impurity distridution along z-axis is
G N (02,)=N(0,0)=N(o0t)exp( o)
is identical with = (34).
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